CS 188: Artificial Intelligence
Special Topics: NLP/CV/RL

Instructor: Nicholas Tomlin

[Slides courtesy of Dan Klein, Abigail See, Greg Durrett, Yejin Choi, John DeNero,
Eric Wallace, Kevin Lin, Fei-Fei Li, Sergey Levine, Pieter Abbeel, and many others]

What tasks do we care about?

R RSAREREATY
"“ ﬂ* T ™

— CSe It (LJERNERPASSI | 00:00:27 _ 153 g BB

Rsnenng

ety

TR .

ety

AL .) f i — i
i B bt i LR
d R - =
LU iy
A B

Imitation Learning

training supervised

| : To(a¢|os)
data earning

ALVINN: Autonomous Land Vehicle In a Neural Network

E
4
A
e
5

Units

5 1lidden
Units

B8 30x32 Video

% 1% g I

npul Retina

Distributional Drift

- = training trajectory
© = — mp expected trajectory

Modern Approach to Autonomous Driving

Modern Approach to Autonomous Driving

Recorded
steering
wheel angle

Adjust for shift Desired steering command

and rotation

Network

Left camera '— computed
steering

(™| Random shift command
\Center camera}—-: and rotation - CNN

Right camera }— f

Back propagation |
weight adjustment

Avoiding Compounding Errors (Stability)

- = training trajectory
. — my expected trajectory

.__,..-"'., ,,,

100

Avoiding Distributional Drift

= training trajectory
“ . — mg expected trajectory

100

40
30
20

«
.

can we make pdata(ot) = Pro (Ot) !

DAgger: Dataset Aggregation (Ross, et al. 2011)

can we make pgata(0t) = pr, (04)7?

idea: instead of being clever about p,(0:), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p;,(0;) instead of pgata(0¢)
how? just run mg(a;|o¢)

but need labels a;!

1. train mg(az|os) from human data D = {o1,a1,...,0n,aN}
2. run my(azlos) to get dataset D = {01....,0n/}

3.| Ask human to label D, with actions a
4. Aggregate: D < DUD,

Reinforcement Learning

fit a model/
estimate the return

generate samples

(i.e. run the policy)

; improve the policy

Recall: Map of Reinforcement Learning

Known MDP: Offline Solution

_

Goal
Compute V*, Q*, n*

Evaluate a fixed policy

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP:

Model-Based

/
Goal

Compute V*, Q*, n*

Evaluate a fixed policy

-

\

Technique

VI/PIl on approx. MDP

PE on approx. MDP

_/

-

Unknown MDP: Model-Free
,)
Goal Technique
Compute V*, Q*, n* Q-learning
Evaluate a fixed policy Value Learning
J

Map of Reinforcement Learning

0" = arg max E o py(r) ; r(s¢, ag)

Policy gradient: directly differentiate the above equation
Value-based: estimate value function or Q-function of the optimal policy
directly (but no explicit policy)

Actor-critic: estimate value function or Q-function of the current policy,
and use it to improve the policy

Model-based RL: estimate the transition model, and then:

= Use it for planning

= Use it to improve a policy

Policy Gradient

fit a model/ evaluate returns
estimate the return ISy J CH: 1Y

generate samples

(i.e. run the policy)

improve the policy [JRSlZENeAVEY PN]

Value Function-Based Approaches

generate samples
(i.e. run the policy)
; improve the policy [EI&e 7T(S) — arg maxsy Q(S, a)

S it V(s) or Q(s, a)

estimate the return

Actor-Critic: Value Functions + Policy Gradients

fit a model/
ﬁ s it V(s) or Q(s, a)
generate samples
(i.e. run the policy)
OGN 0 <— 0 + aVoE[Q(st, at)]

Model-Based Reinforcement Learning

fit a model/
. learn p(s¢y1|st,ar)
estimate the return

improve the policy B fewoD

generate samples
(i.e. run the policy)

Map of Reinforcement Learning

RL Algorithms
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Y (\
Policy Gradient <—— > DQN —> World Models AlphaZero
- ’ > DDPG < - : . h
N ¢) (
A2C / A3C |[«<— C51 —> I2A
J >» TD3 £ \ J A& J
N 4 (
PPO D — % > QR-DQN —> MBMF
J » SAC < - \ J
s B L) s N e N
TRPO D > HER —> MBVE

Why so many options?

= Different tradeoffs:

= Sample efficiency
= Stability and ease of use

= Different assumptions:
= Stochastic or deterministic?
= Continuous or discrete?
= Episodic or infinite horizon?

= Different things are easy or hard in different settings:
= Easy to represent the policy?
" Easy to represent the model?

Comparison: Efficiency

= Sample efficiency = how many samples we need to get a good policy

= Most important question: is the algorithm on-policy or off-policy?
" On-policy: each time the policy is changed, need to generate new samples
= Off-policy: able to improve the policy without generating new samples

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free

learning methods algorithms algorithms

Comparison: Stability and Ease of Use

= Value function fitting:

= At best, minimizes error of fit (“Bellman error”)
= At worst, doesn’t optimize anything (often no guarantees with deep RL)

= Model-based RL:

* Model minimizes error of fit (will converge)
= No guarantee that better model = better policy

= Policy gradient:

" The only approach that actually performs gradient descent on the true objective
" |n practice, often the least efficient!

