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Goals for Today

• Trusted Computing
• The Swarm Vision
• Extreme Distributed Storage (OceanStore)
• Quantum Computing

Interactive is important!
Ask Questions!
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Review: Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or 
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log, 

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has 

voted “yes” on the update. It sends a message to site A 
asking what happened. At this point, B cannot decide to 
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, 
pages pinned in memory, etc) until learns fate of update

• Alternative: There are alternatives such as “Three 
Phase Commit” which don’t have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
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Recall: Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 
lieutenants such that:
– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal 
lieutenants obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

LieutenantMalicious!
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Recall: Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision 
even if some subset of them (< n/3 ) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision
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Trusted Computing
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Trusted Computing
• Problem: Can’t trust that software is correct

– Viruses/Worms install themselves into kernel or system 
without users knowledge

– Rootkit: software tools to conceal running processes, files 
or system data, which helps an intruder maintain access 
to a system without the user's knowledge

– How do you know that software won’t leak private 
information or further compromise user’s access?

• A solution: What if there were a secure way to validate 
all software running on system?
– Idea: Compute a cryptographic hash of BIOS, Kernel, 
crucial programs, etc.

– Then, if hashes don’t match, know have problem
• Further extension:

– Secure attestation: ability to prove to a remote party 
that local machine is running correct software

– Reason: allow remote user to avoid interacting with 
compromised system

• Challenge: How to do this in an unhackable way
– Must have hardware components somewhere
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TCPA: Trusted Computing Platform Alliance

• Idea: Add a Trusted Platform Module (TPM)
• Founded in 1999: Compaq, HP, IBM, Intel, Microsoft
• Currently more than 200 members
• Changes to platform

– Extra: Trusted Platform Module (TPM)
– Software changes: BIOS + OS

• Main properties
– Secure bootstrap
– Platform attestation
– Protected storage

• Microsoft version:
– Palladium
– Note quite same: More extensive 
hardware/software system

ATMEL TPM Chip
(Used in IBM equipment)
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Trusted Platform Module

• Cryptographic operations
– Hashing: SHA-1, HMAC
– Random number generator
– Asymmetric key generation: RSA (512, 1024, 2048)
– Asymmetric encryption/ decryption: RSA
– Symmetric encryption/ decryption: DES, 3DES (AES)

• Tamper resistant (hash and key) storage

Volatile
Memory

Non-volatile
Memory

Functional
Units

RSA Key Slot-0
…
RSA Key Slot-9
PCR-0
…
PCR-15

Auth Session
Handles

Key Handles

Owner Auth 
Secret(160 Bits)

Storage Root Key
(2048 Bits)

Endorsement Key
(2048 Bits)

RSA Encrypt/
Decrypt

SHA-1
Hash

Random Num
Generator

HMAC

RSA Key
Generation
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TCPA: PCR Reporting Value 

• Platform Configuration Registers (PCR0-16)
– Reset at boot time to well defined value
– Only thing that software can do is give new 
measured value to TPM
» TPM takes new value, concatenates with old value, 

then hashes result together for new PCR
• Measuring involves hashing components of software
• Integrity reporting: report the value of the PCR

– Challenge-response protocol:

Platform Configuration Register

Hash Concatenate

extended value present value
measured values

TPM

Challenger Trusted Platform Agentnonce

SignID(nonce, PCR, log), CID
TPM
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TCPA: Secure bootstrap

BIOS 
boot 
block

BIOS
OS 
loader OS Application

Option 
ROMs

TPM

Hardware

Network

Memory

New OS
Component

Root of trust in 
integrity 
measurement

Root of trust in 
integrity reporting

measuring
reporting
storing values

logging methods

Lec 25.125/6/13 Kubiatowicz CS194-24 ©UCB Fall 2013

Implications of TPM Philosophy?
• Could have great benefits

– Prevent use of malicious software
– Parts of OceanStore would benefit

• What does “trusted computing” really mean?
– You are forced to trust hardware to be correct!
– Could also mean that user is not trusted to install 
their own software

• Many in the security community have talked about 
potential abuses
– These are only theoretical, but very possible
– Software fixing

» What if companies prevent user from accessing their 
websites with non-Microsoft browser?

