Adiabatic Quantum Computing

C/CS/PHY 191
University of California, Berkeley

Vlad Goldenberg
Maciek Sakrejda
Outline

• Quantum Adiabatic Theorem
• Adiabatic Theorem applied to Quantum Computation
• Actual Implementation in “theory”
• Simulation using classical computing
• Object Oriented approach – JAVA
What is it?

• Based on *Adiabatic Theorem* of QM: A quantum system in its ground state will remain in its ground state provided that the hamiltonian H is varied *slowly enough*.

• Also, a quantum system whose energies are quantized that starts in the nth energy state will exist in the nth energy state provided that the hamiltonian is varied *slowly enough*.

• Vary the Hamiltonian slowly from an initial to final state so that it acts as though a unitary transformation occurred on the initial state, bringing it to a final state during some time T.
Implementation

- Initialize register to desired input qubits. This is the initial state with which the computer will calculate the output state.
- Vary the Hamiltonian slowly toward the final Hamiltonian whose eigenstates encode the desired final states.

Single qubit gate:
Let |i>, |i’> be the basis eigenstates input. In non-adiabatic quantum computation, we apply a gate, which is just a unitary transformation, U_t to the basis states to get the output states:

$$U_t |i\rangle = |f\rangle$$
$$U_t |i’\rangle = |f’\rangle$$
In order to manipulate qubits using the adiabatic theorem, the Hamiltonian must be varied slowly from the initial to the final state. Let T be the final time, at the end of the process. Let t be the independent time variable. Define $s = t/T$ such that during the evolution of the system, $0 < s < 1$. Then the Hamiltonian is a function of s such that:

$$H(s) = (1 - s)H_0 + sH_1$$

We can think of $\{|i\rangle, |i'\rangle\}$ and $\{|f\rangle, |f'\rangle\}$ as eigenbases of some initial and final Hamiltonians, respectively. Call these Hamiltonians H_0 and H_1, respectively. Then we can say:

$$H_0|i\rangle = E_i|i\rangle$$
$$H_0|i'\rangle = E_{i'}|i'\rangle$$
$$H_1|f\rangle = E_f|f\rangle$$
$$H_1|f'\rangle = E_{f'}|f'\rangle$$
Implementation

We see that if we apply $H(s)$ on the input state until we reach $s = 1$, we will in effect be applying the unitary transformation U_t on the input state.

The form of $H(s)$ suggested above is not always the one adequate for the implementation, as for example the two qubit CNOT gate, which requires the form:

$$H(s) = (1 - s)H_0 + sH_1 + As(1 - s)H_{01}$$

(Ali, Andrecut)

With $A=1$. This is necessary to meet the condition for the adiabatic theorem:

$$\delta_{\text{min}} = \min[E_j(s) - E_k(s)]$$

$$\Delta_{\text{max}} = \max_{s \in [0,1]} \left| \frac{d}{ds} H(s) \right|$$

$$T = \frac{\Delta_{\text{max}}}{\varepsilon \delta_{\text{min}}^2}$$
Discrete Simulation

\[H(0)|i> = E(0)|i> \]
\[H(n)|t> = E(n)|t> \]
\[H(f)|f> = E(f)|f> \]

\[H(0)|i'> = E'(0)|i'> \]
\[H(n)|t'> = E'(n)|t'> \]
\[H(f)|f'> = E'(f)|f'> \]
Classical Simulation

Object Oriented Programming

• Logic divided into components (objects)
• Each object has
 – State information about itself
 – Functions it can perform (methods)
• Core functionality is implemented through a set of objects interacting with each other
Classical Simulation

• Adiabatic quantum simulation requires two main components
 – N-Qubit states
 – N-Qubit operators
• Main functionality is a set of interactions between these
Classical Simulation

- N-Qubit States

```java
public QState(int n) {
    numQubits = n;
    coeffs = new Complex[1 << n];
}

public QState(Complex [] coeffs) {
    this.coeffs = coeffs;
    int i = 0;
    // Calculates the log (base 2) of the length of the array--i.e.,
    // the number of qubits represented by the array of coefficients.
    for (int temp = 1; (temp & coeffs.length) == 0; temp <<= 1, ++i);
    this.numQubits = i;
}
```
public QState tensor(QState that) {
 QState ret = new QState(this.numQubits + that.numQubits);
 for (int i = 0; i < this.coeffs.length; ++i) {
 for (int j = 0; j < that.coeffs.length; ++j) {
 ret.coeffs[(i << that.numQubits) + j] =
 this.coeffs[i].times(that.coeffs[j]);
 }
 }
 return ret;
}
Classical Simulation

• Next steps
 – Finish implementing Operator objects
 – Implement eigenvalue code
 • External library; probably Colt - Open Source Libraries for High Performance Scientific and Technical Computing in Java
 – Implement top-level logic
Classical Simulation

• Scope
 – Quantum properties are only simulated
 – Performance
 – Helpful in understanding system, but not very useful beyond this