
CS 188: Artificial Intelligence
Machine Learning

Instructor: Nicholas Tomlin --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recall: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Recall: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer, 

raise score of right answer



Problems with the Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over time 

can help (averaged perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Logistic Regression



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision
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How to get probabilistic decisions?

§ Perceptron scoring:
§ If           very positive à want probability going to 1
§ If            very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3



Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

§ How to make the scores into probabilities? 

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Maximum Likelihood Estimation



Parameter Estimation with Maximum Likelihood

§ Estimating the distribution of a random variable
§ Use training data (learning!)

§ For each outcome 𝑥, look at the empirical rate of that value:

  P!" =
count($)

total	samples
§ Example: probability of x=red given the training data:

  P!"(𝑟) =
&
'

§ This estimate maximizes the likelihood of the data for the 
parametric model:

  𝐿 𝜃 = P r, r, b 𝜃 = P( 𝑟 ⋅ P( 𝑟  ⋅ P( 𝑏
                                  = 𝜃& ⋅ 1 − 𝜃

r r b

X red blue
𝑃!(𝑥) 𝜃 1 − 𝜃



Parameter Estimation with Maximum Likelihood

§ Likelihood function:
 𝐿 𝜃 = P r, r, b 𝜃 = P( 𝑟 ⋅ P( 𝑟  ⋅ P( 𝑏
                  = 𝜃& ⋅ 1 − 𝜃
                  = 𝜃& − 𝜃'	

§ MLE: find the 𝜃 that maximizes data likelihood
 "𝜃 = argmax	𝐿 𝜃

§ Approach: take derivatives and set to 0
!" #
!# = 2𝜃 − 3𝜃$

                       = 𝜃(2 − 3𝜃)

§ Find the maximum at 𝜃 = $
%

r r b

X red blue
𝑃!(𝑥) 𝜃 1 − 𝜃

𝜃



Parameter Estimation (General Case)

§ Model:

§ Data: draw 𝑁 balls. 𝑁' come up red, 𝑁( come up blue
§ Dataset: 𝐷 = {𝑥), … , 𝑥*}
§ Ball draws are independent and identically distributed (i.i.d.):

𝑃 𝐷 𝜃 =*
+

𝑃 𝑥+ 𝜃 =*
+

𝑃( 𝑥+ = 𝜃,! ⋅ 1 − 𝜃 ,"

§ Maximum likelihood estimation: find 𝜃 that maximizes 𝑃 𝐷 𝜃

𝜃 = argmax	𝑃 𝐷 𝜃 = argmax log 𝑃 𝐷 𝜃

§ Approach: take derivative and set to 0

r r b
X red blue

𝑃!(𝑥) 𝜃 1 − 𝜃

𝜃 𝜃



Parameter Estimation (General Case)

§ Maximum likelihood estimation: find 𝜃 that maximizes 𝑃 𝐷 𝜃

𝜃 = argmax	𝑃 𝐷 𝜃 = argmax log 𝑃 𝐷 𝜃

𝜕
𝜕𝜃
log 𝑃 𝐷 𝜃 =

𝜕
𝜕𝜃
[𝑁' log 𝜃 + 𝑁( log 1 − 𝜃 ]

                               = 𝑁'
!
!#
log 𝜃 + 𝑁(

!
!#
log 1 − 𝜃

                               = 𝑁'
)
# −𝑁(

)
)*#

                               = 0	

Multiply by 𝜃 1 − 𝜃 :	 𝑁' 1 − 𝜃 − 𝑁(𝜃 = 0	
               𝑁' − 𝜃 𝑁' +𝑁( = 0

𝜃 𝜃

+𝜃 =
𝑁!

𝑁! + 𝑁"



Example from Discussion 6B



Regularization
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Recall: Overfitting



Example: Overfitting

2 wins!!



Recall: Overfitting

§ Observation: polynomials that overfit tend to have large coefficients

𝑦	 = 	0.1𝑥# 	+ 	0.2𝑥$ 	+ 	0.75𝑥% 	− 	𝑥& 	− 	2𝑥	 + 	2
𝑦	 = 	−7.2𝑥# 	+ 	10.4𝑥$ 	+ 	24.5𝑥% 	− 	37.9𝑥& 	− 	3.6𝑥	 + 	12	

§ Let’s try to keep coefficients small!
Slide courtesy of Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla (U Toronto)



L1 and L2 Regularization

§ Previously: 

	<𝑤 = argmax
=

>
>?)

@

log 𝑃 𝑦 > 𝑥 > ; 𝑤 	

§ Now: add a penalty term to keep the weight vector small

	<𝑤 = argmax
=

>
>?)

@

log 𝑃 𝑦 > 𝑥 > ; 𝑤 − 𝛼>
>?)

@

|𝑤>|	

	<𝑤 = argmax
=

>
>?)

@

log 𝑃 𝑦 > 𝑥 > ; 𝑤 − 𝛼>
>?)

@

𝑤>$	

L1
(aka lasso regression)

L2
(aka ridge regression)


