
CS 188 Introduction to Artificial Intelligence
Summer 2023 Note 18

Reinforcement Learning
In the previous note, we discussed Markov decision processes, which we solved using techniques such as
value iteration and policy iteration to compute the optimal values of states and extract optimal policies.
Solving Markov decision processes is an example of offline planning, where agents have full knowledge of
both the transition function and the reward function, all the information they need to precompute optimal
actions in the world encoded by the MDP without ever actually taking any actions. In this note, we’ll discuss
online planning, during which an agent has no prior knowledge of rewards or transitions in the world (still
represented as a MDP). In online planning, an agent must try exploration, during which it performs actions
and receives feedback in the form of the successor states it arrives in and the corresponding rewards it
reaps. The agent uses this feedback to estimate an optimal policy through a process known as reinforcement
learning before using this estimated policy for exploitation or reward maximization.

Let’s start with some basic terminology. At each time step during online planning, an agent starts in a state
s, then takes an action a and ends up in a successor state s′, attaining some reward r. Each (s,a,s′,r) tuple is
known as a sample. Often, an agent continues to take actions and collect samples in succession until arriving
at a terminal state. Such a collection of samples is known as an episode. Agents typically go through many
episodes during exploration in order to collect sufficient data needed for learning.

There are two types of reinforcement learning, model-based learning and model-free learning. Model-
based learning attempts to estimate the transition and reward functions with the samples attained during
exploration before using these estimates to solve the MDP normally with value or policy iteration. Model-
free learning, on the other hand, attempts to estimate the values or Q-values of states directly, without ever
using any memory to construct a model of the rewards and transitions in the MDP.

CS 188, Summer 2023, Note 18 1



Model-Based Learning
In model-based learning an agent generates an approximation of the transition function, T̂ (s,a,s′), by keep-
ing counts of the number of times it arrives in each state s′ after entering each Q-state (s,a). The agent can
then generate the the approximate transition function T̂ upon request by normalizing the counts it has col-
lected - dividing the count for each observed tuple (s,a,s′) by the sum over the counts for all instances where
the agent was in Q-state (s,a). Normalization of counts scales them such that they sum to one, allowing them
to be interpreted as probabilities. Consider the following example MDP with states S = {A,B,C,D,E,x},
with x representing the terminal state, and discount factor γ = 1:

Assume we allow our agent to explore the MDP for four episodes under the policy πexplore delineated above
(a directional triangle indicates motion in the direction the triangle points, and a blue squares represents
taking exit as the action of choice), and yield the following results:

We now have a collective 12 samples, 3 from each episode with counts as follows:

s a s′ count
A exit x 1
B east C 2
C east A 1
C east D 3
D exit x 3
E north C 2

CS 188, Summer 2023, Note 18 2



Recalling that T (s,a,s′) = P(s′|a,s), we can estimate the transition function with these counts by dividing
the counts for each tuple (s,a,s′) by the total number of times we were in Q-state (s,a) and the reward
function directly from the rewards we reaped during exploration:

• Transition Function: T̂ (s,a,s′)

– T̂ (A,exit,x) = #(A,exit,x)
#(A,exit) = 1

1 = 1

– T̂ (B,east,C) = #(B,east,C)
#(B,east) = 2

2 = 1

– T̂ (C,east,A) = #(C,east,A)
#(C,east) = 1

4 = 0.25

– T̂ (C,east,D) = #(C,east,D)
#(C,east) = 3

4 = 0.75

– T̂ (D,exit,x) = #(D,exit,x)
#(D,exit) = 3

3 = 1

– T̂ (E,north,C) = #(E,north,C)
#(E,north) = 2

2 = 1

• Reward Function: R̂(s,a,s′)

– R̂(A,exit,x) =−10

– R̂(B,east,C) =−1

– R̂(C,east,A) =−1

– R̂(C,east,D) =−1

– R̂(D,exit,x) = +10

– R̂(E,north,C) =−1

By the law of large numbers, as we collect more and more samples by having our agent experience more
episodes, our models of T̂ and R̂ will improve, with T̂ converging towards T and R̂ acquiring knowledge of
previously undiscovered rewards as we discover new (s,a,s′) tuples. Whenever we see fit, we can end our
agent’s training to generate a policy πexploit by running value or policy iteration with our current models for
T̂ and R̂ and use πexploit for exploitation, having our agent traverse the MDP taking actions seeking reward
maximization rather than seeking learning. We’ll soon discuss methods for how to allocate time between
exploration and exploitation effectively. Model-based learning is very simple and intuitive yet remarkably
effective, generating T̂ and R̂ with nothing more than counting and normalization. However, it can be
expensive to maintain counts for every (s,a,s′) tuple seen, and so in the next section on model-free learning
we’ll develop methods to bypass maintaining counts altogether and avoid the memory overhead required by
model-based learning.

