CS 188: Artificial Intelligence Final Exam Review

Instructor: Nicholas Tomlin
University of California, Berkeley
(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell)

Announcements

- All assignments must be submitted by 11:59PM tonight; no late submissions, no grace period beyond this point
- Exam tomorrow (Thursday, August 10 $0^{\text {th }}$):
- Wheeler 150
- 7-10PM, but please show up no later than 6:45PM
- Get enough sleep, drink enough water, etc.
- Get $+1 \%$ extra credit on the exam by filling out course evaluations: https: / / course-evaluations.berkeley.edu
- Today's plan: cover as much material as possible, focused on the second half of the course.

Markov Decision Processes

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s^{\prime}, i.e., $\mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right)$
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state
- We care about:

- Policy = choice of actions for each state
- Utility $=$ sum of (discounted) rewards

Values of States: Bellman Equation

- Recursive definition of value:

$$
V^{*}(s)=\max _{a} Q^{*}(s, a)
$$

$Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
$V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$

Value Iteration

- Bellman equations characterize the optimal values:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

"Bellman Update"

- Value iteration is just a fixed point solution method

Policy Extraction from Values

- Let's imagine we have the optimal values $V^{*}(s)$
- How should we act?
- It's not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- This is called policy extraction, since it gets the policy implied by the values

Policy Extraction from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
- Completely trivial to decide!

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Important lesson: actions are easier to select from q-values than values!

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$
\begin{aligned}
& V_{0}^{\pi}(s)=0 \\
& V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Efficiency: $\mathrm{O}\left(\mathrm{S}^{2}\right)$ per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
- Solve the system of equations

Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Reinforcement Learning

Map of Reinforcement Learning

Known MDP: Offline Solution

Goal
Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$
Evaluate a fixed policy π

Technique
Value / policy iteration
Policy evaluation

| Unknown MDP: Model-Based |
| :--- | :--- |
| Goal Technique
 Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$ VI/PI on approx. MDP
 Evaluate a fixed policy π PE on approx. MDP |

Unknown MDP: Model-Free
Technique
Compute $\mathrm{V}^{*}, \mathrm{Q}^{*}, \pi^{*}$
Evaluate a fixed policy π

Q-learning
Value Learning

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

- This is called direct evaluation

Direct Evaluation

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)
Episode 1

Episode 3
E, north, C, -1
C, east, $D,-1$
D, exit, $\quad x,+10$

Episode 2
B, east, C, -1
C, east, $D,-1$
D, exit, $x,+10$

Episode 4
E, north, C, -1

Temporal Difference Learning

- Big idea: learn from every experience!
- Update V(s) each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
- Policy still fixed, still doing evaluation!

- Move values toward value of whatever successor occurs: running average

Sample of $\mathrm{V}(\mathrm{s}): \quad$ sample $=R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)$
Update to $\mathrm{V}(\mathrm{s}): \quad V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+(\alpha)$ sample
Same update:

$$
V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left(\text { sample }-V^{\pi}(s)\right)
$$

Q-Learning

- Q-Learning: sample-based Q-value iteration

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

- Learn $\mathrm{Q}(\mathrm{s}, \mathrm{a})$ values as you go
- Receive a sample ($\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}, r$)
- Consider your old estimat $Q(s, a)$
- Consider your new sample estimate:

$$
\text { sample }=R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)
$$

- Incorporate the new estimate into a running average:
O.

$$
Q(s, a) \leftarrow(1-\alpha) Q(s, a)+(\alpha)[\text { sample }]
$$

Approximate Q-Learning

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Q-learning with linear Q-functions:

$$
\begin{aligned}
\text { transition } & =\left(s, a, r, s^{\prime}\right) & \\
\text { difference } & =\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) & \\
Q(s, a) & \leftarrow Q(s, a)+\alpha \text { [difference] } & \text { Exact Q's } \\
w_{i} & \leftarrow w_{i}+\alpha \text { [difference] } f_{i}(s, a) & \text { Approximate Q's }
\end{aligned}
$$

- Intuitive interpretation:
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

How to Explore?

