
CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructor: Nicholas Tomlin
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What’s Left in CS188

§ Core material:

§ Neural networks, backprop (today)

§ Optimizers, model architectures, learning theory (tomorrow)

§ Special topics:

§ Model architectures (Weds; preview of CS182/282)

§ Natural language processing (Thurs; preview of CS288)

§ Computer vision (Mon of next week; preview of CS280)

§ Reinforcement learning (Tues of next week; preview of CS285)

§ Final exam:

§ In-class review on Weds 8/9

§ Final exam: Thurs 8/10, 7-10pm PT
§ DSP exams: schedule these for Fri 8/11 (announcement post on Ed incoming)

Most content from these

lectures will be non-examinable;

but material will focused on

reinforcing core concepts from

class, which are examinable

Mathematics Background

§ Linear algebra:

§ Definition and properties of dot products

§ Composition of linear transformations is linear

§ Vector calculus:
§ How to take partial derivatives (incl. chain rule, vector derivatives)

§ Solving optimization problems using derivatives (e.g., deriving MLE)
§ Taylor expansion (used in lecture; non-examinable)

§ Probability: definition of a probability distribution, random variables, joint and marginal
distributions, conditional probabilities, Bayes’ rule, normalization

Recall: Batch Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init
§ for iter = 1, 2, …

w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Recall: Stochastic Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init
§ for iter = 1, 2, …

§ pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Recall: Mini-batch Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init
§ for iter = 1, 2, …

§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

§ Key ideas:
§ Second-order optimization methods

§ Momentum

§ Adaptive learning rates

§ Example optimizers:
§ Newton’s method

§ Nesterov accelerated gradient

§ Adagrad, Adam, RMSProp, etc.

Preview: Other Optimizers

Neural Networks

Multi-class Logistic Regression

§ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(2)

K(2)

z(2)1

z(2)2

z(2)3

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g = nonlinear activation function

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

§ Training the deep neural network is just like logistic regression:

 just w tends to be a much, much larger vector J

àjust run gradient ascent

 + stop when log likelihood of hold-out data starts to decrease

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Neural Networks Properties

§ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

§ Practical considerations
§ Can be seen as learning the features

§ Large number of neurons

§ Danger for overfitting

§ (hence early stopping!)

Universal Function Approximation Theorem*

§ In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Fun Neural Net Demo Site

§ Demo-site:
§ http://playground.tensorflow.org/

http://playground.tensorflow.org/

§ Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

n But neural net f is never one of those?
n No problem: CHAIN RULE:

If

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)

§ Automatic differentiation software
§ e.g., TensorFlow, PyTorch, JAX

§ Only need to program the function g(x,y,w)

§ Can automatically compute all derivatives w.r.t. all entries in w

§ This is typically done by caching info during forward computation pass

of f, and then doing a backward pass = “backpropagation”

§ Autodiff / Backpropagation can often be done at computational cost

comparable to the forward pass

Automatic Differentiation

§ Build a computation graph and apply chain rule: ! " = $ ℎ " 	 !! " = ℎ! " ⋅ $′(ℎ ")
§ Example: neural network with quadratic loss: + ,", .∗ = $

" ," − .∗ " and ReLU activations
$ 0 = max(0, 0)

§ ," = $"(5" ∗ $$ 5$ ∗ ")

Example: Automatic Differentiation

2

1

3

2

2 2 6 6 8

!"
!#∗ = − &" − #∗ = −4

!"
!&"

= &" − #∗ = 4

!"
!("

= !"
!&"

!&"
!("

	

!&"
!("

= !
!("

max (", 0 = 1	(when	(" > 0)

= 4 ⋅ 1	

!"
!8"

= !"
!("

!("
!8"

	

!("
!8"

= !
!8"

8" ⋅ &# = &#

= 4 ⋅ &# = 8

Preventing Overfitting in Neural Networks

§ Early stopping:

§ Weight regularization: max! ∑" log () " * " ; , − #
$∑%,%

$

§ Dropout:

Dropout

“Damage” the network during training to increase redundancy

At each training step, with probability (1-p) set
an activation to zero (i.e., drop it)

When making predictions, don’t apply dropout,
but multiply weights by p (rescaling)

Preventing Overfitting in Neural Networks

§ Early stopping:

§ Weight regularization: max! ∑" log () " * " ; , − #
$∑%,%

$

§ Dropout:

Summary of Key Ideas
§ Optimize probability of label given input

§ Continuous optimization
§ Gradient ascent:

§ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
§ Take step in the gradient direction
§ Repeat (until held-out data accuracy starts to drop = “early stopping”)

§ Deep neural nets
§ Last layer = still logistic regression
§ Now also many more layers before this last layer

§ = computing the features
§ à the features are learned rather than hand-designed

§ Universal function approximation theorem
§ If neural net is large enough
§ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
§ But remember: need to avoid overfitting / memorizing the training data à early stopping!

§ Automatic differentiation gives the derivatives efficiently

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Inductive Learning

Inductive Learning (Science)

§ Simplest form: learn a function from examples
§ A target function: g
§ Examples: input-output pairs (x, g(x))
§ E.g. x is an email and g(x) is spam / ham
§ E.g. x is a house and g(x) is its selling price

§ Problem:
§ Given a hypothesis space H
§ Given a training set of examples xi
§ Find a hypothesis h(x) such that h ~ g

§ Includes:
§ Classification (outputs = class labels)
§ Regression (outputs = real numbers)

§ How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

§ Curve fitting (regression, function approximation):

§ Consistency vs. simplicity
§ Ockham’s razor

Consistency vs. Simplicity

§ Fundamental tradeoff: bias vs. variance

§ Usually algorithms prefer consistency by default (why?)

§ Several ways to operationalize “simplicity”
§ Reduce the hypothesis space

§ Assume more: e.g. independence assumptions, as in naïve Bayes
§ Have fewer, better features / attributes: feature selection
§ Other structural limitations (decision lists vs trees)

§ Regularization
§ Smoothing: cautious use of small counts
§ Many other generalization parameters (pruning cutoffs today)
§ Hypothesis space stays big, but harder to get to the outskirts