» Possible to encrypt data and only decrypt if software 
still matches  Could prevent display of .doc files 
except on Microsoft versions of software

– Digital Rights Management (DRM):
» Prevent playing of music/video except on accepted 

players
» Selling of CDs that only play 3 times?
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The Swarm at the 
Edge of the Cloud
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Vision 2025

- Integrated components will be approaching molecular 
limits and/or may cover complete walls

- Every object will have a wireless connection, hence 
leading to trillions of connected devices,

- Opportunistically collaborating to present unique 
experiences or to fulfill common goals

What will it Enable?
The Birth of the Swarm
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Infrastructural
core

The Swarm at The Edge of the Cloud

[J. Rabaey, ASPDAC’08]

TRILLIONS OF
CONNECTED DEVICES
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The Missing Link

Home 
security/
emergency

Unpad
Energy-
efficient

home Health 
monitoring

Apps

Resources Sensors/
Input devs

A t t /

devs

Actuators/
Output 
devs

Networks

Storage

Computing

SWARM-OS

SWARM-OS: A mediation layer that discovers 
resources and connects them with applications

An open platform accessible to everyone!
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2010s Question:
“How to interact with information in world where 
enriched senses and interfaces are omnipresent?”

Mobiles to disappear or unravel! The unPad*
Blurring the boundaries between the physical and the cyber world

Lec 25.185/6/13 Kubiatowicz CS194-24 ©UCB Fall 2013

• “Pad” goes away, but functionality 
(plus more) stays: enriched and 
unpackaged I/O, communication, 
computation, storage.

• People seamlessly interact with 
content, environment and one 
another through of collection of 
interconnected sensors and 
actuators.
– Sensors and actuators 

opportunistically cluster as needed 
for a particular functionality.

Towards (Human-)Aware Devices

Desktops Laptops Handhelds unPads
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unPads Coming to Life …

Corning 
A Day made of glass

Lec 25.205/6/13 Kubiatowicz CS194-24 ©UCB Fall 2013

From Interaction to Action Swarms

[M. Maharbiz, UCB]

[V. Kumar, U.Penn]

[C. Tomlin, UCB]
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The Swarm … What does it take?

• Providing ubiquitous wireless 
connectivity at last

• Managing the swarm and its 
resources

• Maximizing experience, 
reliability, safety and security

• Seemless integration with cloud 
(and the “FOG”)

A Hard and Complex Problem!
Distributed, many, heterogeneous, 
dynamic …

Adopt a “Swarm Perspective”

The function is in the swarm, not in 
the individual components
Use components opportunistically 
based on availability
Exploit the “power of numbers”
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Get Better with Large Numbers

Million-fold capacity 
increase since 1957 
25x from wider spectrum, 
5x by dividing spectrum into 

smaller slices, 
5x by designing better 

modulation schemes, 
1600x from reduced cell 

sizes and transmit 
distance. 

Wireless Capacity Doubled Every 30 
Months Since 1900 *

Message: The Swarm offers an unique opportunity

[M. Cooper, www.arraycom.com]

Biggest gain in next decade to come from smaller cells!
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Exploiting Locality/Proximity

The peer-to-peer challenge
How to know if two nodes are 
even interested in talking?

Based on WiFi Direct

Dedicated “stovepipe” solutions

How’s the 
weather? 

I know the 
temperature 

Apple OS X Lion

Lec 25.245/6/13 Kubiatowicz CS194-24 ©UCB Fall 2013

Exploiting Locality/Proximity

The peer-to-peer challenge
How to know if two nodes are 
even interested in talking?

Alternative approach:
 Cut through the layers!

How’s the 
weather? 