- Several schemes for forcing exploration o Simplest: random actions (ε-greedy)
- Every time step, flip a coin
- With (small) probability ε, act randomly
- With (large) probability 1-غ, act on current policy
- Problems with random actions?
- You do eventually explore the space, but keep thrashing around once learning is done
\circ One solution: lower ε over time

- Another solution: exploration functions

Exploration Functions

- When to explore?
- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is no (yet) established, eventually stop exploring
- Exploration function
- Takes a value estimate u and a visit count n , a returns an optimistic utility, e. $f(u, n)=u+k / n$

Regular Q-Update: $\quad Q(s, a) \leftarrow \alpha R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)$
Modified Q-Update: $Q(s, a) \leftarrow \alpha R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} f\left(Q\left(s^{\prime}, a^{\prime}\right), N\left(s^{\prime}, a^{\prime}\right)\right)$

- Note: this propagates the "bonus" back to states that lead to unknown states as well!

Machine Learning

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:

0

1

- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision
- Pixels: $(6,8)=O N$
- Shape Patterns: NumComponents, AspectRatio, NumLoops - ...

- Features are increasingly induced rather than crafted

Naïve Bayes for Digits

- Naïve Bayes: Assume all features are independent effects of the label
- Simple digit recognition version:
- One feature (variable) F_{ij} for each grid position <i,j>
- Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$1 \rightarrow\left\langle F_{0,0}=0 \quad F_{0,1}=0 \quad F_{0,2}=1 \quad F_{0,3}=1 \quad F_{0,4}=0 \ldots F_{15,15}=0\right\rangle$
- Here: lots of features, each is binary valued

$$
P_{\mathrm{ML}}(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

○ Naïve Bayes model: $\quad P\left(Y \mid F_{0,0} \ldots F_{15,15}\right) \propto P(Y) \prod_{i, j} P\left(F_{i, j} \mid Y\right)$

- Conditional probabilities $P\left(F_{i, j} \mid Y\right)$ just come from counts in the training data

Deriving MLEs

- Model:

\mathbf{X}	red	blue
$P_{\theta}(x)$	θ	$1-\theta$

- Data: draw N balls. N_{r} come up red, N_{b} come up blue
- Dataset: $D=\left\{x_{1}, \ldots, x_{n}\right\}$
- Ball draws are independent and identically distributed (i.i.d.):

$$
P(D \mid \theta)=\prod_{i} P\left(x_{i} \mid \theta\right)=\prod_{i} P_{\theta}\left(x_{i}\right)=\theta^{N_{r}} \cdot(1-\theta)^{N_{b}}
$$

- Maximum likelihood estimation: find θ that maximizes $P(D \mid \theta)$

$$
\theta=\underset{\theta}{\operatorname{argmax}} P(D \mid \theta)=\underset{\theta}{\operatorname{argmax}} \log P(D \mid \theta)
$$

- Approach: take derivative and set to 0

Deriving MLEs

- Maximum likelihood estimation: find θ that maximizes $P(D \mid \theta)$
$\theta=\operatorname{argmax} P(D \mid \theta)=\operatorname{argmax} \log P(D \mid \theta)$

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log P(D \mid \theta)= & \frac{\partial}{\partial \theta}\left[N_{r} \log (\theta)+N_{b} \log (1-\theta)\right] \\
& =N_{r} \frac{\partial}{\partial \theta} \log (\theta)+N_{b} \frac{\partial}{\partial \theta} \log (1-\theta) \\
& =N_{r} \frac{1}{\theta}-N_{b} \frac{1}{1-\theta} \\
& =0
\end{aligned}
$$

