1. Entropy as a measure of information

Suppose we wish to quantify just how much information is provided by an event \(E \) which may occur in a probabilistic experiment, or alternatively, how much information do we acquire by witnessing the event \(E \). We do this using an information function \(f(E) \) whose value is determined by the event \(E \). We make the following reasonable assumptions about this function:

(a) \(f(E) \) is a function only of the probability of the event \(E \), so we may write \(f = f(p) \), where \(p \) is a probability in the range 0 to 1.

(b) \(f \) is a smooth function of probability.

(c) When two independent events occur with individual probabilities \(p > 0 \) and \(q > 0 \), the information gained is given by the sum of the information gained from each event alone, i.e., \(f(pq) = f(p) + f(q) \), i.e, information from independent events is additive.

Show that these relationships imply that \(f(p) = k \log p \), for some constant, \(k \). Hence show that the average information gain when one of a mutually exclusive set of events with probabilities \(p_1, p_2, ..., p_n \) occurs is \(k \sum_i p_i \log p_i \). Disregarding the constant factor \(k \), this is the Shannon (classical) entropy, which is usually written as \(H(p) = -\sum_i p_i \log p_i \). How would you determine the sign of \(k \)?

2. Entanglement and robustness of three-qubit states

Consider the two 3-qubit states:

- GHZ states: \(\frac{1}{\sqrt{3}} (|000\rangle + |111\rangle) \)
- W states: \(\frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle) \)

(a) Compare the robustness of the GHZ state and the W state to loss of information about a single qubit (corresponding to either non-recorded (unreferred) measurement or physical loss of the qubit).

(b) Find the entanglement entropy of the GHZ state and of the W state.

(c) Compare your answers for the two states with regard to robustness and degree of entanglement.