I know the 
temperature 

Example: Qualcomm FlashlinQ P2P protocol
Physical layer beaconing enables proximity and interest detection 
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• Support for the Swarm:
– Discover and Manage resource
– Integrate sensors, portable devices, cloud components
– Guarantee responsiveness, real-time behavior, throughput
– Self-adapt to adjust for failure and provide performance 
predictability

– Secure, high-performance, durable, available data

Metropolitan
Middleware

Meeting the needs of the Swarm

Personal 
Swarm

Cloud Services
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Examples
• eWallpaper: 

– Real-Time scheduling of resources
– Secure loading of code 
– Privacy maintenance of collected

information, communication
• Teleconference on nearest wall:

– Automatic location of resources
» Display, Microphone, Camera, Routers
» Resources for transcoding, audio transcription
» Positional tracking

– QoS-guaranteed network path to other side
• UnPad:

– Resource location and allocation
» Displays, Microphones, Cameras, etc
» High-performance streaming of data from the network

– ID-Based personalization
» RFID, Cellphone connection, other methods for root keys
» Targeted advertisement, personalized focus on 

– Deep archival storage  permanent digital history of 
activity
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Separating Resource Allocation
from Resource Usage

• Split monolithic scheduling into two pieces:
– Course-Grained Resource Allocation and Distribution

» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
» Ultimately a hierarchical process negotiated with service 

providers
– Fine-Grained (User-Level) Application-Specific Scheduling

» Applications allowed to utilize their resources in any way they 
see fit

» Performance Isolation: Other components of the system cannot 
interfere with Cells use of resources

Monolithic
CPU and Resource

Scheduling
Application Specific

Scheduling

Resource Allocation
And

Distribution

Two-Level Scheduling
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Brokering Service:
The Hierarchy of Ownership

• Discover Resources in “Domain”
– Devices, Services, Other Brokers
– Constraints: Ownership, Access Control

• Allocate and Distribute Resources to 
Components that need them
– Dynamically optimize execution
– Hand out Service-Level Agreements 

(SLAs) to Software Components
– Deny admission to application 

components when violate existing 
agreements

• Resources described via declarative 
language: properties + requirements
– Model of cyber-physical interactions
– Requirements for usage
– Constraints placed on other resources

Local
Broker

Sibling
Broker

Parent
Broker

Child
Broker
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Resource Allocation

• Goal: Meet the QoS requirements 
of a software component (Cell)
– Application-specific “heartbeats” 

and system-level monitoring
– Dynamic exploration of

performance space to find
operation points

– Meet constraints imposed
by other elements of system

• Complications: 
– Many components with 

conflicting requirements
– Finite Resources
– Hierarchy of resource ownership
– Context-dependent resource 

availability
– Stability, Efficiency, Rate of Convergence, Local Minima …

Adaptation

Execution

Modeling
Evaluation

Models
and State Adaptation

Execution

Modeling
Evaluation

Models
and State Adaptation

Execution

Modeling
Evaluation

Models
and State Adaptation

Execution

Modeling
Evaluation

Models
and State Adaptation

Execution

Modeling
Evaluation

Models
and State

Resource Discovery, 
Access Control,
Advertisement
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Resource Container: the Cell

• Properties of a Cell
– A user-level software component with guaranteed resources
– Has full control over resources it owns (“Bare Metal”)
– Contains at least one memory protection domain (possibly 
more)

– Contains a set of secured channel endpoints to other Cells
– Hardware-enforced security context to protect the privacy 
of information and decrypt information (a Hardware TCB)

• Each Cell schedules its resources exclusively with 
application-specific user-level schedulers
– Gang-scheduled hardware thread resources (“Harts”)
– Virtual Memory mapping and paging
– Storage and Communication resources

» Cache partitions, memory bandwidth, power or energy
– Use of Guaranteed fractions of system services
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Applications are Interconnected Graphs of Services

• Component-based model of computation
– Applications consist of interacting components
– Explicitly asynchronous/non-blocking
– Components may be local or remote

• Channel Interface  Service API, Security Boundary
– Channels are points at which data may be compromised
– Channels define points for QoS constraints
– Fault tolerance and adaptation by evolving connections

Secure
Channel

Device
Drivers

File
Service

Secure
Channel

Secure
Channel

Real-Time
Cells

(Audio,
Video)

