What Makes a Great Picture?

© Robert Doisneau, 1955

CS194: Image Manipulation & Computational Photography
Alexei Efros, UC Berkeley, Fall 2015
Photography 101: the **where** and **when**

- Composition
 - Framing
 - Rule of Thirds
 - Leading Lines
 - Textures and Patterns
 - Simplicity
- Lighting
 - Light Direction
 - Color coordination / balance
 - “Golden Hour”
 - (sur) realism
Framing

“Photography is all about framing. We see a subject -- and we put a frame around it. Essentially, that is photography when all is said and done.”

-- from photo.blorge.com
Frame serves several purposes:

1. It gives the image depth
2. