Quantum Fourier Transform

Exponential speedup by quantum computation

1. It is easy to compute classically, then there is an efficient reversible circuit = there is an efficient quantum circuit
 on input $\sum_{x \in \{0,1\}^n} x |x\rangle$, output is $\sum_{x \in \{0,1\}^n} f(x) |x\rangle$
 example: $n=1$, $f(x) = x$
 input: $\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$, output: $\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$
 - just a CNOT gate

2. Quantum Fourier transform

 Discrete Fourier transform : modulo N, on $N \times N$ unitary matrix, ω_{N}^{xk}

 $\begin{pmatrix}
 1 & 0 & \cdots & 0 \\
 0 & \omega_{N} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \omega_{N}^{N-1}
 \end{pmatrix}$

 - standard basis
 - Fourier basis
 - inner product between A^t and B^t

 $\begin{pmatrix}
 \omega_{N}^{k}\omega_{N}^{jk} \\
 \omega_{N}^{k}\omega_{N}^{jk} \\
 \vdots \\
 \omega_{N}^{k}\omega_{N}^{jk}
 \end{pmatrix}

 $e^{j\theta} = 1$ unless $\theta = \frac{2\pi}{N}$

 since if $\theta \neq 0 \mod N$, then $1 + e^{\frac{2\pi}{N}j} + \cdots + e^{\frac{2\pi}{N}N} j = 0$

 if $\theta = 0 \mod N$, then $1 + e^{\frac{2\pi}{N}j} + \cdots + e^{\frac{2\pi}{N}N} j = N$

 computing the discrete Fourier transform is essential for digital signal processing -- naive matrix multiplication takes $\Theta(N^2)$ steps
 - the FFT takes only $\Theta(N \log N)$ steps (1)

 how? Assume $N = 2^k$. Split the matrix into four parts, namely
 \[\begin{pmatrix}
 x_{0} & x_{1} \\
 x_{2} & x_{3}
 \end{pmatrix} \]

 by columns into even and odd ones

 \[\begin{pmatrix}
 x_{0} & x_{2} \\
 x_{1} & x_{3}
 \end{pmatrix} \]

 write $\omega = e^{j\frac{2\pi}{N}}$

 time to solve problem of size $N \cdot a$

 $T(N) = 2T(\frac{N}{2}) + O(N) \rightarrow T(N) = O(N \log N)$
Classical

O(n log n) steps

Quantum

log n levels, each taking O(n) time → O((n log n)

\[N = 2^n \]

C-state of a qubit

will find a quantum circuit of size

O(n^3) = O((log n)^4).

exponential speedup

What's the catch? The output is \[\sum_k x_k |k \rangle \], whereas classically you'd get the whole list \(x_1, x_2, \ldots, x_N \). All we can do is Fourier sampling: measure to get |x⟩ with probability \(\frac{1}{N} \). Even with this restriction, the quantum Fourier transform is quite powerful.

We want \[|a⟩ → \frac{1}{\sqrt{N}} \sum_{a=0}^{N-1} |a⟩ |b⟩ \]

\[a \]

\[a_2 \]

\[a_3 \]

\[a_{00} \]

\[a_{01} \]

\[a_{10} \]

\[a_{11} \]

\[b_0 \]

\[b_1 \]

\[\frac{1}{N} \sum_{a=0}^{N-1} e^{2 \pi i a \cdot b} |a⟩ \]

What is the coefficient of \[|b⟩ \]?

Why does the circuit do this?

\[a_0 = 0 \]

\[a_1 = 1 \]

\[b_0 = 0 \]

\[b_1 = 1 \]