
CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructor: Nicholas Tomlin
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Inductive Learning

Inductive Learning (Science)

§ Simplest form: learn a function from examples
§ A target function: g
§ Examples: input-output pairs (x, g(x))
§ E.g. x is an email and g(x) is spam / ham
§ E.g. x is a house and g(x) is its selling price

§ Problem:
§ Given a hypothesis space H
§ Given a training set of examples xi
§ Find a hypothesis h(x) such that h ~ g

§ Includes:
§ Classification (outputs = class labels)
§ Regression (outputs = real numbers)

§ How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

§ Curve fitting (regression, function approximation):

§ Consistency vs. simplicity
§ Ockham’s razor

Consistency vs. Simplicity

§ Fundamental tradeoff: bias vs. variance

§ Usually algorithms prefer consistency by default (why?)

§ Several ways to operationalize “simplicity”
§ Reduce the hypothesis space

§ Assume more: e.g. independence assumptions, as in naïve Bayes
§ Have fewer, better features / attributes: feature selection
§ Other structural limitations (decision lists vs trees)

§ Regularization
§ Smoothing: cautious use of small counts
§ Many other generalization parameters (pruning cutoffs today)
§ Hypothesis space stays big, but harder to get to the outskirts

Decision Trees

Reminder: Features

§ Features, aka attributes
§ Sometimes: TYPE=French

§ Sometimes: fTYPE=French(x) = 1

Decision Trees

§ Compact representation of a function:
§ Truth table
§ Conditional probability table
§ Regression values

§ True function
§ Realizable: in H

Expressiveness of DTs

§ Can express any function of the features

§ However, we hope for compact trees

Comparison: Perceptrons

§ What is the expressiveness of a perceptron over these features?

§ For a perceptron, a feature’s contribution is either positive or negative
§ If you want one feature’s effect to depend on another, you have to add a new conjunction feature
§ E.g. adding “PATRONS=full Ù WAIT = 60” allows a perceptron to model the interaction between the two atomic

features

§ DTs automatically conjoin features / attributes
§ Features can have different effects in different branches of the tree!

§ Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
§ Though if the interactions are too complex, may not find the DT greedily

Hypothesis Spaces

§ How many distinct decision trees with n Boolean attributes?
= number of Boolean functions over n attributes
= number of distinct truth tables with 2n rows
= 2^(2n)
§ E.g., with 6 Boolean attributes, there are
 18,446,744,073,709,551,616 trees

§ How many trees of depth 1 (decision stumps)?
= number of Boolean functions over 1 attribute
= number of truth tables with 2 rows, times n
= 4n
§ E.g. with 6 Boolean attributes, there are 24 decision stumps

§ More expressive hypothesis space:
§ Increases chance that target function can be expressed (good)
§ Increases number of hypotheses consistent with training set

(bad, why?)
§ Means we can get better predictions (lower bias)
§ But we may get worse predictions (higher variance)

Decision Tree Learning

§ Aim: find a small tree consistent with the training examples
§ Idea: (recursively) choose “most significant” attribute as root of (sub)tree

Choosing an Attribute

§ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or
“all negative”

§ So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out

Entropy and Information

§ Information answers questions
§ The more uncertain about the answer initially, the more

information in the answer
§ Scale: bits

§ Answer to Boolean question with prior <1/2, 1/2>?
§ Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
§ Answer to 4-way question with prior <0, 0, 0, 1>?
§ Answer to 3-way question with prior <1/2, 1/4, 1/4>?

§ A probability p is typical of:
§ A uniform distribution of size 1/p
§ A code of length log 1/p

Entropy

§ General answer: if prior is <p1,…,pn>:
§ Information is the expected code length

§ Also called the entropy of the distribution
§ More uniform = higher entropy
§ More values = higher entropy
§ More peaked = lower entropy
§ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit

Information Gain

§ Back to decision trees!
§ For each split, compare entropy before and after

§ Difference is the information gain
§ Problem: there’s more than one distribution after split!

§ Solution: use expected entropy, weighted by the number of
examples

Next Step: Recurse

§ Now we need to keep growing the tree!
§ Two branches are done (why?)
§ What to do under “full”?

§ See what examples are there…

Example: Learned Tree

§ Decision tree learned from these 12 examples:

§ Substantially simpler than “true” tree
§ A more complex hypothesis isn't justified by data

§ Also: it’s reasonable, but wrong

Example: Miles Per Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Find the First Split

§ Look at information gain for
each attribute

§ Note that each attribute is
correlated with the target!

§ What do we split on?

Result: Decision Stump

Second Level

Final Tree

Reminder: Overfitting

§ Overfitting:
§ When you stop modeling the patterns in the training data (which

generalize)
§ And start modeling the noise (which doesn’t)

§ We had this before:
§ Naïve Bayes: needed to smooth
§ Perceptron: early stopping

MPG Training
Error

The test set error is much worse than the
training set error…

…why?

Consider this
split

Significance of a Split

§ Starting with:
§ Three cars with 4 cylinders, from Asia, with medium HP
§ 2 bad MPG
§ 1 good MPG

§ What do we expect from a three-way split?
§ Maybe each example in its own subset?
§ Maybe just what we saw in the last slide?

