Quantum Computing With Addressable Optical Lattices: Error characterization, correction & optimization

Travis Beals

Simon Myrgren, Jiri Vala, David S. Weiss¹, K. Birgitta Whaley

¹ Pennsylvania State University
Overview

- Create an “optical lattice” standing wave potential using two interfering laser beams per spatial dimension.
- Initialize the lattice by putting one 133Cs atom in each lattice site.
- Perform single qubit gates by “addressing” individual sites with a focused laser, then use μ-wave pulse.
- Do two-qubit CPHASE gate by exciting neighbouring atoms to Rydberg states, and using dipole-dipole coupling.
Why addressable optical lattices?

Good balance between isolation from environment and control

Satisfies the DiVincenzo criteria for quantum computing

- Reasonably scalable (> 10^3 qubits)
- Initialization
- Long coherence times
- Universal gates
- Single qubit measurements

Good news, everyone!

(This is not David DiVincenzo)
The Road Ahead

where we’ve been

- Large lattice spacing (CO₂ laser) with Cs atoms
- Imaging of individual lattice sites
- Site-specific operations using addressing laser
- Single qubit gates, qubit readout with Cs

where we’re going

- Creating perfectly filled addressable lattice
- Two qubit Rydberg dipole-dipole gate
Experimental demonstration: Single site addressability

Scheunemann et al (PRA 62 051801) make a 1D optical lattice with bunches of Cs atoms, and demonstrate the following:

- Large lattice spacing (~ 5 µm) optical lattice with Cs
- Single site imaging
- Single site operations (e.g. addressability)

Groups of Cs atoms trapped in a 1-D lattice potential
Image from PRA 62 051801
Experimental demonstration: Single qubit gates

Schrader et al (PRL 93 150501) make a 1D optical lattice with a string of Cs atoms, and demonstrate several key requirements for quantum computation:

- Single qubit state flip (using magnetic field for addressing)
- Qubit readout
- Initialization
- Long storage times (25 s)

Cesium atoms trapped in a 1-D lattice potential
Image from PRL 93 150501
How does it work?

Creating the lattice
Initialization & preparation
Single qubit gates
Two qubit gates
Creating the lattice

- Can use a CO$_2$ laser ($\lambda = 10.6$ μm) to produce a lattice with spacing $a = 5.3$ μm.

- Or, can use a blue-detuned laser (e.g. $\lambda < 852$ nm) with an angle θ between beams to give a lattice of spacing $a = \lambda / (2 \sin[\theta / 2])$.

- Using three pairs of beams (with a slightly different wavelength for each pair to avoid interference), create a 3D optical lattice.

Bonus! 50% more numbers and equations!

200 mW beams at 800 nm could produce a $20 \times 20 \times 20$ lattice with $a = 5$ μm, trap depths of 170 μK and very low ($\sim 10^{-4}$ Hz) photon scattering rates.
Load lattice from a MOT (magneto-optic trap), leaving several atoms in each lattice site.

Laser cool atoms, which causes atoms to be lost in pairs via photon-assisted collisions (PRL 82 2262, Nature 411 1024).

- After a few ms, half the sites have one atom, the other half have no atoms.

Image the lattice plane-by-plane with high numerical aperture lens while cooling in optical molasses.

Cool to vibrational ground state using 3D Raman sideband cooling (PRL 84 439).

Need to compact the lattice—rearrange atoms to create a smaller, perfectly-filled lattice.
How do we selectively move atoms from site to site?

- “Tag” atoms to be moved
- Shift lattice potential to right for tagged atoms, to left for untagged atoms
- Untag all atoms
- Restore lattice potential

Can tag atoms very fast, so we can effectively move an arbitrary number of atoms (in the same direction) in parallel

\[U(x) \propto 2 \cos(\theta) \cos\left(\frac{2\pi x}{a}\right) + \frac{mF}{F} \sin(\theta) \sin\left(\frac{2\pi x}{a}\right) \]

The (1D) lattice potential
Initialization & preparation (3)

Compact lattice via a divide-and-conquer algorithm:
I. Partition in half
II. Balance the two halves
III. For each half, apply (I)
IV. When all rows are balanced, compact rows to right

For a d-dimensional lattice of \(n^d \) atoms, takes \(O(n) \) steps (each step takes \(10^{-2} \) to \(10^{-3} \) s)

Can re-image and repeat if first iteration does not yield perfect lattice
Single qubit gates (1)

How do we perform a gate on a single qubit without disturbing neighbouring atoms?
Single qubit gates (2)

- Use focused addressing beam at “magic wavelength” (~880 nm) to shift $m_F \neq 0$ levels at target site while leaving $m_F = 0$ levels & atoms untouched.

- Use a microwave pulse to flip the atom’s state from $m_F = 0$ qubit state to $m_F = 1$ temporary state,

- Use another pulse to flip between temporary states.

