
CS 188: Artificial Intelligence

Special Topics: NLP/CV/RL

Instructor: Nicholas Tomlin
[Slides courtesy of Dan Klein, Abigail See, Greg Durrett, Yejin Choi, John DeNero,
Eric Wallace, Kevin Lin, Fei-Fei Li, Sergey Levine, Pieter Abbeel, and many others]

What tasks do we care about?

Imitation Learning

ALVINN: Autonomous Land Vehicle In a Neural Network

Distributional Drift

Modern Approach to Autonomous Driving

Modern Approach to Autonomous Driving

Avoiding Compounding Errors (Stability)

Avoiding Distributional Drift

DAgger: Dataset Aggregation (Ross, et al. 2011)

Reinforcement Learning

Recall: Map of Reinforcement Learning

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Map of Reinforcement Learning

§ Policy gradient: directly differentiate the above equation
§ Value-based: estimate value function or Q-function of the optimal policy

directly (but no explicit policy)
§ Actor-critic: estimate value function or Q-function of the current policy,

and use it to improve the policy
§ Model-based RL: estimate the transition model, and then:

§ Use it for planning

§ Use it to improve a policy

Policy Gradient

Value Function-Based Approaches

Actor-Critic: Value Functions + Policy Gradients

Model-Based Reinforcement Learning

Map of Reinforcement Learning

Why so many options?

§ Different tradeoffs:
§ Sample efficiency

§ Stability and ease of use

§ Different assumptions:
§ Stochastic or deterministic?

§ Continuous or discrete?

§ Episodic or infinite horizon?

§ Different things are easy or hard in different settings:
§ Easy to represent the policy?

§ Easy to represent the model?

Comparison: Efficiency

§ Sample efficiency = how many samples we need to get a good policy
§ Most important question: is the algorithm on-policy or off-policy?

§ On-policy: each time the policy is changed, need to generate new samples

§ Off-policy: able to improve the policy without generating new samples

Comparison: Stability and Ease of Use

§ Value function fitting:
§ At best, minimizes error of fit (“Bellman error”)

§ At worst, doesn’t optimize anything (often no guarantees with deep RL)

§ Model-based RL:
§ Model minimizes error of fit (will converge)

§ No guarantee that better model = better policy

§ Policy gradient:
§ The only approach that actually performs gradient descent on the true objective

§ In practice, often the least efficient!

Comparison: Assumptions

§ Common assumption #1: full observability
§ Generally assumed by value function fitting methods

§ Can be mitigated by adding recurrence

§ Common assumption #2: episodic learning
§ Often assumed by pure policy gradient methods

§ Assumed by some model-based RL methods

§ Common assumption #3: continuity or smoothness
§ Assumed by some continuous value function learning methods

§ Often assumed by some model-based RL methods

Model-Free RL: Q-Learning

Recall: Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features

§ E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

§ Can perform update based on a single sample, or with multiple

Exact Q’s

Approximate Q’s

Model-Free RL: DQN

Q-function is represented as a CNN

Model-Free RL: REINFORCE

§ Inefficient: run the policy to get trajectories and then throw them away
§ Gradient computations may be noisy (high variance)
§ Practical considerations with batch sizes, learning rates, and optimizers

Model-Based RL: World Models

Model-Based RL: AlphaZero

§ Learn both a policy and value
network via self-play (reward of
+1/-1 comes from end of game)

§ Transition function is known: we
can do explicit planning

§ Use Monte Carlo tree search
(MCTS) to choose actions based on
the current value function

What does AlphaGo Zero Learn? (Tomlin, et al. 2022)

Extracting Concepts from Game States

Game-Playing Agents

§ Agent #1: Imitation Learning
§ Following CNN architecture from Clark and

Storkey (2014)

§ Trained on 228K human games

§ Played against real humans on Online Go

Server (OGS) and received a rating of 1K

§ Agent #2: Reinforcement Learning
§ Pre-trained ELF OpenGo [Tian, et al. 2019]

§ Open-source equivalent of AlphaGo Zero

[Silver, et al. 2017]

§ Better than all human players: ELO 5000+

Human-Level Concepts Encoded in Model

§ Key finding: human-level concepts are

predictable from the intermediate

representations of both models

§ Additionally: some concepts appear in

early layers, and others in later layers

(i.e., different levels of abstraction)

§ Long-term goal: how do we get human-
interpretable explanations of models
which exceed human capacity?