§ Probably shouldn’t split if the counts are so small they could be due to chance

§ A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*

§ Each split will have a significance value, pCHANCE

Keeping it General

§ Pruning:
§ Build the full decision tree
§ Begin at the bottom of the tree
§ Delete splits in which
 pCHANCE > MaxPCHANCE

§ Continue working upward until
there are no more prunable
nodes

§ Note: some chance nodes may
not get pruned because they
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b

Pruning example

§ With MaxPCHANCE = 0.1:

Note the improved
test set accuracy

compared with the
unpruned tree

Regularization

§ MaxPCHANCE is a regularization parameter
§ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE
IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test
Training

Two Ways of Controlling Overfitting

§ Limit the hypothesis space
§ E.g. limit the max depth of trees
§ Easier to analyze

§ Regularize the hypothesis selection
§ E.g. chance cutoff
§ Disprefer most of the hypotheses unless data is clear
§ Usually done in practice

Other Optimizers

Recall: Batch Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Recall: Stochastic Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Recall: Mini-batch Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

Concept #1: Computing Second-Order Derivatives

Newton’s Method (in 1D):
§ Want to optimize: max! 𝑓(𝜃)
§ Apply Taylor expansion:

 𝑓 𝜃 + ℎ = 𝑓 𝜃 + 𝑓" 𝜃 ℎ + #
$
𝑓"" 𝜃 ℎ$

§ Find value of 𝑡 that maximizes this:

 0 = %
%&

𝑓 𝜃 + 𝑓" 𝜃 ℎ + #
$
𝑓"" 𝜃 ℎ$

 = f " 𝜃 + 𝑓"" 𝜃 ℎ	
§ Rearrange terms to get update:

 ℎ = − '! !
'!! !

 𝜃()# = 𝜃(+ ℎ = 𝜃(−
'! !
'!! !

Caveat: can be computationally expensive or difficult to compute in higher dimensions

Concept #2: Momentum

§ Potential issues with vanilla SGD:
§ Can take a long time to converge if the learning rate is too low
§ Can bounce around in “ravines” without making much progress toward

a local optimum

Concept #2: Momentum

Stochastic Gradient Descent with Momentum
§ Keep a running sum of old updates: 𝑣(= 𝛾𝑣(*# + 𝜂∇!𝑓 𝜃(
§ Perform a standard gradient descent step: 𝜃()# = 𝜃(− 𝑣(

Concept #2: Momentum

Nesterov Accelerated Gradient (NAG)
§ Key idea: “anticipate” where momentum will take you and compute the gradient at

that point instead. Can think of this as momentum with planning

𝑣(= 𝛾𝑣(*# + 𝜂∇!𝑓 𝜃(− 𝛾𝑣(*#

𝜃()# = 𝜃(− 𝑣(

Concept #3: Adaptive Learning Rates

§ Recall: learning rates
§ Determines how much we update weights in the direction of the gradient
§ Often: want to set this in terms of how much it updates the weights
§ Often: want to lower learning rate over time (learning rate scheduling)

𝜃!"# = 𝜃! − 𝜂∇$f 𝜃!

§ Key idea: different learning rates for each parameter
§ We can make larger or smaller updates depending on how important a feature is
§ Small updates for frequent features; big updates for rare features
§ This idea underlies: Adagrad, RMSProp, Adam, etc.

Concept #3: Adaptive Learning Rates

Adagrad
§ Compute the gradient at 𝑖-th parameter:

𝑔!,& = ∇$(𝜃!,&)

§ Make an update based on adaptive learning rate:

𝜃!"#,& = 𝜃!,& −
𝜂

𝐺!,&& − 𝜖
⋅ 𝑔!,&

§ Where each 𝐺! is a diagonal matrix where entry 𝑖, 𝑖 is the sum of squares of the
gradients up to timestep 𝑡
§ Biggest issue with this method: sum of squares of gradients continues to grow over time

Concept #3: Adaptive Learning Rates

RMSProp
§ Based on decaying running average of gradients:

𝐸 𝑔' ! = 0.9 ⋅ 𝐸 𝑔' !(#	0.1 ⋅ 𝑔!'

§ Adaptive learning rate based on running average instead of accumulated sum:

𝜃!"#,& = 𝜃!,& −
𝜂

𝐸 𝑔' !,& − 𝜖
⋅ 𝑔!,&

Concept #3: Adaptive Learning Rates

Adaptive Moment Estimation (Adam)
§ Combining momentum with adaptive learning rates

𝑚! = 𝛽#𝑚!(# + 1 − 𝛽# 𝑔!
𝑣! = 𝛽'𝑣!(# + 1 − 𝛽' 𝑔!'

§ Bias correction to prevent running averages from tending toward zero:

@𝑚! =
)"
#(*#

 A𝑣! =
+"

#(*$

§ Then update parameters:
𝜃!"# = 𝜃! −

𝜂
A𝑣! + 𝜖

@𝑚!

Visualizations

Summary: Key Ideas in Optimization

§ Gradient descent
§ Batch: update based on the whole dataset
§ SGD: update based on a single randomly chosen training example
§ Minibatch: update based on k randomly chosen training examples

§ Beyond gradient descent:
§ Second order optimization (e.g., Newton’s method)
§ Momentum (Nesterov’s accelerated gradient, Adam)
§ Adaptive learning rates (Adagrad, RMSProp, Adam, etc.)

Learn more: https://www.ruder.io/optimizing-gradient-descent/