Multiply by $\theta(1-\theta)$:

$$
\begin{gathered}
N_{r}(1-\theta)-N_{b} \theta=0 \\
N_{r}-\theta\left(N_{r}+N_{b}\right)=0
\end{gathered}
$$

$$
\hat{\theta}=\frac{N_{r}}{N_{r}+N_{b}}
$$

Regularization: Smoothing

- Laplace's estimate:
- Pretend you saw every outcome once more than you actually did

$$
\begin{aligned}
P_{L A P}(x) & =\frac{c(x)+1}{\sum_{x}[c(x)+1]} \\
& =\frac{c(x)+1}{N+|X|}
\end{aligned}
$$

$$
\begin{aligned}
P_{M L}(X) & =\left\langle\frac{2}{3}, \frac{1}{3}\right\rangle \\
P_{L A P}(X) & =\left\langle\frac{3}{5}, \frac{2}{5}\right\rangle
\end{aligned}
$$

- This is no longer a maximum likelihood estimate

Binary Perceptron

- Start with weights $=0$
- For each training instance:
- Classify with current weights

$$
y= \begin{cases}+1 & \text { if } w \cdot f(x) \geq 0 \\ -1 & \text { if } w \cdot f(x)<0\end{cases}
$$

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y^{*} is -1 .

$$
w=w+y^{*} \cdot f
$$

Multiclass Perceptron

- Start with all weights $=0$
- Pick up training examples one by one
- Predict with current weights

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$
\begin{aligned}
& w_{y}=w_{y}-f(x) \\
& w_{y^{*}}=w_{y^{*}}+f(x)
\end{aligned}
$$

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
- Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

iterations

Logistic Regression

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \quad \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
\begin{aligned}
& P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{aligned}
$$

Aside: linear regression \neq logistic regression!

Multiclass Logistic Regression

- Recall Perceptron:
- A weight vector for each class: w_{y}
- Score (activation) of a class y: $w_{y} \cdot f(x)$
- Prediction highest score wins $y=\arg \underset{y}{\max } w_{y} \cdot f(x)$

- How to make the scores into probabilities?

Batch Gradient Ascent

$$
\max _{w} l l(w)=\max _{w} \underbrace{\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)}_{g(w)}
$$

$$
\begin{aligned}
& \text { ○ init } w \\
& \text { ○ for iter }=1,2, \ldots \\
& \quad w \leftarrow w+\alpha * \sum_{i} \nabla \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Stochastic Gradient Ascent

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

```
o init w
o for iter = 1, 2, ...
    o pick random j
        w\leftarroww+\alpha*\nabla\operatorname{log}P(\mp@subsup{y}{}{(j)}|\mp@subsup{x}{}{(j)};w)
```


Mini-batch Gradient Ascent

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

$$
\begin{aligned}
& \text { O init } w \\
& \text { o for iter }=1,2, \ldots \\
& \text { o pick random subset of training examples } J \\
& \qquad w \leftarrow w+\alpha * \sum_{j \in J} \nabla \log P\left(y^{(j)} \mid x^{(j)} ; w\right)
\end{aligned}
$$

Beyond SGD: Second-Order Derivatives

Newton's Method (in 1D):

- Want to optimize: $\max _{\theta} f(\theta)$
- Apply Taylor expansion:

$$
f(\theta+h)=f(\theta)+f^{\prime}(\theta) h+\frac{1}{2} f^{\prime \prime}(\theta) h^{2}
$$

- Find value of t that maximizes this:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial h}\left[f(\theta)+f^{\prime}(\theta) h+\frac{1}{2} f^{\prime \prime}(\theta) h^{2}\right] \\
& =\mathrm{f}^{\prime}(\theta)+f^{\prime \prime}(\theta) h
\end{aligned}
$$

- Rearrange terms to get update:

$$
h=-\frac{f^{\prime}(\theta)}{f^{\prime \prime}(\theta)} \quad \theta_{t+1}=\theta_{t}+h=\theta_{t}-\frac{f^{\prime}(\theta)}{f^{\prime \prime}(\theta)}
$$

