The webpage from Fall semester 2008 can be found here

Lectures: Tuesday/Thursday 12:30-2 in 70 Evans Hall

Office hours: M, F 1.30-2.30 in 219 Gilman

whaley@berkeley.edu

Office hour: Thursday 11-12 in 410 Hearst Mining Building

dgorman@berkeley.edu

- Homework 1 [pdf] due Friday 9/11]

- Homework 2 [pdf] due Monday 9/21]

- Homework 3 [pdf] due Monday 9/28]

- Homework 4 [pdf] due Monday 10/5]

- Homework 5 [pdf] due Friday 10/16]

- Homework 6 [pdf] due Monday 10/26]

Date | Topic |
Notes | |

1 | 8/27 | Introduction, Quantum States | [pdf] |

2 | 9/01 | Basic Principles of QM, Qubits | [pdf] |

3 | 9/03 | Measurements, Multiple Qubits | [pdf] |

4 | 9/8 | Physical Qubits, EPR | [pdf] |

5 | 9/10 | Teleportation | [pdf] |

6 | 9/15 | Superdense Coding, No Cloning | [pdf] |

7 | 9/17 | Quantum Cryptography | [pdf] |

8 | 9/22 | Unitaries and Quantum Gates | [pdf] |

9 | 9/24 | Universality, Solovay-Kitaev, Complexity | [pdf] |

10 | 9/29 | Reversible Computing, Randomized Computation, Deferred Measurements | [pdf] |

11 | 10/01 | Deutsch and Deutsch-Josza algorithms | [pdf] |

12 | 10/06 | Quantum Mechanics in a Nutshell | [pdf] |

13 | 10/08 | Mixed States and Density Matrix, Entanglement measures | [pdf] |

14,15 | 10/13,10/15 | Quantum Computing With Physical Spins | [pdf] |

16 | 10/20 | Midterm | |

17 | 10/22 | Wiring Up Trapped Ions | [pdf] |

18 | 10/27 | Quantum Fourier Transform |
[pdf] see also: [pdf] |

19 | 10/29 | Quantum phase estimation, finding eigenvalues |
[pdf] |

20 | 11/03 | Shor's order (period) finding algorithm and factoring |
[pdf] |

21 | 11/05 | Grover's Quantum Search Algorithm |
[pdf] |

22 | 11/10 | Amplitude Amplification, Quantum Zeno, Vaidman's bomb |
[pdf] |

23 | 11/12 | Introduction to Quantum Error Correction |
[pdf] |

24 | 11/17 | Quantum Computer Architectures in Silicon and Diamond |
[pdf] |

25 | 11/19 | Quantum Random Walks |
[pdf] |

26 | 11/24 | Cluster State Computation | |

27 | 11/26 | Thanksgiving | |

28 | 12/01 | Student Presentations I | |

28 | 12/01 | Student Presentations II |

Here are a few suggestions of broad topics for projects. You should feel free to suggest any additional topic that you are interested in. All topics will require approval of the instructor and you are encouraged to discuss your choice with Prof. Whaley and/or Dylan. When you are ready, please email us the composition of your team, the topic, and a brief description.

quant-ph refers to the Los Alamos archives: link

NUCLEAR SPIN QUBITS:

1. A Silicon-based Nuclear Spin Quantum Computer , B. E. Kane, Nature 393, 133 (1998).

2. Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems, B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, He Bi Sun, Howard Wiseman, Phys. Rev. B 61, 2961 (2000).

QUANTUM TELEPORTATION:

1. Quantum teleportation of light beams," T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, Phys. Rev. A. 67, 033802 (2003)

2. Anton Zeilinger

JOSEPHSON JUNCTION QUBITS:

Gerd Schoen, John Clarke H. Mooij Superconducting Qubits: A Short Review, M. H. Devoret, A. Wallraff, and J. M. Martinis cond-mat/0411174 (2004)

NMR-BASED QUANTUM COMPUTING:

Isaac Chuang N. Gershenfeld and I. Chuang, Science, 275, pp. 350-356, 1997). More recent experimental and theoretical papers are available at the Physics and Media Group's publications page,

QUANTUM DOT QUBITS:

[1] D. Loss, D.P. DiVincenzo, Phys. Rev. A 57 (1998) 120; cond-mat/9701055.

[2] See review by, G. Burkard and D. Loss, in "Semiconductor Spintronics and Quantum Computation", eds. D. Awschalom, D. Loss, N. Samarth, Springer, Berlin, 2002.

[3] J. M. Elzerman et al., cond-mat/0212489.

[4] R. Hanson et al., cond-mat/0303139.

