
CS 188: Artificial Intelligence
Final Exam Review

Instructor: Nicholas Tomlin

University of California, Berkeley
(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell)

Announcements

o All assignments must be submitted by 11:59PM tonight; no
late submissions, no grace period beyond this point

o Exam tomorrow (Thursday, August 10th):
oWheeler 150
o 7-10PM, but please show up no later than 6:45PM
oGet enough sleep, drink enough water, etc.

o Get +1% extra credit on the exam by filling out course
evaluations: https://course-evaluations.berkeley.edu

o Today’s plan: cover as much material as possible, focused
on the second half of the course.

https://course-evaluations.berkeley.edu/

Markov Decision Processes

Markov Decision Processes

o An MDP is defined by:
o A set of states s Î S
o A set of actions a Î A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state
o Maybe a terminal state

o We care about:
o Policy = choice of actions for each state
o Utility = sum of (discounted) rewards

Values of States: Bellman Equation

o Recursive definition of value:

a

s

s, a

s,a,s’
s’

V⇤(s) = Q⇤(s, a)max
a

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Value Iteration

o Bellman equations characterize the optimal values:

o Value iteration computes them:

“Bellman Update”

o Value iteration is just a fixed point solution method

a

V(s)

s, a

s,a,s’
V(s’)

Policy Extraction from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?
o It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by the
values

Policy Extraction from Q-Values

o Let’s imagine we have the optimal
 q-values:

o How should we act?
o Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than
values!

Policy Evaluation
o How do we calculate the V’s for a fixed policy p?

o Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve the system of equations

p(s)

s

s, p(s)

s, p(s),s’
s’

Policy Iteration

o Evaluation: For fixed current policy p, find values with policy evaluation:
o Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

Reinforcement Learning

Map of Reinforcement Learning

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Direct Evaluation

o Goal: Compute values for each state under p

o Idea: Average together observed sample
values
o Act according to p
o Every time you visit a state, write down what the

sum of discounted rewards turned out to be
o Average those samples

o This is called direct evaluation

Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Temporal Difference Learning
o Big idea: learn from every experience!

o Update V(s) each time we experience a transition (s, a, s’, r)
o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!
o Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Q-Learning
o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimate:
o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features that were

on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (e-greedy)

oEvery time step, flip a coin
oWith (small) probability e, act randomly
oWith (large) probability 1-e, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done
oOne solution: lower e over time
oAnother solution: exploration functions

Exploration Functions
o When to explore?

o Random actions: explore a fixed amount
o Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states
as well!

Modified Q-Update:

Regular Q-Update:

Machine Learning

Example: Digit Recognition

o Input: images / pixel grids
o Output: a digit 0-9

o Setup:
o Get a large collection of example images, each labeled with a digit
o Note: someone has to hand label all this data!
o Want to learn to predict labels of new, future digit images

o Features: The attributes used to make the digit decision
o Pixels: (6,8)=ON
o Shape Patterns: NumComponents, AspectRatio, NumLoops
o …
o Features are increasingly induced rather than crafted

0

1

2

1

??

Naïve Bayes for Digits
o Naïve Bayes: Assume all features are independent effects of the label

o Simple digit recognition version:
o One feature (variable) Fij for each grid position <i,j>
o Feature values are on / off, based on whether intensity
 is more or less than 0.5 in underlying image
o Each input maps to a feature vector, e.g.

o Here: lots of features, each is binary valued

o Naïve Bayes model:

o Conditional probabilities 𝑷(𝑭𝒊,𝒋 ∣ 𝒀) just come from counts in the training data

Y

F1 FnF2

Deriving MLEs

o Model:

o Data: draw 𝑁 balls. 𝑁$ come up red, 𝑁% come up blue
o Dataset: 𝐷 = {𝑥!, … , 𝑥"}
o Ball draws are independent and identically distributed (i.i.d.):