These update equations out of scope for final exam; but high-level concepts are in scope

Beyond SGD: Momentum

- Potential issues with vanilla SGD:
- Can take a long time to converge if the learning rate is too low
- Can bounce around in "ravines" without making much progress toward a local optimum

Image 2: SGD without momentum

Image 3: SGD with momentum

Beyond SGD: Adaptive Learning Rates

- Recall: learning rates

- Determines how much we update weights in the direction of the gradient
- Often: want to set this in terms of how much it updates the weights
- Often: want to lower learning rate over time (learning rate scheduling)

$$
\theta_{t+1}=\theta_{t}-\eta \nabla_{\theta} \mathrm{f}\left(\theta_{t}\right)
$$

- Key idea: different learning rates for each parameter
- We can make larger or smaller updates depending on how important a feature is
- Small updates for frequent features; big updates for rare features
- This idea underlies: Adagrad, RMSProp, Adam, etc.

Summary: Key Ideas in Optimization

- Gradient descent
- Batch: update based on the whole dataset
- SGD: update based on a single randomly chosen training example
- Minibatch: update based on k randomly chosen training examples
- More advanced approaches:
- Second order optimization (e.g., Newton's method)
- Momentum (Nesterov's accelerated gradient, Adam)
- Adaptive learning rates (Adagrad, RMSProp, Adam, etc.)

Logistic Regression

Deep Neural Networks

$$
z_{i}^{(k)}=g\left(\sum_{j} W_{i, j}^{(k-1, k)} z_{j}^{(k-1)}\right) \quad \mathbf{g}=\text { nonlinear activation function }
$$

Common Activation Functions

Sigmoid Function

$$
g(z)=\frac{1}{1+e^{-z}}
$$

$$
g^{\prime}(z)=g(z)(1-g(z))
$$

Hyperbolic Tangent

$g(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$
$g^{\prime}(z)=1-g(z)^{2}$

Rectified Linear Unit (ReLU)

$$
g(z)=\max (0, z)
$$

$$
g^{\prime}(z)=\left\{\begin{array}{cc}
1, & z>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Neural Network Properties

- Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.
- Practical considerations:
- Must have nonlinear activation function
- Requires an arbitrarily large number of neurons:
\circ Danger for overfitting (hence early stopping!)
- No guarantee that we can do this on real-world compute
- Often more efficient in practice to have more layers, less neurons

Example: Automatic Differentiation

- Build a computation graph and apply chain rule: $f(x)=g(h(x)) \quad f^{\prime}(x)=h^{\prime}(x)$. $g^{\prime}(h(x))$
- Example: neural network with quadratic loss: $L\left(a_{2}, y^{*}\right)=\frac{1}{2}\left(a_{2}-y^{*}\right)^{2}$ and ReLU activations $g(z)=\max (0, z)$
- $a_{2}=g_{2}\left(w_{2} * g_{1}\left(w_{1} * x\right)\right)$

$$
\frac{\partial z_{2}}{\partial w_{2}}=\frac{\partial}{\partial w_{2}}\left(w_{2} \cdot a_{1}\right)=a_{1}
$$

$$
\frac{\partial L}{\partial a_{2}}=\left(a_{2}-y^{*}\right)=4
$$

Search

A* Search

- Expand nodes based on sum: backward cost + forward cost - $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
- $g(n)$: cost to get to node
- $h(n)$: heuristic of future costs
- We ideally want heuristic functions that satisfy:
- Admissibility: underestimate true cost to the goal
- Consistency: "triangle inequality"

- Consistency => admissibility

A* Search: Admissibility

A* Search: Admissibility

A* Search: Admissibility

A* Search: Admissibility

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic...

A* Search: Admissibility

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic...

A* Search: Admissibility

Q: Where do heuristics come from?
A: We have to create them!

What's a better heuristic?

A* Search: Admissibility

Q: Where do heuristics come from?
A: We have to create them!