Model-Free Learning
Onward to model-free learning! There are several model-free learning algorithms, and we’ll cover three
of them: direct evaluation, temporal difference learning, and Q-learning. Direct evaluation and temporal
difference learning fall under a class of algorithms known as passive reinforcement learning. In passive
reinforcement learning, an agent is given a policy to follow and learns the value of states under that policy
as it experiences episodes, which is exactly what is done by policy evaluation for MDPs when T and R are
known. Q-learning falls under a second class of model-free learning algorithms known as active reinforce-
ment learning, during which the learning agent can use the feedback it receives to iteratively update its
policy while learning until eventually determining the optimal policy after sufficient exploration.

Direct Evaluation
The first passive reinforcement learning technique we’ll cover is known as direct evaluation, a method
that’s as boring and simple as the name makes it sound. All direct evaluation does is fix some policy π

and have the agent experience several episodes while following π . As the agent collects samples through
these episodes it maintains counts of the total utility obtained from each state and the number of times it
visited each state. At any point, we can compute the estimated value of any state s by dividing the total
utility obtained from s by the number of times s was visited. Let’s run direct evaluation on our example
from earlier, recalling that γ = 1.

CS 188, Summer 2023, Note 18 3



Walking through the first episode, we can see that from state D to termination we acquired a total reward of
10, from state C we acquired a total reward of (−1)+10 = 9, and from state B we acquired a total reward
of (−1)+(−1)+10 = 8. Completing this process yields the total reward across episodes for each state and
the resulting estimated values as follows:

s Total Reward Times Visited V π(s)
A −10 1 −10
B 16 2 8
C 16 4 4
D 30 3 10
E −4 2 −2

Though direct evaluation eventually learns state values for each state, it’s often unnecessarily slow to con-
verge because it wastes information about transitions between states.

In our example, we computed V π(E) =−2 and V π(B) = 8, though based on the feedback we received both
states only have C as a successor state and incur the same reward of −1 when transitioning to C. According
to the Bellman equation, this means that both B and E should have the same value under π . However, of the
4 times our agent was in state C, it transitioned to D and reaped a reward of 10 three times and transitioned
to A and reaped a reward of −10 once. It was purely by chance that the single time it received the −10
reward it started in state E rather than B, but this severely skewed the estimated value for E. With enough
episodes, the values for B and E will converge to their true values, but cases like this cause the process to
take longer than we’d like. This issue can be mitigated by choosing to use our second passive reinforcement
learning algorithm, temporal difference learning.

CS 188, Summer 2023, Note 18 4



Temporal Difference Learning
Temporal difference learning (TD learning) uses the idea of learning from every experience, rather than
simply keeping track of total rewards and number of times states are visited and learning at the end as direct
evaluation does. In policy evaluation, we used the system of equations generated by our fixed policy and
the Bellman equation to determine the values of states under that policy (or used iterative updates like with
value iteration).

V π(s) = ∑
s′

T (s,π(s),s′)[R(s,π(s),s′)+ γV π(s′)]

Each of these equations equates the value of one state to the weighted average over the discounted values of
that state’s successors plus the rewards reaped in transitioning to them. TD learning tries to answer the ques-
tion of how to compute this weighted average without the weights, cleverly doing so with an exponential
moving average. We begin by initializing ∀s, V π(s) = 0. At each time step, an agent takes an action π(s)
from a state s, transitions to a state s′, and receives a reward R(s,π(s),s′). We can obtain a sample value by
summing the received reward with the discounted current value of s′ under π:

sample = R(s,π(s),s′)+ γV π(s′)

This sample is a new estimate for V π(s). The next step is to incorporate this sampled estimate into our
existing model for V π(s) with the exponential moving average, which adheres to the following update rule:

V π(s)← (1−α)V π(s)+α · sample

Above, α is a parameter constrained by 0 ≤ α ≤ 1 known as the learning rate that specifies the weight
we want to assign our existing model for V π(s), 1−α , and the weight we want to assign our new sampled
estimate, α . It’s typical to start out with learning rate of α = 1, accordingly assigning V π(s) to whatever the
first sample happens to be, and slowly shrinking it towards 0, at which point all subsequent samples will be
zeroed out and stop affecting our model of V π(s).

Let’s stop and analyze the update rule for a minute. Annotating the state of our model at different points in
time by defining V π

k (s) and samplek as the estimated value of state s after the kth update and the kth sample
respectively, we can reexpress our update rule:

V π
k (s)← (1−α)V π

k−1(s)+α · samplek

This recursive definition for V π
k (s) happens to be very interesting to expand:

V π
k (s) ← (1−α)V π

k−1(s)+α · samplek

V π
k (s) ← (1−α)[(1−α)V π

k−2(s)+α · samplek−1]+α · samplek

V π
k (s) ← (1−α)2V π

k−2(s)+(1−α) ·α · samplek−1 +α · samplek
...

