SUPERCONDUCTING QUANTUM BITS

IRFAN SIDDIQI

Quantum Nanoelectronics Laboratory

Physics Department, UC Berkeley
Materials Sciences Division, LBNL

CLASSICAL vs. QUANTUM INFORMATION

Classical equilibrium states

Quantum energy levels

\[|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle \]

Write: 0 OR 1
Read: 0 OR 1

Write: |0\rangle AND |1\rangle
Read: |0\rangle OR |1\rangle
CHOSING A QUANTUM TWO-LEVEL SYSTEM

Trapped Ions
(NIST)

Nuclear Magnetic Resonance
(IBM/MIT)

Superconducting Circuits
(SACLAY/YALE)

& Spins in Semiconductors, NV Centers in Diamond, e⁻¹ on LHe, Graphitic Circuits, Magnetic Molecules, etc

CAN ALL BE DESCRIBED (APPROXIMATELY) BY A TWO LEVEL HAMILTONIAN
QUANTUM INFORMATION SYSTEMS

- electrical access
- readily integrable
- engineered hamiltonian with "LEGO" blocks: capacitors, inductors and Josephson junctions

A.J. Leggett, 1982
HMMM... THE ENVIRONMENT!

Trapped Ions

- weak coupling to environment
- Long coherence times
- Weak qubit-qubit coupling (slow gates)

Superconducting Circuits

- strong coupling to environment
- Short coherence times
- Strong qubit-qubit coupling (fast gates)
SUPERCONDUCTING QUBITS

Electrical Circuit

“Artificial Atom”

Single Spin ½ NMR

|1> |0>
HOW CAN WE MAKE A CIRCUIT ATOM-LIKE?

Electrical Circuit

“Artificial Atom”
HOW CAN A SUPERCONDUCTING CIRCUIT BECOME QUANTUM-MECHANICAL AT THE LEVEL OF CURRENTS AND VOLTAGES?

SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT

MICROFABRICATION

\[L \sim 3\text{nH}, \quad C \sim 10\text{pF}, \quad \omega_c/2\pi \sim 1\text{GHz} \]
LC OSCILLATOR AS A QUANTUM CIRCUIT

\[[\phi, q] = i\hbar \]

\[\phi = LI \]

\[q = CV \]
LC OSCILLATOR AS A QUANTUM CIRCUIT

\[
[\phi, q] = i\hbar
\]

\[
\phi = LI
\]

\[
q = CV
\]

\[\hbar \omega_r > k_B T\]

1GHz 10mK
LC OSCILLATOR AS A QUANTUM CIRCUIT

\[[\phi, q] = i\hbar \]

CANNOT STEER THE SYSTEM TO AN ARBITRARY STATE
THE JOSEPHSON TUNNEL JUNCTION: NON-LINEARITY AT ITS FINEST!

\[I(\delta) = I_0 \sin(\delta) \]

(NON-LINEAR INDUCTOR)

\[U(\delta) = -\frac{\hbar}{2e} I_0 \cos(\delta) \]
JOSEPHSON JUNCTION QUBITS

- **Phase Difference**
 - δ

- **Current Qubit**
- **Charge Qubit**
- **Flux Qubit**

Mathematical expressions:
- $N_g = \frac{C_g U}{2e}$

\[\hat{H} = \frac{E_{el}}{2} \hat{\sigma}_x - \frac{E_j}{2} \hat{\sigma}_z \]

\[\hat{H}_{el} = 4E_c \left(\hat{n} - \frac{C_g U}{2e} \right)^2; \quad E_c = \frac{e^2}{2(C_g + C_j)} \]

\[\hat{H}_j = -E_j \cos \hat{\theta}; \quad E_j = \varphi_0 i_0 \]
\[\hat{H} = 4E_c (\hat{n} - N_g)^2 - 2E_j \cos\left(\frac{\Phi}{2\Phi_0}\right) \cos\hat{\theta} \]
READOUT STRATEGIES

charge

\[Q_k \propto \frac{\partial E_k}{\partial N_g} \]

CPB + SET

capacitance

\[C_k \propto \frac{\partial^2 E_k}{\partial N_g^2} \]

cQED Qubit

current

\[I_k \propto \frac{\partial E_k}{\partial \Phi} \]

Quantronium

inductance

\[L_k \propto \left(\frac{\partial^2 E_k}{\partial \Phi^2} \right)^{-1} \]

Quantronium + JBA

- work @ sweet spot
- readout @ sweet spot

Quantronium + JBA

- work @ sweet spot
- readout @ sweet spot

"sweet spot"
CAN’T READ CHARGE OR CURRENT!

\[
\begin{align*}
|0\rangle & \quad \left\{ \begin{array}{l}
Q_1 - Q_0 = 0 \\
C_1 - C_0 \neq 0
\end{array} \right.
\quad \text{charge noise}

|1\rangle & \quad \left\{ \begin{array}{l}
Q_1 - Q_0 \neq 0 \\
C_1 - C_0 = 0
\end{array} \right.
\quad \text{flux noise}
\end{align*}
\]

\[
\begin{align*}
I_1 - I_0 & \neq 0 \\
L_1 - L_0 & \cong 0
\end{align*}
\]

\[
\begin{align*}
I_1 - I_0 & = 0 \\
L_1 - L_0 & \neq 0
\end{align*}
\]
DISPERSIVE READOUT

- qubit state modifies oscillator frequency
- measure susceptibility, not loss
NON-LINEAR INDUCTIVE READOUT: QUANTRONIUM