What's a better heuristic?
Admissible $=$ Underestimates Cost to the Goal

A* Search: Consistency

A* Search: Consistency

A* Search: Consistency

A* Search: Consistency

This heuristic isn't consistent
"Triangle inequality"
$\mathrm{h}(\mathrm{u}) \leq \mathrm{d}(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{v})$

A* Search: Consistency

This heuristic isn't consistent
"Triangle inequality"
$\mathrm{h}(\mathrm{u}) \leq \mathrm{d}(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{v})$

A* Search: Consistency

This heuristic isn't consistent
"Triangle inequality"
$h(u) \leq d(u, v)+h(v)$

$$
\begin{aligned}
f & =g+h \\
& =1+1 \\
& =2
\end{aligned}
$$

$\mathrm{Q}:$ Is $\mathrm{h}(\mathrm{A}) \leq \mathrm{d}(\mathrm{A}, \mathrm{C})+\mathrm{h}(\mathrm{C})$?
A: No: $4 \not \leq 1+1$

Summary of A*

- Tree search:
- A* is optimal if heuristic is admissible
- UCS is a special case $(\mathrm{h}=0)$
- Graph search:
- A* optimal if heuristic is consistent
- UCS optimal ($\mathrm{h}=0$ is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially
 if it comes from a relaxed problem

Constraint Satisfaction Problems

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D=\{$ red, green, blue $\}$
- Constraints: adjacent regions must have different colors

Implicit: WA $\neq \mathrm{NT}$
Explicit: $\quad(W A, N T) \in\{($ red, green $),($ red, blue $), \ldots\}$

- Solutions are assignments satisfying all constraints, e.g.:

General Approach \#1: Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
- Variable assignments are commutative, so fix ordering $->$ better branching factor!
- I.e., [WA = red then $\mathrm{NT}=$ green] same as $[\mathrm{NT}=$ green then $\mathrm{WA}=$ red]
- Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n -queens for $\mathrm{n} \approx 25$

Improving Backtracking

General-purpose ideas give huge gains in speed

1. Ordering:

- Which variable should be assigned next?
- In what order should its values be tried?

2. Filtering: Can we detect inevitable failure early?
3. Leveraging the structure of the constraint graph

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal values left in its domain

- Why min rather than max?
- Also called "most constrained variable'
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Filtering: Arc Consistency

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Leveraging Structure: Cutsets

General Approach \#2: Iterative Improvement

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints

- Operators reassign variable values
- No fringe! Live on the edge.
- Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
- Choose a value that violates the fewest constraints
- I.e., hill climb with $\mathrm{h}(\mathrm{x})=$ total number of violated constraints

Hill Climbing Diagram

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on
function Simulated-AnNEALING(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node

next, a node

T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow \operatorname{VaLUE}[$ next $]$ - VaLUE $[$ current $]$
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Game Trees

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
- Tic-tac-toe, chess, checkers
- One player maximizes result
- The other minimizes result
- Minimax search:
- A state-space search tree
- Players alternate turns
- Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Example

Minimax Example: Pruning

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
- Important: children of the root may have the wrong value
- So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
- Time complexity drops to $\mathrm{O}\left(\mathrm{b}^{\mathrm{m} / 2}\right)$

- Doubles solvable depth!
- Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

Expectimax Search

- Why wouldn't we know what the result of an action will be?
- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Unpredictable humans: humans are not perfect
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play

o Max nodes as in minimax search
- Chance nodes are like min nodes but the outcome is uncertain
- Calculate their expected utilities
- I.e. take weighted average (expectation) of children

Remaining Topics

Bayes Nets:

- Inference by enumeration
- Variable elimination
- D-separation
- Sampling approaches

HMMs:

- Forward algorithm
- Viterbi algorithm
- Particle filtering

Decision networks and VPIs

Out of scope: learning theory, decision tree classifiers, details of nonSGD optimizers (e.g., NAG, Adagrad, Adam), NLP / CV / RL

