CS 188: Artificial Intelligence Machine Learning

Instructor: Nicholas Tomlin --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recall: Binary Perceptron

- Start with weights $=0$
- For each training instance:
- Classify with current weights

$$
y= \begin{cases}+1 & \text { if } w \cdot f(x) \geq 0 \\ -1 & \text { if } w \cdot f(x)<0\end{cases}
$$

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y^{*} is -1 .

$$
w=w+y^{*} \cdot f
$$

Recall: Multiclass Perceptron

- Start with all weights $=0$
- Pick up training examples one by one
- Predict with current weights

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$
\begin{aligned}
& w_{y}=w_{y}-f(x) \\
& w_{y^{*}}=w_{y^{*}}+f(x)
\end{aligned}
$$

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
- Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

Logistic Regression

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z=w \cdot f(x)$
- If $\quad z=w \cdot f(x) \quad$ very positive \rightarrow want probability going to 1
- If $z=w \cdot f(x)$ very negative \rightarrow want probability going to 0
- Sigmoid function

$$
\phi(z)=\frac{1}{1+e^{-z}}
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
\begin{aligned}
& P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{aligned}
$$

= Logistic Regression

Separable Case: Deterministic Decision - Many Options

Separable Case: Probabilistic Decision - Clear Preference

Multiclass Logistic Regression

- Recall Perceptron:
- A weight vector for each class: w_{y}
- Score (activation) of a class y: $\quad w_{y} \cdot f(x)$
- Prediction highest score wins $\quad y=\arg \underset{y}{\max } w_{y} \cdot f(x)$

- How to make the scores into probabilities?

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y^{(i)}} \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
$$

Maximum Likelihood Estimation

Parameter Estimation with Maximum Likelihood

- Estimating the distribution of a random variable
- Use training data (learning!)

\mathbf{X}	red	blue
$P_{\theta}(x)$	θ	$1-\theta$

- For each outcome x, look at the empirical rate of that value:

$$
\mathrm{P}_{M L}=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

- Example: probability of $x=$ red given the training data:

$$
\mathrm{P}_{M L}(r)=\frac{2}{3}
$$

- This estimate maximizes the likelihood of the data for the parametric model:

$$
\begin{aligned}
L(\theta) & =\mathrm{P}(\mathrm{r}, \mathrm{r}, \mathrm{~b} \mid \theta)=\mathrm{P}_{\theta}(r) \cdot \mathrm{P}_{\theta}(r) \cdot \mathrm{P}_{\theta}(b) \\
& =\theta^{2} \cdot(1-\theta)
\end{aligned}
$$

Parameter Estimation with Maximum Likelihood

- Likelihood function:

$$
\begin{aligned}
L(\theta) & =\mathrm{P}(\mathrm{r}, \mathrm{r}, \mathrm{~b} \mid \theta)=\mathrm{P}_{\theta}(r) \cdot \mathrm{P}_{\theta}(r) \cdot \mathrm{P}_{\theta}(b) \\
& =\theta^{2} \cdot(1-\theta) \\
& =\theta^{2}-\theta^{3}
\end{aligned}
$$

- MLE: find the θ that maximizes data likelihood

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} L(\theta)
$$

\mathbf{X}	red	blue
$P_{\theta}(x)$	θ	$1-\theta$

- Approach: take derivatives and set to 0

$$
\begin{aligned}
\frac{\partial L(\theta)}{\partial \theta} & =2 \theta-3 \theta^{2} \\
& =\theta(2-3 \theta)
\end{aligned}
$$

- Find the maximum at $\theta=\frac{2}{3}$

Parameter Estimation (General Case)

- Model:

\mathbf{X}	red	blue
$P_{\theta}(x)$	θ	$1-\theta$

- Data: draw N balls. N_{r} come up red, N_{b} come up blue
- Dataset: $D=\left\{x_{1}, \ldots, x_{n}\right\}$
- Ball draws are independent and identically distributed (i.i.d.):

$$
P(D \mid \theta)=\prod_{i} P\left(x_{i} \mid \theta\right)=\prod_{i} P_{\theta}\left(x_{i}\right)=\theta^{N_{r}} \cdot(1-\theta)^{N_{b}}
$$