𝑃 𝐷 𝜃 =*
#

𝑃 𝑥# 𝜃 =*
#

𝑃$ 𝑥# = 𝜃%! ⋅ 1 − 𝜃 %"

o Maximum likelihood estimation: find 𝜃 that maximizes 𝑃 𝐷 𝜃

𝜃 = argmax	𝑃 𝐷 𝜃 = argmax log 𝑃 𝐷 𝜃

o Approach: take derivative and set to 0

r r b
X red blue

𝑃!(𝑥) 𝜃 1 − 𝜃

𝜃 𝜃

Deriving MLEs

o Maximum likelihood estimation: find 𝜃 that maximizes 𝑃 𝐷 𝜃

𝜃 = argmax	𝑃 𝐷 𝜃 = argmax log 𝑃 𝐷 𝜃

𝜕
𝜕𝜃
log 𝑃 𝐷 𝜃 =

𝜕
𝜕𝜃
[𝑁$ log 𝜃 + 𝑁% log 1 − 𝜃]

 = 𝑁$
'
'(log 𝜃 + 𝑁%

'
'(log 1 − 𝜃

 = 𝑁$
)
(−𝑁%

)
)*(

 = 0	

Multiply by 𝜃 1 − 𝜃 :	 𝑁$ 1 − 𝜃 − 𝑁%𝜃 = 0	
 𝑁$ − 𝜃 𝑁$ +𝑁% = 0

𝜃 𝜃

+𝜃 =
𝑁!

𝑁! + 𝑁"

Regularization: Smoothing

o Laplace’s estimate:
o Pretend you saw every outcome

once more than you actually did

o This is no longer a maximum
likelihood estimate

r r b

Binary Perceptron
o Start with weights = 0
o For each training instance:

o Classify with current weights

o If correct (i.e., y=y*), no change!
o If wrong: adjust the weight vector

by adding or subtracting the
feature vector. Subtract if y* is -1.

Multiclass Perceptron

o Start with all weights = 0
o Pick up training examples one by one
o Predict with current weights

o If correct, no change!
o If wrong: lower score of wrong

answer, raise score of right answer

Problems with the Perceptron

o Noise: if the data isn’t separable,
weights might thrash
o Averaging weight vectors over time

can help (averaged perceptron)

o Mediocre generalization: finds a
“barely” separating solution

o Overtraining: test / held-out
accuracy usually rises, then falls
o Overtraining is a kind of overfitting

Logistic Regression

o Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

Aside: linear regression ≠ logistic regression!

Multiclass Logistic Regression

o Recall Perceptron:
o A weight vector for each class:

o Score (activation) of a class y:

o Prediction highest score wins

o How to make the scores into probabilities?

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

Batch Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

o init

o for iter = 1, 2, …
w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Stochastic Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

o init

o for iter = 1, 2, …
o pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-batch Gradient Ascent

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

o init

o for iter = 1, 2, …
o pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

Beyond SGD: Second-Order Derivatives

Newton’s Method (in 1D):
§ Want to optimize: max

(
𝑓(𝜃)

§ Apply Taylor expansion:

 𝑓 𝜃 + ℎ = 𝑓 𝜃 + 𝑓/ 𝜃 ℎ +)
0𝑓

// 𝜃 ℎ0

§ Find value of 𝑡 that maximizes this:

 0 = '
'1 𝑓 𝜃 + 𝑓/ 𝜃 ℎ +)

0𝑓
// 𝜃 ℎ0

 = f / 𝜃 + 𝑓// 𝜃 ℎ	
§ Rearrange terms to get update:

 ℎ = − 2" (
2"" (𝜃34) = 𝜃3 + ℎ = 𝜃3 −

2" (
2"" (

These update equations out of scope for final exam; but high-level concepts are in scope

Beyond SGD: Momentum

o Potential issues with vanilla SGD:
oCan take a long time to converge if the learning rate is too low
oCan bounce around in “ravines” without making much progress

toward a local optimum

Beyond SGD: Adaptive Learning Rates

o Recall: learning rates
o Determines how much we update weights in the direction of the gradient
o Often: want to set this in terms of how much it updates the weights
o Often: want to lower learning rate over time (learning rate scheduling)

𝜃34) = 𝜃3 − 𝜂∇(f 𝜃3

o Key idea: different learning rates for each parameter
o We can make larger or smaller updates depending on how important a

feature is
o Small updates for frequent features; big updates for rare features
o This idea underlies: Adagrad, RMSProp, Adam, etc.