- A final pulse flips back to a $m_F = 0$ qubit state.
Single qubit gates (3)

- Target atom sees large AC Stark Shift of $m_F=1$ levels, whereas neighbouring atom sees little or no Stark shift.
- Microwave pulse is on-resonant for target atom, driving transition.
- Neighbour atom experiences small, fast off-resonant Rabi cycles.
- Can in principle achieve high gate fidelity (~ 0.99999) for fast gates ($\sim 10 - 100 \mu s$).
Two qubit gates (1)

A controlled-phase (CPHASE) gate together with local operations is universal for quantum computation.

To implement CPHASE,

- Apply a π pulse to the first atom to bring it to a Rydberg state
- Apply a 2π pulse to the second atom
- Apply another π pulse to the first atom

Get a relative phase change, as shown in the table

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>0\rangle$</td>
<td>$e^{i(\pi-\varphi)}$</td>
</tr>
<tr>
<td>$</td>
<td>1\rangle$</td>
<td>$e^{i\pi}$</td>
</tr>
</tbody>
</table>

Phase as a function of input

φ is small

Schematics for each of four possible gate inputs

Graphic from Jaksch et al. 2000. PRL 85 2208.
Challenges in Scalability
characterizing errors via
analytical methods
simulations
qubit loss
detection
correction
Characterizing Errors (1)

Some sources of error:

- Single qubit gates
- Two qubit gates (quant-ph/0502051, PRA 67 040303)
- Qubit loss
- Spontaneous emission / scattered photons

Can describe some errors via analytical techniques

Use **qsims** to perform numerical simulations of gates to characterize errors and perform optimization
An analytical example: undesirable off-resonant transitions in single qubit gates

- Even though they are detuned by \(-1\) MHz, non-target atoms have a very small probability of undergoing an off-resonant transition when a single qubit gate is applied to other atoms.

- Probability is described by

\[P_{|0\rangle \rightarrow |1\rangle} \approx \frac{\Omega^2}{\Omega^2 + \Delta^2} \sin^2 \left(\sqrt{\Omega^2 + \Delta^2} \frac{T}{2} \right) \]

- We can minimize this by appropriate choice of the gate time, \(T\), but are limited by our pulse timing resolution, \(\delta_T\), and obtain

\[P_{|0\rangle \rightarrow |1\rangle} \approx \left(\frac{\pi \delta_T}{2 \frac{1}{T}} \right)^2 \]

- If we have a lattice of \(n^2\) atoms, but can only do \(n\) single qubit gates simultaneously, this will ultimately limit scalability (although limit will be large).
qsims: Quantum Simulation Software

- We need a way to simulate and study quantum gates with high precision—a Quantum Simulation Software (qsims) package
- qsims is free, GPL’d, software developed by T. R. Beals
- qsims can simulate a wide range of Hamiltonians, and allows for nearly arbitrary time dependence
- http://sf.net/projects/qsims/
qsims uses a discretized grid to represent the spatial wavefunction of an atom, with one grid for each internal state.

Momentum portion of Hamiltonian is calculated using R. Kosloff’s pseudospectral (a.k.a. Fourier grid) method.

Time propagation is accomplished with a Chebychev polynomial expansion of the Schrodinger propagator.

Chebychev polynomials: $T_0 = 1$, $T_1 = x$, $T_2 = -1 + 2x^2$, $T_3 = -3x + 4x^3 \ldots$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}$$
Simulation: bad single qubit gate

Final state appears to have entanglement between internal & vibrational degrees of freedom.

Can do numerical optimization of gate parameters

Study effects that are analytically intractable

Trap depth = 100 μK, stark shift = 0.2 MHz, coupling = 6.579 kHz, gate time = 0.11 ms, beam waist = 0.6 μm. Fidelity = 0.8676.
Qubit loss detection & correction

- Need to be able to perform Quantum Non-Demolition (QND) measurements
- QND determines presence of an atom without disturbing its state
- When atom loss is detected, replace lost atoms with spares using “optical tweezers”
- Perform standard error correction to restore state
In the Rydberg CPHASE gate, a missing control qubit acts as $|1\rangle$.

Use this to perform qubit loss (or leakage) error detection without disturbing qubit state.

Quantum non-demolition qubit loss-detecting circuit

| Input | $|0\rangle$ | $|1\rangle$ | $|X\rangle$ (missing atom) |
|-------|------------|------------|--------------------------|
| Ancilla | $|1\rangle$ | $|1\rangle$ | $|0\rangle$ |
Qubit loss detection (2)

 Downsides of loss detection circuit:

- Need an ancilla qubit
- Hard to do in parallel

 Alternate idea (borrowed from ion trap quantum computing)—store qubit state temporarily in motional degrees of freedom of atoms

- Can then perhaps “look” at the atoms without disturbing qubit state
- Could use magnetic field to address & image an entire plane of atoms at a time
- Still need to work out details
Summary

what we’ve seen

- Initializing & loading the lattice
- Single & two qubit gates
- Analytical & numerical characterization of errors
- Qubit loss detection & correction

what we haven’t

- Coupling photons to optical lattices
- Cluster state computing
- Simulating physical Hamiltonians
- Topological quantum computing
Acknowledgments

Thank you to Barry Sanders and the Institute for Quantum Information Science for travel support.