1 Readings

Benenti, Casati, and Strini:
Classical circuits and computation Ch. 1.2, 2.6
Quantum Gates Ch. 3.2-3.4

2 Unitary Operators

A postulate of quantum physics is that quantum evolution is unitary. That is, if we have some arbitrary quantum system U that takes as input a state $|\phi\rangle$ and outputs a different state $U|\phi\rangle$, then we can describe U as a unitary linear transformation, defined as follows.

If U is any linear transformation, the adjoint of U, denoted U^\dagger, is defined by $(U\vec{v},\vec{w}) = (\vec{v},U^\dagger\vec{w})$. In a basis, U^\dagger is the conjugate transpose of U; for example, for an operator on \mathbb{C}^2,

$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow U^\dagger = \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}.$$

We say that U is unitary if $U^\dagger = U^{-1}$. For example, rotations and reflections are unitary. Also, the composition of two unitary transformations is also unitary (Proof: U,V unitary, then $(UV)^\dagger = V^\dagger U^\dagger = V^{-1}U^{-1} = (UV)^{-1}$).

Some properies of a unitary transformation U:

- The rows of U form an orthonormal basis.
- The columns of U form an orthonormal basis.
- U preserves inner products, i.e. $(\vec{v},\vec{w}) = (U\vec{v},U\vec{w})$. Indeed, $(U\vec{v},U\vec{w}) = (U|\vec{v}\rangle)^\dagger U|\vec{w}\rangle = \langle \vec{v}|U^\dagger U|\vec{w}\rangle = \langle \vec{v}|\vec{w}\rangle$. Therefore, U preserves norms and angles (up to sign).
- The eigenvalues of U are all of the form $e^{i\theta}$ (since U is length-preserving, i.e., $(\vec{v},\vec{v}) = (U\vec{v},U\vec{v})$).
- U can be diagonalized into the form

$$\begin{pmatrix} e^{i\theta_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{i\theta_d} \end{pmatrix}.$$

3 Schrödinger’s Equation

Schrödinger’s equation is the equation of motion which describes the evolution in time of the quantum state.

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H |\psi\rangle.$$
Here \hbar is a constant (called Planck’s constant – we’ll usually assume $\hbar = 1$), and H is a linear Hamiltonian which is Hermitian, $H^\dagger = H$. Equivalently, H has an orthonormal set of eigenvectors $|\psi_i\rangle$, all with real eigenvalues λ_i: $H|\phi_i\rangle = \lambda_i|\phi_i\rangle$.

For those of you who are familiar with Schrödinger’s equation, the unitarity restriction on quantum gates is simply the time-discrete version of the restriction that the Hamiltonian is Hermitian. This is a particular instance of the general relation between a unitary operator U and a Hermitian operator A

$$U = e^{iA},$$

which follows from matrix algebra since $U^\dagger = \exp(-iA^\dagger) = \exp(-iA)$ and hence $UU^\dagger = 1$.

We will now prove explicitly that if the system satisfies Schrödinger’s equation, then its evolution in discrete time is described by a unitary operator and determine this operator in terms of the eigenvalues of H. (We will assume that H is time independent.)

Write $|\psi(t)\rangle$ in the basis of eigenvectors of H:

$$|\psi(t)\rangle = \sum_j a_j(t)|\phi_j\rangle$$

$$\Downarrow$$

$$i\hbar \frac{d\Sigma a_j|\phi_j\rangle}{dt} = H\Sigma a_j|\phi_j\rangle = \Sigma a_j \lambda_j|\phi_j\rangle$$

$$\Downarrow$$

$$i\hbar \frac{da_j}{dt} = \lambda_j a_j$$

$$\Downarrow$$

$$a_j(t) = e^{\frac{i}{\hbar} \lambda_j t} a_j(0)$$

$$\Downarrow$$

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar} \lambda_j t} a_j(0)|\phi_j\rangle$$

We get that the change after a discrete time difference is unitary:

$$|\psi(t)\rangle = \begin{pmatrix} e^{-\frac{i}{\hbar} \lambda_1 t} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & e^{-\frac{i}{\hbar} \lambda_d t} \\ \end{pmatrix} \begin{pmatrix} a_0 \\ \vdots \\ a_d \end{pmatrix} = U(t)|\psi(0)\rangle$$

In this basis, $U(t)$ is diagonal.