Core Application
Parallel
Library
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Impact on the Programmer
• Connected graph of Cells  Object-Oriented Programming

– Lowest-Impact: Wrap a functional interface around channel
» Cells hold “Objects”, Secure channels carry RPCs for “method 

calls”
– Greater Parallelism: Event triggered programming

• Applications compiled from abstract graph description
– Independent of location or identity of services

• Shared services complicate resource isolation:
– How to ensure each client gets well-defined fraction of service?
– Distributed resource attribution (application as distributed graph)

Application B

Application A

Shared File Service
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Security and Privacy

Open architectures with dynamically recruitable sensors open enormous 
security and privacy concerns. But recent innovations show that data 
aggregation and networking can be used to enhance security and privacy. 

E.g., Differential privacy [Dwork et al., 2006] provides a framework for 
removing side-channel information that can be derived by cross-correlating 
data sets.

In another example, tighter coupling of time bases in distributed systems 
(time synchronization) provides a framework for detecting and countering 
denial of service attacks.
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Signature, Policy
Version, GUID

Secure Cell: Portable Secure Data

• Secure Cell: Security Context as a resource
– Data is signed, has attached policy, Optionally encrypted
– Unwrappable only in correct trusted environment
– Data automatically reencrypted on exit
– Hardware TCB: guarantees against faulty/malicious 
software

• What about durability?  Performance? Availability?

Signature, Policy
Version, GUID

Decrypt Encrypt

Distributed Public Key 
Infrastructure

Challenge/
Response
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Oceanstore
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Pac
Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

Utility-based Infrastructure

• Data service provided by storage federation
• Cross-administrative domain 
• Contractual Quality of Service (“someone to sue”)
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OceanStore: 
Everyone’s Data, One Big Utility

“The data is just out there”

• How many files in the OceanStore?
– Assume 1010 people in world
– Say 10,000 files/person (very conservative?)
– So 1014 files in OceanStore!

– If 1 gig files (ok, a stretch), get 1 mole of bytes!
(or a Yotta-Byte if you are a computer person)

Truly impressive number of elements…
… but small relative to physical constants
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Key Observation: Want Automatic Maintenance

• Can’t possibly manage billions of servers by hand!
• System should automatically:

– Adapt to failure 
– Exclude malicious elements
– Repair itself 
– Incorporate new elements 

• System should be secure and private
– Encryption, authentication

• System should preserve data over the long term 
(accessible for 1000 years):
– Geographic distribution of information
– New servers added from time to time
– Old servers removed from time to time
– Everything just works
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Example: Secure Object Storage

Client
(w/ TCPA)

Client
(w/ TCPA)

Client
(w/ TCPA)

OceanStore

Client
Data
Manager

• Security: Access and Content controlled by client
– Privacy through data encryption
– Optional use of cryptographic hardware for revocation
– Authenticity through hashing and active integrity 
checking

• Flexible self-management and optimization:
– Performance and durability
– Efficient sharing 
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• Untrusted Infrastructure: 
– The OceanStore is comprised of untrusted components
– Individual hardware has finite lifetimes
– All data encrypted within the infrastructure

• Mostly Well-Connected:
– Data producers and consumers are connected to a high-
bandwidth network most of the time

– Exploit multicast for quicker consistency when possible
• Promiscuous Caching:

– Data may be cached anywhere, anytime 

• Responsible Party:
– Some organization (i.e. service provider) guarantees that 
your data is consistent and durable

– Not trusted with content of data, merely its integrity

OceanStore Assumptions

Peer-to-peer

Quality-of-Service
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Peer-to-Peer for
Data Location
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Peer-to-Peer in OceanStore: DOLR
(Decentralized Object Location and Routing)

GUID1

DOLR

GUID1GUID2
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Stability under extreme circumstances

(May 2003: 1.5 TB over 4 hours)
DOLR Model generalizes to many simultaneous apps
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Object Location with Tapestry DOLR
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Peak at Oceanstore
Mechanisms
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OceanStore Data Model

• Versioned Objects
– Every update generates a new version
– Can always go back in time (Time Travel)