Summary: Key Ideas in Optimization

o Gradient descent
o Batch: update based on the whole dataset
o SGD: update based on a single randomly chosen training example
oMinibatch: update based on k randomly chosen training examples

o More advanced approaches:
o Second order optimization (e.g., Newton’s method)
oMomentum (Nesterov’s accelerated gradient, Adam)
oAdaptive learning rates (Adagrad, RMSProp, Adam, etc.)

Logistic Regression

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep Neural Networks

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(2)

K(2)

z(2)1

z(2)2

z(2)3

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Neural Network Properties

o Theorem (Universal Function Approximators). A two-layer
neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

o Practical considerations:
oMust have nonlinear activation function
o Requires an arbitrarily large number of neurons:

oDanger for overfitting (hence early stopping!)
oNo guarantee that we can do this on real-world compute

oOften more efficient in practice to have more layers, less neurons

o Build a computation graph and apply chain rule: 𝑓 𝑥 = 𝑔 ℎ 𝑥 	 𝑓& 𝑥 = ℎ& 𝑥 ⋅
𝑔′(ℎ 𝑥)

o Example: neural network with quadratic loss: 𝐿 𝑎', 𝑦∗ = !
'
𝑎' − 𝑦∗ ' and ReLU

activations 𝑔 𝑧 = max(0, 𝑧)
o 𝑎' = 𝑔'(𝑤' ∗ 𝑔! 𝑤! ∗ 𝑥)

Example: Automatic Differentiation

2

1

3

2

2 2 6 6 8

𝜕𝐿
𝜕𝑦∗ = − 𝑎$ − 𝑦∗ = −4

𝜕𝐿
𝜕𝑎$

= 𝑎$ − 𝑦∗ = 4

𝜕𝐿
𝜕𝑧$

=
𝜕𝐿
𝜕𝑎$

𝜕𝑎$
𝜕𝑧$

	

𝜕𝑎$
𝜕𝑧$

=
𝜕
𝜕𝑧$

max 𝑧$, 0 = 1	(when	𝑧$ > 0)

= 4 ⋅ 1	

𝜕𝐿
𝜕𝑤$

=
𝜕𝐿
𝜕𝑧$

𝜕𝑧$
𝜕𝑤$

	

𝜕𝑧$
𝜕𝑤$

=
𝜕
𝜕𝑤$

𝑤$ ⋅ 𝑎% = 𝑎%

= 4 ⋅ 𝑎% = 8

Search

A* Search

o Expand nodes based on sum:
backward cost + forward cost
o f(n) = g(n) + h(n)
o g(n): cost to get to node
o h(n): heuristic of future costs

o We ideally want heuristic
functions that satisfy:
o Admissibility: underestimate true

cost to the goal
o Consistency: “triangle inequality”

o Consistency => admissibility

A* Search: Admissibility

A

GS

1 3

5

A* Search: Admissibility

A

GS

1 3

5

A* Search: Admissibility

A

GS

1 3

5

h = ??

h = ??h = ??

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic…

A* Search: Admissibility

A

GS

1 3
h = 6

h = 0

5

h = 7

f = g + h
 = 1 + 6
 = 7

f = g + h
 = 5 + 0
 = 5

A* Search: Admissibility

A

GS

1 3
h = 6

h = 0

5

h = 7

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic…

f = g + h
 = 1 + 6
 = 7

f = g + h
 = 5 + 0
 = 5

Q: Where do heuristics come from?
A: We have to create them!

What’s a better heuristic?