V π
k (s) ← (1−α)kV π

0 (s)+α · [(1−α)k−1 · sample1 + . . .+(1−α) · sampleek−1 + samplek]

V π
k (s) ← α · [(1−α)k−1 · sample1 + . . .+(1−α) · samplek−1 + samplek]

Because 0 ≤ (1−α) ≤ 1, as we raise the quantity (1−α) to increasingly larger powers, it grows closer
and closer to 0. By the update rule expansion we derived, this means that older samples are given expo-
nentially less weight, exactly what we want since these older samples are computed using older (and hence
worse) versions of our model for V π(s)! This is the beauty of temporal difference learning - with a single
straightforward update rule, we are able to:

CS 188, Summer 2023, Note 18 5



• learn at every time step, hence using information about state transitions as we get them since we’re
using iteratively updated versions of V π(s′) in our samples rather than waiting until the end to perform
any computation.

• give exponentially less weight to older, potentially less accurate samples.

• converge to learning true state values much faster with fewer episodes than direct evaluation.

Q-Learning
Both direct evaluation and TD learning will eventually learn the true value of all states under the policy they
follow. However, they both have a major inherent issue - we want to find an optimal policy for our agent,
which requires knowledge of the Q-values of states. To compute Q-values from the values we have, we
require a transition function and reward function as dictated by the Bellman equation.

Q∗(s,a) = ∑
s′

T (s,a,s′)[R(s,a,s′)+ γV ∗(s′)]

As a result, TD learning or direct evaluation are typically used in tandem with some model-based learning
to acquire estimates of T and R in order to effectively update the policy followed by the learning agent. This
became avoidable by a revolutionary new idea known as Q-learning, which proposed learning the Q-values
of states directly, bypassing the need to ever know any values, transition functions, or reward functions.
As a result, Q-learning is entirely model-free. Q-learning uses the following update rule to perform what’s
known as Q-value iteration:

Qk+1(s,a)←∑
s′

T (s,a,s′)[R(s,a,s′)+ γ max
a′

Qk(s′,a′)]

Note that this update is only a slight modification over the update rule for value iteration. Indeed, the only
real difference is that the position of the max operator over actions has been changed since we select an
action before transitioning when we’re in a state, but we transition before selecting a new action when we’re
in a Q-state.

With this new update rule under our belt, Q-learning is derived essentially the same way as TD learning, by
acquiring Q-value samples:

sample = R(s,a,s′)+ γ max
a′

Q(s′,a′)

and incorporating them into an exponential moving average.

Q(s,a)← (1−α)Q(s,a)+α · sample

As long as we spend enough time in exploration and decrease the learning rate α at an appropriate pace,
Q-learning learns the optimal Q-values for every Q-state. This is what makes Q-learning so revolution-
ary - while TD learning and direct evaluation learn the values of states under a policy by following the
policy before determining policy optimality via other techniques, Q-learning can learn the optimal policy
directly even by taking suboptimal or random actions. This is called off-policy learning (contrary to direct
evaluation and TD learning, which are examples of on-policy learning).

Approximate Q-Learning
Q-learning is an incredible learning technique that continues to sit at the center of developments in the field
of reinforcement learning. Yet, it still has some room for improvement. As it stands, Q-learning just stores

CS 188, Summer 2023, Note 18 6



all Q-values for states in tabular form, which is not particularly efficient given that most applications of
reinforcement learning have several thousands or even millions of states. This means we can’t visit all states
during training and can’t store all Q-values even if we could for lack of memory.

Figure 1 Figure 2 Figure 3

Above, if Pacman learned that Figure 1 is unfavorable after running vanilla Q-learning, it would still have
no idea that Figure 2 or even Figure 3 are unfavorable as well. Approximate Q-learning tries to account
for this by learning about a few general situations and extrapolating to many similar situations. The key to
generalizing learning experiences is the feature-based representation of states, which represents each state
as a vector known as a feature vector. For example, a feature vector for Pacman may encode

• the distance to the closest ghost.

• the distance to the closest food pellet.

• the number of ghosts.

• is Pacman trapped? 0 or 1

With feature vectors, we can treat values of states and Q-states as linear value functions:

V (s) = w1 · f1(s)+w2 · f2(s)+ . . .+wn · fn(s) = w⃗ · f⃗ (s)

Q(s,a) = w1 · f1(s,a)+w2 · f2(s,a)+ . . .+wn · fn(s,a) = w⃗ · f⃗ (s,a)

where f⃗ (s) =
[

f1(s) f2(s) ... fn(s)
]T and f⃗ (s,a) =

[
f1(s,a) f2(s,a) ... fn(s,a)

]T represent the
feature vectors for state s and Q-state (s,a) respectively and w⃗ =

[
w1 w2 ... wn

]
represents a weight

vector. Defining difference as

difference = [R(s,a,s′)+ γ max
a′

Q(s′,a′)]−Q(s,a)

approximate Q-learning works almost identically to Q-learning, using the following update rule:

wi← wi +α ·difference · fi(s,a)

Rather than storing Q-values for each and every state, with approximate Q-learning we only need to store a
single weight vector and can compute Q-values on-demand as needed. As a result, this gives us not only a
more generalized version of Q-learning, but a significantly more memory-efficient one as well.

