1 Readings

Benenti et al., Ch. 3.10
Stolze and Suter, Quantum Computing, Ch. 8.4
Nielsen and Chuang, Quantum Computation and Quantum Information, Ch. 6

2 Introduction

The problem is to search for an item in an unstructured database. For example, suppose you are given a telephone number in LA and need to find out who it belongs to. You will have to go through all the phone numbers and check the names of the registered owners in each case...

Searching an item in an unsorted database with size N costs a classical computer $O(N)$ running time, since on average $N/2$ entries need to be checked. Can a quantum computer search for a needle in a haystack much more efficiently than its classical counterpart? Grover, in 1996, affirmatively answered this question by proposing a search algorithm that consults the database only $O(\sqrt{N})$ times. In contrast to algorithms based on the quantum Fourier transform, with exponential speedups, the search algorithm only provides a quadratic improvement. However, the algorithm is quite important because it has broad applications, and because the same technique can in principle be used to improve solutions of NP-complete problems.

One might think of having better improvements over the search algorithm. However, it turns out that Grover’s search algorithm is optimal. At least $\Omega(\sqrt{N})$ queries are needed to solve the problem.

Grover’s algorithm uses parallelism and amplitude amplification. We will discuss the amplitude amplification aspect in detail in the next lecture. In the current lecture we will present a geometrical analysis of the quantum search algorithm.

2.1 The quantum oracle

Here’s the search problem: You are given a boolean function $f : \{1, \ldots, N\} \rightarrow \{0, 1\}$, and are promised that for exactly one $a \in \{1, \ldots, N\}$, $f(a) = 1$. Think of this as a table of size N, where exactly one element has value 1, and all the others are 0. f is effectively an oracle that can check/recognize the solution when this is given it as input. So f acts like a detector of the target solution. In the current analysis we shall assume that there is only 1 solution, but the arguments can be generalized to a finite number of solutions.

We construct a two register state, with the database register first and the oracle register second. Then our oracle acts as follows (cf. the Deutsch-Jozsa algorithm)

$$O|x\rangle|q\rangle = |x\rangle|q \oplus f(x)\rangle,$$

where we assume f can be computed classically in polynomial time. Then we can also apply the oracle with
1. the database register in superposition:
\[\sum_x \alpha_x |x\rangle |0\rangle \rightarrow \sum_x \alpha_x |x\rangle |f(x)\rangle \]

and

2. with the oracle register in superposition:
\[\sum_x \alpha_x |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \rightarrow \sum_x \alpha_x \left(\frac{|x\rangle |f(x)\rangle - |x\rangle |\overline{f(x)}\rangle}{\sqrt{2}} \right) \]
\[= \sum_x \alpha_x |x\rangle \left(\frac{|f(x)\rangle - |\overline{f(x)}\rangle}{\sqrt{2}} \right) \]
\[= \sum_x \alpha_x |x\rangle (-1)^{f(x)} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \]

Here \(\overline{f(x)} \) means the binary complement of \(f(x) \), i.e., if \(f(x) = 1 \), then \(\overline{f(x)} = 0 \). Note that we have used the same phase kick-back as in Deutsch-Jozsa to go from lines 2 to 3. (Check: if \(f(x) = 0 \) the oracle qubit is \(|0\rangle - |1\rangle = (-1)^{f(0)} (|0\rangle - |1\rangle) \), while if \(f(x) = 1 \) the oracle qubit is \(|1\rangle - |0\rangle = (-1)^{f(1)} (|0\rangle - |1\rangle) \).)

So the oracle marks the solutions to the search problem by a minus sign (no measurement).

2.2 Geometric analysis of search

Grover’s algorithm finds \(a \) in \(O(\sqrt{N}) \) steps. Consider the two dimensional subspace that consists of two states: \(|a\rangle \) and the uniform superposition \(|\psi_0\rangle = \sum \frac{1}{\sqrt{N}} |x\rangle \). Let \(\theta \) be the angle between \(|\psi_0\rangle \) and \(|e\rangle \), where \(|e\rangle \) is the vector that is orthogonal to \(|a\rangle \) (in the direction of \(|\psi_0\rangle \) in this subspace. See Figure 1). \(|a\rangle \) is the target and we can regard \(|\psi_0\rangle \) as the least biased initial state. So we want to increase \(\theta \) to go from \(|\psi_0\rangle \) to \(|a\rangle \). How do we accomplish this?

One way to rotate a vector is to make two reflections. In particular, we can rotate a vector \(|v\rangle \) by \(2\theta \) to the new vector \(|v1\rangle \) by first reflecting about \(|e\rangle \) and then reflecting about \(|\psi_0\rangle \). This transformation is also illustrated in Figure 1. The first reflection transforms an arbitrary vector \(|v\rangle \) to \(|v2\rangle \) and the second reflection transforms \(|v2\rangle \) to \(|v1\rangle \).