Comparison: Assumptions

= Common assumption #1: full observability

= Generally assumed by value function fitting methods
= Can be mitigated by adding recurrence

= Common assumption #2: episodic learning

= Often assumed by pure policy gradient methods
= Assumed by some model-based RL methods

= Common assumption #3: continuity or smoothness

= Assumed by some continuous value function learning methods
= Often assumed by some model-based RL methods

Model-Free RL: Q-Learning

Recall: Approximate Q-Learning

QGs,0) = wifi(s @) bwafals,)+ Aunfals,a)

= Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
a

Q(s,a) +— Q(s,a) + «[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Can perform update based on a single sample, or with multiple

Model-Free RL: DQN

Algorithm 1 Deep Q-learning with Experience Replay

Initialize|replay memory D|to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {x1} and preprocessed sequenced ¢1 = ¢(s1)
fort =1 Tdo
With probability € select a random action a;
otherwise select a; = max, Q™ (¢(s;), a; 0)
Execute action a; in emulator and observe reward r; and image x;4 1

= ocess Py y1 = P(St41)
Store transition (¢, as, r¢, Ps1) in D

Sample random minibatch of transitions (¢;, a;,7;,¢;+1) from D

Set y; = { Tj , for terminal ¢j+1
’ rj +ymaxe Q(@j+1,a’;0) for non-terminal ¢, 1
(Lfrerform a gradient descent step on (y; — Q(¢;, a;; 0))* |according to equation 3
end for

end for Q-function is represented as a CNN

Model-Free RL: REINFORCE

REINFORCE algorithm:

1. sample {7'} from my(as|s;) (run the policy)

2. VoJ(0) =). (Zt Vg log 7T0(at|st)) (Zt fr(s',’“;,afé))
3. 0« 0+ QVQJ(Q)

= |nefficient: run the policy to get trajectories and then throw them away
=" Gradient computations may be noisy (high variance)
" Practical considerations with batch sizes, learning rates, and optimizers

True

Model

Model-Based RL: World Models

Model-Based RL: AlphaZero

= Learn both a policy and value Policy network Value network
network via self-play (reward of
+1/-1 comes from end of game) P, (@ls) vy ()

= Transition function is known: we
can do explicit planning

= Use Monte Carlo tree search
(MCTS) to choose actions based on
the current value function

= N W A U1 O N O ©

W s U1 O N @

N

What does AlphaGo Zero Learn? (Tomlin, et al. 2022)

A B C D EF G H J

A B C D EF G H J

Cut

A B CDEF GMH J

A B CDEF GH J

Wall

= N W Hd 1 O N OO ©

W & U1 O N

= N W & U1 O N O ©

= N W & U1 O N O ©

A B CDEF G H]
. g

*

A B C D EF G H]

Eyes

A B CDEF G H J

A B C D E F G H J

Ladder

= N W & U1 O N O ©

= N W & 1 O N O ©

Concept
Eye
Wall
Ladder
Pincer
Joseki
Sente
Hane
Up

Aji

Ko
Shape
Gote
Moyo
Aji
Atari

Definition

Surrounded empty space
Sequence of stones in a row
Zig-zag capturing race

Attack on a corner approach
Fixed local sequence of moves
Initiative

Move that “reaches around”
Toward the center of the board
Possibilities left in a position
Repeated capture sequence
Quality of stone arrangement
Loss of initiative

Sphere of influence
Possibilities left in a position
Threat to capture

= N W » U1 O N OO ©O

Extracting Concepts from Game States

A B C D E F G H J

O

J

@
)

A B C D E F G H J

= N W » U1 O N OO ©O

Bad shape. If white wants to defend it
should be solid at/€8, leaving no
weaknesses or sente moves for black.

Dataset Statistics:
» 10K annotated games (19x19)
« Approximately 458K comments

- Additional data from unplayed
variations (ignored in this work)

Game-Playing Agents

N : Xy
" Agent #1: Imitation Learning coblincar o A 20
* Following CNN architecture from Clark and ABCDEFGHIKLMNOPQRST
Storkey (2014) 1: 1:
= Trained on 228K human games 17 PRR | ’ Q 17
= Played against real humans on Online Go . i‘ 'J) <A
Server (OGS) and received a rating of 1K 14 14
13 ‘ J 13
12 J 12
= Agent #2: Reinforcement Learning o ‘): | o
B J
= Pre-trained ELF OpenGo [Tian, et al. 2019] 9 J 3
: ¢ P
= QOpen-source equivalent of AlphaGo Zero , -
[Silver, et al. 2017] 6 P P 6
= Better than all human players: ELO 5000+ : @ ®) ’ :
= " B ; Jy # 2
2 2
1 1

A B CDEVFGHJ KLMNUOPAQRST

0.9

0.7

Reinforcement Learning Model

0.5

Human-Level Concepts Encoded in Model

Domain Keywords
Control Words (Content)
Control Words (Function)

pincer

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Imitation Learning Model

Key finding: human-level concepts are
predictable from the intermediate
representations of both models

Additionally: some concepts appear in
early layers, and others in later layers
(i.e., different levels of abstraction)

Long-term goal: how do we get human-
interpretable explanations of models
which exceed human capacity?

