CS 188: Artificial Intelligence

Decision Networks and VPI

Instructor: Saagar Sanghavi—University of California, Berkeley [Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, and many others.]

Recap: Utilities and Rationality

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets, with new node types for utilities and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like Bayes Nets)
- \diamond
- Actions (rectangles, cannot have parents, act as observed evidence)

- Action selection
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action

Maximum Expected Utility

 $MEU(\phi) = \max_{a} EU(a) = 70$

Decisions as Outcome Trees

Maximum Expected Utility Given Evidence

Maximum Expected Utility Given Evidence

Decisions as Outcome Trees

Value of Information

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2

• Question: what's the value of information of O?

- Value of knowing which of A or B has oil
- Value is expected gain in MEU from new info
- Survey may say "oil in a" or "oil in b," prob 0.5 each
- If we know OilLoc, MEU is k (either way)
- Gain in MEU from knowing OilLoc?
- $\circ \quad VPI(OilLoc) = k/2$
- Fair price of information: k/2

Value of Perfect Information

Value of Information

- Assume we have evidence E=e. Value if we act now: $MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$
- We see now evidence F' e' Walte if we act then: $MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$
- BUT E' is a random variable whose value is unknown, so we don't know what e' will be.
- ExpecMEU $(e, E') = \sum_{e'} P(e'|e) MEU(e, e')$
- Value $\bigvee_{\text{PI}(E'|e)} = \underset{\text{men acting, as opposed to acting now:}}{\mathsf{MEU}(e,E') \mathsf{MEU}(e)}$

VPI Properties

Nonnegative

 $\forall E', e : \mathsf{VPI}(E'|e) \ge 0$

• Nonadditive (think of observing E_j twice) $VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$

• Or $VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$ = $VPI(E_k|e) + VPI(E_j|e, E_k)$

Ghostbusters Decision Network

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100.
 You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