Each step of our algorithm is thus a rotation by \(2\theta \) (we discuss the implementation of the two rotations involved in a step below). This means that we need \(\frac{\pi/2}{2\theta} \) iterations for the algorithm to complete. Now, what is \(\theta \)?

\[\langle \psi_0 | a \rangle = \cos(\pi/2 - \theta) = \sin(\theta) \]

but

\[\langle \psi_0 | a \rangle = \frac{1}{\sqrt{N}} \sum_x \langle x | a \rangle = \frac{1}{\sqrt{N}} \delta_{aa} = \frac{1}{\sqrt{N}} \]

Then since \(\sin \theta \approx \theta \), we know that \(\theta \approx \frac{1}{\sqrt{N}} \). Thus, we need \(O(\sqrt{N}) \) iterations for the algorithm to complete. In the end, we get very close to \(|a\rangle \), and then with high probability, a measurement of the state yields \(a \).
Figure 1: To rotate $|v\rangle$ by 2θ to $|v_1\rangle$, we reflect around $|e\rangle$, reaching $|v_2\rangle$, and then reflect around $|\psi_0\rangle$.

Note that one must not iterate beyond this point. Subsequent iterations will rotate the vector $|v\rangle$ away from $|a\rangle$ again. For large N, we need to iterate $r = \pi \sqrt{N}/4$ times and the corresponding probability of error is $O(1 - \cos^2 \theta) = O(\sin^2 \theta) = O(N^{-1})$.

How do we implement the two reflections?

1. Reflection about $|e\rangle$ is easy. $|e\rangle$ is the vector orthogonal to $|a\rangle$ so all we need to do is flip the phase of the component of the database wavefunction in the direction of $|a\rangle$, i.e., we send any component $|a\rangle$ to $-|a\rangle$ and leave all other components as is. To accomplish this, we just act with the oracle:

$$O|x\rangle = \sum_x (-1)^{f(x)} \alpha_x |x\rangle$$

$$= \sum_{x \neq a} \alpha_x |x\rangle - \alpha_a |a\rangle$$

$$= \sum_x \alpha_x |x\rangle - 2\alpha_a |a\rangle$$

$$= \hat{O}_a = \hat{I} - 2|a\rangle\langle a| = R|a\rangle$$

2. What about the reflection about $|\psi_0\rangle$? This is just the zero vector in the Hadamard basis, so we can simply transform to this basis and then reflect. So we first apply H_2^n, which maps $|\psi_0\rangle \mapsto |00\ldots0\rangle$, then reflect around $|00\ldots0\rangle$, and finally, apply H_{2^n} to return to the original basis. The reflection about the zero vector can easily be seen to be given by

$$-O_0 = -\hat{I} + 2|0\rangle\langle 0|$$

by analogy with the above analysis of reflection about $|e\rangle$. The overall reflection about $|\psi_0\rangle$ is then given by the product of the three transformations: (shown for $N = 2^n$ here)
\[-D = H_N \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} H_N \]

\[= H_N \begin{pmatrix} -2 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} + I \]

\[= H_N \begin{pmatrix} -2 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} H_N + I \]

\[= \begin{pmatrix} -2/N & -2/N & \cdots & -2/N \\ -2/N & -2/N & \cdots & -2/N \\ \vdots & \vdots & \ddots & \vdots \\ -2/N & -2/N & \cdots & -2/N \end{pmatrix} + I \]

\[= \begin{pmatrix} -2/N + 1 & -2/N & \cdots & -2/N \\ -2/N & -2/N + 1 & \cdots & -2/N \\ \vdots & \vdots & \ddots & \vdots \\ -2/N & -2/N & \cdots & -2/N + 1 \end{pmatrix} \]

You can check this using the expressions we derived for the Hadamard gate in previous lectures and homeworks. Note that for large \(N \), the matrix \(D \) (this is referred to as the diffusion transform and will be discussed in detail in the next lecture), has diagonal elements approx equal to \(-1 \pm 2/N\) and very small, positive and constant off-diagonal elements \((2/N)\). So in each step the amplitude of every basis state contributes by a small amount to all other basis states. This is a generalization of the phenomenon of diffusion on a lattice.

The next effect of \(D \) can also be written as

\[D = -\langle I - 2|\psi_0\rangle\langle\psi_0| = -R|\psi_0\rangle \]

which is now very similar to the form of the first reflection, but with a minus sign.

To make one iteration step we combine the two reflections, yielding the Grover operator

\[G = DO_a = -R|\psi_0\rangle\langle\psi_0|R|a\rangle. \]

We apply this Grover operator \(O(\sqrt{N}) \) times to rotate from \(|\psi_0\rangle \) (close to \(|e\rangle \)) to \(|a\rangle \).

What about efficiency of implementation? Observe that \(D \) is expressed as the product of three unitary matrices (two Hadamard matrices separated by a conditional phase shift matrix). Therefore, \(D \) is also unitary. Regarding the implementation, both the Hadamard and the conditional phase shift transforms can be efficiently realized within \(O(n) \) gates.