A* Search: Admissibility

A

GS

1 3
h = 3

h = 0

5

h = 1

f = g + h
 = 1 + 3
 = 4

f = g + h
 = 5 + 0
 = 5

Q: Where do heuristics come from?
A: We have to create them!

What’s a better heuristic?

A* Search: Admissibility

A

GS

1 3
h = 3

h = 0

5

h = 1

f = g + h
 = 1 + 3
 = 4

f = g + h
 = 5 + 0
 = 5

Admissible = Underestimates Cost to the Goal

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?
A: No: 4 ≰ 1 + 1

Summary of A*
o Tree search:

o A* is optimal if heuristic is admissible
o UCS is a special case (h = 0)

o Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

o Consistency implies admissibility

o In general, most natural admissible
heuristics tend to be consistent, especially
if it comes from a relaxed problem

Constraint Satisfaction Problems

Example: Map Coloring
o Variables:

o Domains:

o Constraints: adjacent regions must have
different colors

o Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

General Approach #1: Backtracking Search
o Backtracking search is the basic uninformed algorithm for solving CSPs

o Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor!
o I.e., [WA = red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

o Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

o Depth-first search with these two improvements
 is called backtracking search (not the best name)

o Can solve n-queens for n » 25

Improving Backtracking

General-purpose ideas give huge gains in speed

1. Ordering:
o Which variable should be assigned next?
o In what order should its values be tried?

2. Filtering: Can we detect inevitable failure early?

3. Leveraging the structure of the constraint graph

Ordering: Minimum Remaining Values

o Variable Ordering: Minimum remaining values (MRV):
o Choose the variable with the fewest legal values left in its domain

o Why min rather than max?
o Also called “most constrained variable”
o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining
Value
o Given a choice of variable, choose the least

constraining value
o I.e., the one that rules out the fewest values in

the remaining variables
o Note that it may take some computation to

determine this! (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
 1000 queens feasible

Filtering: Arc Consistency
o A simple form of propagation makes sure all arcs are consistent:

o Important: If X loses a value, neighbors of X need to be rechecked!
o Arc consistency detects failure earlier than forward checking
o Can be run as a preprocessor or after each assignment Remember: Delete

from the tail!

WA SA

NT Q

NSW

V

Leveraging Structure: Cutsets

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

General Approach #2: Iterative Improvement
o Local search methods typically work with “complete” states, i.e., all variables

assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints

Hill Climbing Diagram

Simulated Annealing
o Idea: Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

69

Game Trees

Adversarial Search (Minimax)

o Deterministic, zero-sum games:
o Tic-tac-toe, chess, checkers
o One player maximizes result
o The other minimizes result

o Minimax search:
o A state-space search tree
o Players alternate turns
o Compute each node’s minimax

value: the best achievable utility
against a rational (optimal)
adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Minimax Example: Pruning

12 8 5 23 2 14

3 <=2 2

3

Alpha-Beta Pruning Properties
o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naïve version won’t let you do action selection

o Good child ordering improves effectiveness of pruning

o With “perfect ordering”:
o Time complexity drops to O(bm/2)
o Doubles solvable depth!
o Full search of, e.g. chess, is still hopeless…

o This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Alpha-Beta Quiz 2

2

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Expectimax Search

o Why wouldn’t we know what the result of an action will be?
o Explicit randomness: rolling dice
o Unpredictable opponents: the ghosts respond randomly
o Unpredictable humans: humans are not perfect
o Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under
optimal play
o Max nodes as in minimax search
o Chance nodes are like min nodes but the outcome is uncertain
o Calculate their expected utilities
o I.e. take weighted average (expectation) of children

10 4 5 7

max

chance

10 10 9 100

Remaining Topics

Bayes Nets:
o Inference by enumeration
o Variable elimination
o D-separation
o Sampling approaches

HMMs:
o Forward algorithm
o Viterbi algorithm
o Particle filtering

Decision networks and VPIs

Out of scope: learning theory, decision tree classifiers, details of non-
SGD optimizers (e.g., NAG, Adagrad, Adam), NLP/CV/RL

