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What tasks do we care about?



Imitation Learning



ALVINN: Autonomous Land Vehicle In a Neural Network



Distributional Drift



Modern Approach to Autonomous Driving



Modern Approach to Autonomous Driving



Avoiding Compounding Errors (Stability)



Avoiding Distributional Drift



DAgger: Dataset Aggregation (Ross, et al. 2011)



Reinforcement Learning



Recall: Map of Reinforcement Learning

Known MDP: Offline Solution

Goal    Technique

Compute V*, Q*, p*  Value / policy iteration

Evaluate a fixed policy p  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal   Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal   Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning



Map of Reinforcement Learning

§ Policy gradient: directly differentiate the above equation
§ Value-based: estimate value function or Q-function of the optimal policy 

directly (but no explicit policy)
§ Actor-critic: estimate value function or Q-function of the current policy, 

and use it to improve the policy
§ Model-based RL: estimate the transition model, and then:

§ Use it for planning

§ Use it to improve a policy 



Policy Gradient



Value Function-Based Approaches



Actor-Critic: Value Functions + Policy Gradients



Model-Based Reinforcement Learning



Map of Reinforcement Learning



Why so many options?

§ Different tradeoffs:
§ Sample efficiency

§ Stability and ease of use

§ Different assumptions:
§ Stochastic or deterministic?

§ Continuous or discrete?

§ Episodic or infinite horizon?

§ Different things are easy or hard in different settings:
§ Easy to represent the policy?

§ Easy to represent the model?



Comparison: Efficiency

§ Sample efficiency = how many samples we need to get a good policy
§ Most important question: is the algorithm on-policy or off-policy?

§ On-policy: each time the policy is changed, need to generate new samples

§ Off-policy: able to improve the policy without generating new samples



Comparison: Stability and Ease of Use

§ Value function fitting:
§ At best, minimizes error of fit (“Bellman error”)

§ At worst, doesn’t optimize anything (often no guarantees with deep RL)

§ Model-based RL:
§ Model minimizes error of fit (will converge)

§ No guarantee that better model = better policy

§ Policy gradient:
§ The only approach that actually performs gradient descent on the true objective

§ In practice, often the least efficient! 



Comparison: Assumptions

§ Common assumption #1: full observability
§ Generally assumed by value function fitting methods

§ Can be mitigated by adding recurrence

§ Common assumption #2: episodic learning
§ Often assumed by pure policy gradient methods

§ Assumed by some model-based RL methods

§ Common assumption #3: continuity or smoothness
§ Assumed by some continuous value function learning methods

§ Often assumed by some model-based RL methods



Model-Free RL: Q-Learning



Recall: Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features

§ E.g., if something unexpectedly bad happens, blame the features that were on: 
disprefer all states with that state’s features

§ Can perform update based on a single sample, or with multiple

Exact Q’s

Approximate Q’s



Model-Free RL: DQN

Q-function is represented as a CNN



Model-Free RL: REINFORCE

§ Inefficient: run the policy to get trajectories and then throw them away
§ Gradient computations may be noisy (high variance)
§ Practical considerations with batch sizes, learning rates, and optimizers



Model-Based RL: World Models



Model-Based RL: AlphaZero

§ Learn both a policy and value 
network via self-play (reward of 
+1/-1 comes from end of game)

§ Transition function is known: we 
can do explicit planning

§ Use Monte Carlo tree search 
(MCTS) to choose actions based on 
the current value function



What does AlphaGo Zero Learn? (Tomlin, et al. 2022)



Extracting Concepts from Game States



Game-Playing Agents

§ Agent #1: Imitation Learning
§ Following CNN architecture from Clark and 

Storkey (2014)

§ Trained on 228K human games

§ Played against real humans on Online Go 

Server (OGS) and received a rating of 1K

§ Agent #2: Reinforcement Learning
§ Pre-trained ELF OpenGo [Tian, et al. 2019]

§ Open-source equivalent of AlphaGo Zero 

[Silver, et al. 2017]

§ Better than all human players: ELO 5000+



Human-Level Concepts Encoded in Model

§ Key finding: human-level concepts are 

predictable from the intermediate 

representations of both models

§ Additionally: some concepts appear in 

early layers, and others in later layers 

(i.e., different levels of abstraction) 

§ Long-term goal: how do we get human-
interpretable explanations of models 
which exceed human capacity?