Write

JJ=non-linear inductor

Read

Island
THE JOSEPHSON OSCILLATOR

\[I(\delta) = I_0 \sin(\delta) \]
\[V(t) = \frac{\hbar}{2e} \frac{d}{dt} (\delta) \]
\[U(\delta) = -\frac{\hbar}{2e} I_0 \cos(\delta) \]

Nonlinear Oscillator

\[L_J = \frac{V(t)}{\frac{dI}{dt}} = \frac{\hbar}{2e} \frac{1}{I_0} \frac{1}{\cos(\delta)} \]
\[\omega_p = \frac{1}{\sqrt{L_J C}} \]
COMBINING HIGH SENSITIVITY & SPEED

LINEAR OSCILLATOR (review)

Q sets sensitivity

NON-LINEAR OSCILLATOR

kT sets sensitivity!
JOSEPHSON BIFURCATION AMPLIFIER

\[i_{rf} \sin[\omega t + \phi(i_{rf}, I_0)] \]

\[i_{rf} \sin[\omega t] \]

\[\text{INPUT} \]

\[I_0 \]

\[\text{OUTPUT} \]

\[50\Omega \]

\[\text{JBA: INPUT COUPLES TO } I_0 \]

- \(\phi(i_{rf}, I_0) \)
- \(P_{\text{switch}} (i_{rf}, I_0) \)
- minimal backaction
- no on-chip dissipation

\[\omega = 0.9 \omega_p \]

\[\phi \text{ (deg)} \]

\[\phi < 0 \]

\[I_0' < I_0 \]

\[I_0 \]

\[i_{rf} / I_0 \]
Essential Nonlinearities in Hearing

V. M. Eguiluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco

Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), E-07071 Palma de Mallorca, Spain
Laboratory of Mathematical Physics, The Rockefeller University, 1230 York Avenue, New York, New York 10021
Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021
Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021

(Received 23 September 1999)
THE CHALLENGE OF THE MICROWAVE EAR

\[T = 10 \text{ mK} \]
\[\nu = 1-20 \text{ GHz} \]
$T = 10 \text{ mK}$
$\nu = 1-20 \text{ GHz}$
SWITCHING DYNAMICS: TESTING THE “METER”

- histogram reflected phase ϕ
 - record in 30ns
 - repeat at 4 MHz

- identify “meter” states

- hysteresis: sample & hold!
QUANTRONIUM with BIFURCATION READOUT

QUBIT CONTROL PULSE SEQUENCE (~ 20 GHz)

QUBIT STATE ENCODED IN REFL. PULSE PHASE ϕ

READOUT PROBING PULSE (~ 1 GHz)
SPECTROSCOPIC FINGERPRINT

WEAKLY EXCITING PULSE, ν

READOUT

P_{switch}

ν (GHz)

$\nu_{\text{sweet spot}} = 18.984 \text{ GHz}$
$\nu = \nu_{\text{sweet spot}}$

$\Delta \nu = -100 \text{MHz}$

$\Delta \nu = +100 \text{MHz}$
EXCITED STATE LIFETIME – T_1

Exponential decay, $T_1 = 1\text{--}5 \, \mu\text{s}$

$T_1 >> \text{readout time}$

Prepare qubit in $|1\rangle$ state

$|0\rangle$

$|1\rangle$

π

READOUT

t_{wait}

Graph showing exponential decay with t_{wait} (μs) on the x-axis and P_{switch} on the y-axis.
RABI OSCILLATIONS

32 million measurements
~ 10 min (dead time ~0.2 sec)
RAMSEY FRINGES

$T_2 = 300\text{ns}$

P_{switch} vs $\Delta t (\text{ns})$
QUANTUM NON-DEMOLITION READOUT?

Measure once, vary time delay

\[\pi \quad \rightarrow \quad t_{\text{wait}} (\mu s) \quad \rightarrow \quad \text{Time} \]

Measure multiple times

\[\pi \quad \rightarrow \quad \text{Time} \]

- **Variable Delay**
- **Multi Pulse**

Graph showing the decay of \(P_{|1\rangle} \) over time with two different delay scenarios.
READOUT INDUCES LOSSES

VARY TEST PULSE

\[\pi \]

READOUT PULSE

\[\bar{p}_{|1\rangle} \]

GROUND STATE

\[U_{rf} \]

\[i_{rf} \]

\[\bar{p}_{|1\rangle} \]

TIME (ns) 2000

EXCITED STATE

\[U_{rf} \]

\[i_{rf} \]

\[\bar{p}_{|1\rangle} \]

T_1 decay

TIME (ns) 2000

Readout loss
BALANCING ZEEMAN & STARK SHIFTS

\[\Phi/\Phi_0 \]

\[N_g \]

\[V_{01} \text{ (GHz)} \]

\[P_{\ket{1}} \]

\[I_{\text{rf}} \text{ (nA)} \]

COMPENSATION PULSE

READOUT PULSE
CONCLUSIONS

SUPERCONDUCTING QUANTRONIUM QUBIT

$T_1 \sim 1-5 \mu s$, $T_2 \sim 0.5 \mu s$, $T_{\pi} \sim 1\text{ns}$

DISPERSSIVE MEASUREMENT: NO ENERGY LEFT BEHIND

FAST MEASUREMNT: MEASURE 30ns, RECORD 100ns

MINIMAL DEAD TIME: REPETITION RATE SET BY T_1

NON-INVASIVE: CAN TURN READOUT OFF

SINGLE SHOT: FIDELITY 67%
 VISIBILITY 87%

→ TAILOR MEASUREMENT TO MINIMIZE LOSSES