- Maximum likelihood estimation: find θ that maximizes $P(D \mid \theta)$

$$
\theta=\underset{\theta}{\operatorname{argmax}} P(D \mid \theta)=\underset{\theta}{\operatorname{argmax}} \log P(D \mid \theta)
$$

- Approach: take derivative and set to 0

Parameter Estimation (General Case)

- Maximum likelihood estimation: find θ that maximizes $P(D \mid \theta)$

$$
\begin{aligned}
& \theta=\underset{\theta}{\operatorname{argmax}} P(D \mid \theta)=\underset{\theta}{\operatorname{argmax}} \log P(D \mid \theta) \\
& \frac{\partial}{\partial \theta} \log P(D \mid \theta)=\frac{\partial}{\partial \theta}\left[N_{r} \log (\theta)+N_{b} \log (1-\theta)\right] \\
& =N_{r} \frac{\partial}{\partial \theta} \log (\theta)+N_{b} \frac{\partial}{\partial \theta} \log (1-\theta) \\
& =N_{r} \frac{1}{\theta}-N_{b} \frac{1}{1-\theta} \\
& =0
\end{aligned}
$$

Multiply by $\theta(1-\theta)$:

$$
\begin{aligned}
& N_{r}(1-\theta)-N_{b} \theta=0 \\
& N_{r}-\theta\left(N_{r}+N_{b}\right)=0
\end{aligned}
$$

$$
\hat{\theta}=\frac{N_{r}}{N_{r}+N_{b}}
$$

Example from Discussion 6B

1 Maximum Likelihood Estimation

Recall that a Geometric distribution is a defined as the number of
Bernoulli trials needed to get one success. $P(X=k)=p(1-p)^{k-1}$.
We observe the following samples from a Geometric distribution:
$x_{1}=5, x_{2}=8, x_{3}=3, x_{4}=5, x_{5}=7$
What is the maximum likelihood estimate for p ?

$$
\begin{align*}
L(p) & =P\left(X=x_{1}\right) P\left(X=x_{2}\right) P\left(X=x_{3}\right) P\left(X=x_{4}\right) P\left(X=x_{5}\right) \tag{1}\\
& =P(X=5) P(X=8) P(X=3) P(X=5) P(X=7) \tag{2}\\
& =p^{5}(1-p)^{23} \tag{3}\\
\log (L(p)) & =5 \log (p)+23 \log (1-p) \tag{4}
\end{align*}
$$

We must maximize the \log-likelihood of p, so we will take the derivative, and set it to 0 .

$$
\begin{align*}
& 0=\frac{5}{p}-\frac{23}{1-p} \tag{6}\\
& p=5 / 28 \tag{7}
\end{align*}
$$

Regularization

Recall: Overfitting

Example: Overfitting

$$
\begin{aligned}
& P(\text { features }, C=2) \\
& P(C=2)=0.1 \\
& P(\text { features, } C=3) \\
& P(C=3)=0.1 \\
& P(\text { on } \mid C=2)=0.1 \\
& P(\text { off } \mid C=2)=0.1 \\
& P(\text { on } \mid C=2)=0.01
\end{aligned}
$$

Recall: Overfitting

- Observation: polynomials that overfit tend to have large coefficients

- Let's try to keep coefficients small!

L1 and L2 Regularization

- Previously:

$$
\widehat{w}=\arg \max _{w} \sum_{i=1}^{n} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

- Now: add a penalty term to keep the weight vector small

L1
(aka lasso regression)
$\mathbf{L 2}$
(aka ridge regression)
L2
(aka ridge regression)

$$
\widehat{w}=\arg \max _{w} \sum_{i=1}^{n} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)-\alpha \sum_{i=1}^{n}\left|w_{i}\right|
$$