4 Quantum Gates

We already had some simple examples of unitary transforms, or “quantum gates”. Here are most of the common ones you will encounter.
4.1 One-qubit gates:

- Hadamard Gate.

 \[H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \]

 \[H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle \]

 \[H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |-\rangle \]

 The Hadamard Gate is one of the most important gates. Note that \(H^\dagger = H \) since \(H \) is real and symmetric – and \(H^2 = I \).

 In the complex plane \(H \) can be visualized as a reflection around \(\pi/8 \), or a rotation around \(\pi/4 \) followed by a reflection.

 On the Bloch sphere \(H \) can also be visualized in several ways. One is a rotation of \(\pi/2 \) about the \(y \)-axis, followed by reflection in the \(x-y \) plane (see Nielsen and Chuang, p.). Another is a rotation of \(\pi \) about the axis \((1/\sqrt{2}, 0, 1/\sqrt{2}) \) (Benenti, p. 111).

 Note the action of \(H \) on larger number of qubits:

 \[H \otimes H |00\rangle = H^\otimes 2 |00\rangle = |00\rangle + |01\rangle + |10\rangle + |11\rangle \]

 \[H^\otimes n |00...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle \]

 Thus \(H^\otimes n \) produces an equal superposition of all computational basis states.

- Rotation Gate. This rotates in the complex plane by \(\theta \).

 \[R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \]

- NOT Gate, also known as bit flip gate, or X (Pauli X). This flips a bit from 0 to 1 and vice versa.

 \[NOT = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

- Phase Flip, also known as Z (Pauli Z).

 \[Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

 The phase flip is a NOT gate acting in the \(|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \) basis. Indeed, \(Z|+\rangle = |-\rangle \) and \(Z|-\rangle = |+\rangle \).

- General Phase Gate, \(R_x(\delta) \).

 \[R_x(\delta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\delta} \end{pmatrix} \]

 Clearly \(Z = R_x(\pi) \). There are several other special phase gates that are commonly used: \(S = R_x(\pi/2), T = R_x(\pi/4) \). The latter is sometimes referred to as the \(\pi/8 \) gate.

 \[S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \quad T = \pi/8 = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} = e^{i\pi/8} \begin{pmatrix} e^{-i\pi/8} & 0 \\ 0 & e^{i\pi/8} \end{pmatrix} \]
Phaseflips and bitflips are related by conjugation.

Conjugation of X by H means premultiplying X by H^{-1} and postmultiplying it by H. But $H = H^{-1}$.

Claim: $HXH = Z$. See Figure 1.

We can prove this by multiplying out the matrices, or by making use of the decomposition of H into an X and a Z gate:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \left[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right] = \frac{X+Z}{\sqrt{2}}$$

Then

$$\left(\frac{X+Z}{\sqrt{2}} \right) X \left(\frac{X+Z}{\sqrt{2}} \right) =$$

$$\left[\begin{bmatrix} \frac{X+Z}{\sqrt{2}} \\ \frac{X^2+XZ}{\sqrt{2}} \end{bmatrix} \right] \left[\begin{bmatrix} \frac{X+Z}{\sqrt{2}} \\ \frac{I+XZ}{\sqrt{2}} \end{bmatrix} \right] =$$

$$\frac{XI+XXZ+XZ+ZXZ}{2} =$$

$$\frac{X+Z+Z^2-Z}{2} = Z$$

Conversely, $HZH = X$ (Figure 2). Prove this for yourself.

Any unitary operation on a single qubit can be constructed with various combinations of gates:

$H, R_z(\delta)$, e.g.,

$$R_z(\pi/2 + \phi)HR_z(\theta)H\langle 0 \rangle = e^{i\theta/2} (\cos \theta \langle 0 \rangle + e^{i\phi} \sin \theta \langle 1 \rangle)$$

$H, X, T = R_z(\pi/4)$

X, Y, Z (Euler rotations)