5. Recipes for spin-based quantum computing, Veronica Cerletti, W. A. Coish, Oliver Gywat, Daniel Loss, Nanotechnology 16, R27 (2005).

6. Controlling Spin Qubits in Quantum Dots, Hans-Andreas Engel, L.P. Kouwenhoven (Delft), Daniel Loss, C.M. Marcus (Harvard) Quantum Information Processing 3, 115 (2004) http://journals.kluweronline.com/article.asp?PIPS=493103.

QUANTUM COMPUTING W/ MOLECULAR MAGNETS:

Quantum computing with spin cluster qubits Florian Meier, Jeremy Levy (Pittsburgh), Daniel Loss Phys. Rev. Lett. 90, 047901 (2003).

Quantum Spin Dynamics in Molecular Magnets Michael N. Leuenberger, Florian Meier, Daniel Loss Monatshefte für Chem. 134, 217(2003); cond-mat/0205457

Electron Spins in Artificial Atoms and Molecules for Quantum Computing Vitaly N. Golovach, Daniel Loss Semicond. Sci. Technol. 17, 355- 366 (2002); cond-mat/0201437

CAVITY QUANTUM ELECTRODYNAMICS:

http://www.cco.caltech.edu/~qoptics/cqed.html

BOSE EINSTEIN CONDENSATES AND QUANTUM CONTROL:

[1] M. Greiner, et al., Nature 415, 39 (2002).

QUANTUM COMPUTING AND OPTICAL LATTICES: [1] D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).

[2] D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Cote, and M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

ELECTRONS ON LIQUID HELIUM AS QUBITS:

1. M.J.Lea, P.G.Frayne and Y.Mukharsky,Fortshritte der Physik, 48 (2000), 1109 - 1124. Could we compute with electrons on helium?

2. Quantum Physics, abstract quant-ph/0111029 Using Electrons on Liquid Helium for Quantum Computing Authors: A.J. Dahm, J.M. Goodkind, I. Karakurt, S. Pilla

3. Qubits with electrons on liquid helium, M. I. Dykman,1,* P. M. Platzman,2 and P. Seddighrad, PHYSICAL REVIEW B 67, 155402 ~2003!

[1] Shor's algorithm on a photonic chip, A. Politi, J. C. F. Matthews, J. L. O'Brien, Science 325, 1221 (2009).

[2] Complete Methods Set for Scalable Ion Trap Quantum Information Processing, J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, D. J. Wineland, Sence Express, August 6, 2009.

[3] Quantum Algorithm for Linear Systems of Equations, A. W. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009).

**Recommended texts for the class:**

- Benenti, Casati and Strini,
__Principles of Quantum Computation and Information, Vol. I: Basic Concepts__Introductory. See vol. 2 for more advanced topics.

- Kaye, LaFlamme and Mosca,
__An Introduction to Quantum Computing__

Introductory

**Other recommended texts on quantum computation**

- Yanofsky and Mannucci,
__Quantum Computing for Computer Scientists__

Introductory.

- McMahon,
__Quantum Computing Explained__

Undergraduate-oriented text with lots of exercises.

- Stolze and Suter,
__Quantum Computing: a short course from theory to experiment__

Physics-oriented introduction with discussion of experimental implementation.

- Mermin,
__Quantum Computer Science__

Introductory.

- Nielsen and Chuang,
__Quantum Computation and Quantum Information__

An encyclopedic reference.

- Pittenger,
__An introduction to Quantum Computing Algorithms__

Introduction to algorithms. - Lo, Popescu and Spiller,
__Introduction to Quantum Computation and Information__

Introductory review chapters to basic concepts and tools. - Kitaev, Shen and Vyalyi,
__Classical and Quantum Computation__

Advanced.

**Mathematical background**- Strang, Gilbert.
__Linear Algebra and Its Applications__

Good review of matrix theory and applications. - Jordan, Thomas F.
__Linear operators for Quantum Mechanics__

Thorough presentation of operators and mathematical structure.

**On quantum mechanics in general**- Feynman, Richard P.
__The Feynman Lectures on Physics__, volume 3

A famous introduction to undergraduate physics. This volume focuses on quantum mechanics. - Griffiths, David J.
__Quantum Mechanics__

Undergraduate text. - Liboff, Richard L.
__Introductory Quantum Mechanics__

Intermediate level. See Ch. 16 in the new (4th) edition for intro. to Quantum Computing. - Baym, Gordon.
__Lectures on Quantum Mechanics__

Graduate level textbook. - Feynman, Richard.
__QED__

Nice leisure reading.

- Yanofsky and Mannucci,