• Each Version is Read-Only
– Can have permanent name
– Much easier to repair

• An Object is a signed mapping between permanent 
name and latest version
– Write access control/integrity involves managing these 
mappings

Comet Analogy updates

versions
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Self-Verifying Objects

Data
Blocks

VGUIDi VGUIDi + 1

d2 d4d3 d8d7d6d5 d9d1

Data 
B -
Tree

Indirect
Blocks

M

d'8 d'9

M
backpointe
r

copy on 
write

copy on 
write

AGUID = hash{name+keys}

Updates
Heartbeats +
Read-Only Data

Heartbeat: {AGUID,VGUID, Timestamp}signed
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OceanStore API: Universal Conflict Resolution

• Consistency is form of optimistic concurrency 
– Updates contain predicate-action pairs 
– Each predicate tried in turn:

» If none match, the update is aborted
» Otherwise, action of first true predicate is applied

• Role of Responsible Party (RP):
– Updates submitted to RP which chooses total order

• This is powerful enough to synthesize:
– ACID database semantics
– release consistency (build and use MCS-style locks)
– Extremely loose (weak) consistency

IMAP/SMTPNFS/AFS NTFS (soon?)HTTPNative Clients

1. Conflict Resolution
2. Versioning/Branching 
3. Access control
4. Archival Storage

OceanStore
API
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Two Types of OceanStore Data

• Active Data: “Floating Replicas”
– Per object virtual server
– Interaction with other replicas for consistency
– May appear and disappear like bubbles

• Archival Data: OceanStore’s Stable Store
– m-of-n coding: Like hologram

» Data coded into n fragments, any m of which are 
sufficient to reconstruct (e.g m=16, n=64)

» Coding overhead is proportional to nm (e.g 4)
» Other parameter, rate, is 1/overhead

– Fragments are cryptographically self-verifying
• Most data in the OceanStore is archival!
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The Path of an 
OceanStore UpdateSecond-Tier

Caches

Inner-Ring
Servers

Clients
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• Simple algorithms for placing replicas on nodes in the 
interior
– Intuition: locality properties
of Tapestry help select positions
for replicas

– Tapestry helps associate
parents and children
to build multicast tree

• Preliminary results
encouraging

• Current Investigations:
– Game Theory
– Thermodynamics

Self-Organizing Soft-State Replication
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Archival Dissemination
of Fragments

Archival
Servers

Archival
Servers
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Aside: Why erasure coding?
High Durability/overhead ratio!

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY:

– Replication: 0.03
– Fragmentation: 10-35

Fraction Blocks Lost 
Per Year (FBLPY)
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Extreme Durability?

• Exploiting Infrastructure for Repair
– DOLR permits efficient heartbeat mechanism to notice:

» Servers going away for a while
» Or, going away forever!

– Continuous sweep through data also possible
– Erasure Code provides Flexibility in Timing

• Data transferred from physical medium to physical 
medium
– No “tapes decaying in basement”
– Information becomes fully Virtualized

• Thermodynamic Analogy: Use of Energy (supplied by 
servers) to Suppress Entropy
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Differing Degrees of Responsibility

• Inner-ring provides quality of service
– Handles of live data and write access control
– Focus utility resources on this vital service
– Compromised servers must be detected quickly

• Caching service can be provided by anyone
– Data encrypted and self-verifying
– Pay for service “Caching Kiosks”?

• Archival Storage and Repair
– Read-only data: easier to authenticate and repair
– Tradeoff redundancy for responsiveness

• Could be provided by different companies!
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Quantum Computing
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Can we Use Quantum Mechanics to Compute?

• Weird properties of quantum mechanics?
– Quantization: Only certain values or orbits are good

» Remember orbitals from chemistry???
– Superposition: Schizophrenic physical elements don’t 
quite know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing: 
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in 
time proportional to square-root of n.
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Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin” 
when defined with respect to an external 
magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>
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Kane Proposal II (First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit 
Control Gates
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Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as:  = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like, 
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect?  Options:
– This is just statistical – given a large number of protons, a 

fraction of them (|C0|2 ) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things until 

you try to look at it
• Reality: second choice! 