As a final note on Q-learning, we can reexpress the update rule for exact Q-learning using difference as
follows:

Q(s,a)← Q(s,a)+α ·difference

CS 188, Summer 2023, Note 18 7



This second notation gives us a slightly different but equally valuable interpretation of the update: it’s
computing the difference between the sampled estimated and the current model of Q(s,a), and shifting the
model in the direction of the estimate with the magnitude of the shift being proportional to the magnitude of
the difference.

Exploration and Exploitation
We’ve now covered several different methods for an agent to learn an optimal policy, and harped on the
fact that "sufficient exploration" is necessary for this without really elaborating on what’s really meant
by "sufficient". In the upcoming two sections, we’ll discuss two methods for distributing time between
exploration and exploitation: ε-greedy policies and exploration functions.

ε-Greedy Policies
Agents following an ε-greedy policy define some probability 0≤ ε ≤ 1, and act randomly and explore with
probability ε . Accordingly, they follow their current established policy and exploit with probability (1−ε).
This is a very simple policy to implement, yet can still be quite difficult to handle. If a large value for ε is
selected, then even after learning the optimal policy, the agent will still behave mostly randomly. Similarly,
selecting a small value for ε means the agent will explore infrequently, leading Q-learning (or any other
selected learning algorithm) to learn the optimal policy very slowly. To get around this, ε must be manually
tuned and lowered over time to see results.

Exploration Functions
This issue of manually tuning ε is avoided by exploration functions, which use a modified Q-value iteration
update to give some preference to visiting less-visited states. The modified update is as follows:

Q(s,a)← (1−α)Q(s,a)+α · [R(s,a,s′)+ γ max
a′

f (s′,a′)]

where f denotes an exploration function. There exists some degree of flexibility in designing an exploration
function, but a common choice is to use

f (s,a) = Q(s,a)+
k

N(s,a)

with k being some predetermined value, and N(s,a) denoting the number of times Q-state (s,a) has been
visited. Agents in a state s always select the action that has the highest f (s,a) from each state, and hence
never have to make a probabilistic decision between exploration and exploitation. Instead, exploration is
automatically encoded by the exploration function, since the term k

N(s,a) can give enough of a "bonus" to
some infrequently-taken action such that it is selected over actions with higher Q-values. As time goes on
and states are visited more frequently, this bonus decreases towards 0 for each state and f (s,a) regresses
towards Q(s,a), making exploitation more and more exclusive.

CS 188, Summer 2023, Note 18 8



Summary
It’s very important to remember that reinforcement learning has an underlying MDP, and the goal of re-
inforcement learning is to solve this MDP by deriving an optimal policy. The difference between using
reinforcement learning and using methods like value iteration and policy iteration is the lack of knowledge
of the transition function T and the reward function R for the underlying MDP. As a result, agents must
learn the optimal policy through online trial-by-error rather than pure offline computation. There are many
ways to do this:

• Model-based learning - Runs computations to estimate the values of the transition function T and the
reward function R and uses MDP-solving methods like value or policy iteration with these estimates.

• Model-free learning - Avoids estimation of T and R, instead using other methods to directly estimate
the values or Q-values of states.

– Direct evaluation - follows a policy π and simply counts total rewards reaped from each state
and the total number of times each state is visited. If enough samples are taken, this converges to
the true values of states under π , albeit being slow and wasting information about the transitions
between states.

– Temporal difference learning - follows a policy π and uses an exponential moving average with
sampled values until convergence to the true values of states under π . TD learning and direct
evaluation are examples of on-policy learning, which learn the values for a specific policy before
deciding whether that policy is suboptimal and needs to be updated.

– Q-Learning - learns the optimal policy directly through trial and error with Q-value iteration
updates. This an example of off-policy learning, which learns an optimal policy even when
taking suboptimal actions.

– Approximate Q-Learning - does the same thing as Q-learning but uses a feature-based represen-
tation for states to generalize learning.

• To quantify the performance of different reinforcement learning algorithms we use the notion of re-
gret. Regret captures the difference between the total reward accumulated if we acted optimally in
the environment from the beginning and the total reward we accumulated by running the learning
algorithm.

CS 188, Summer 2023, Note 18 9