– There are experiments to prove it!
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Implications: A register can have many values
• Implications of superposition:

– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+ 
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by 
coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: =    (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: =    (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure before 
ready!
– Solution: Quantum Error Correction Codes!
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Spooky action at a distance
• Consider the following simple 2-bit state:

= C00|00>+ C11|11>
– Called an “EPR” pair for “Einstein, Podolsky, Rosen”

• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> 

at the other (and vice versa)
• Teleportation

– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?
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Model?  Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values 

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally 
probable.

– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform” 

computation being done in unitary transformation

Unitary 
Transformations

Input
Complex
State

Measure
Output
Classical
Answer
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• The Security of RSA Public-key cryptosystems 
depends on the difficult of factoring a number N=pq 
(product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a = x r/2 (mod N)  (a-1)(a+1) = kN
6) If a = N-1 GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Security of Factoring

Easy
Easy

Easy
Easy
Easy
Easy
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Shor’s Factoring Algorithm
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Fourier
Transform

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related
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ION Trap Quantum Computer: Promising technology

• IONS of Be+ trapped in 
oscillating quadrature field
– Internal electronic modes of 

IONS used for quantum bits
– MEMs technology 
– Target? 50,000 ions
– ROOM Temperature!

• Ions moved to interaction regions
– Ions interactions with one 

another moderated by lasers

Cross-
Sectional
View

Top View

Top

Proposal: NIST Group
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Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling
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Important Measurement Metrics
• Traditional CAD Metrics:

– Area
» What is the total area of a circuit?
» Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
» What is the total latency to compute circuit once
» Measured in seconds (or s)

– Probability of Success (Psuccess)
» Not common metric for classical circuits
» Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR 
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea
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• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Dependant of layout heuristics!

» Create a physical layout and scheduling of bits
» Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

» Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

• Finally – Compute ADCR for particular result
– Repeat as necessary by varying parameters to generate 

ADCRoptimal

How to evaluate a circuit?

Normal 
Monte Carlo:

n times

Vector
Monte Carlo:
single pass
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Quantum CAD flow

QEC Insert
Circuit

Synthesis

Hybrid Fault
Analysis

Circuit
Partitioning

Mapping,
Scheduling,

Classical control

Communication
Estimation

Teleportation
Network
Insertion

Input Circuit
O
utput Layout

ReSynthesis (ADCRoptimal)

P
success

Complete Layout

Re
M

ap
pi
ng

Error Analysis
Most Vulnerable Circuits

Fault-Tolerant 
Circuit

(No layout)

Partitioned
Circuit

Functional
System

QEC 
OptimizationFault

Tolerant

ADCR computation
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• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC 

ancilla generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed 

to  optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility 

Area Breakdown for Adders
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Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time
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1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2
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Conclusion (1/2)

• Trusted Hardware
– A secure layer of hardware that can:

» Generate proofs about software running on the machine
» Allow secure access to information without revealing keys 

to (potentially) compromised layers of software
– Cannonical example: TPM

• Services for the Swarm:
– Use of Resources negotiated hierarchically
– Underlying Execution environment guarantees QoS
– New Resources constructed from Old ones:

» Aggregate resources in combination with QoS-Aware 
Scheduler

» Result is a new  resource that can be negotiated for
– Continual adaptation and optimization
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Conclusion (2/2)
• OceanStore properties:

– Provides security, privacy, and integrity
– Provides extreme durability
– Lower maintenance cost through redundancy, continuous 
adaptation, self-diagnosis and repair

• Quantum Computing
– Using interesting properties of physics to compute
– Noise is one of the most complex aspects
– At a stage where Computer Aided Design (CAD) makes 
sense

– Quantum Circuit Metric: ADCR 
» Area-Delay to Correct Result: Probabilistic Area-Delay metric

» ADCR = Area  E(Latency)
ADCRoptimal: Best ADCR over all configurations

• Let’s give a hand to Palmer – the labs wouldn’t exist 
without him!
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Good Bye!


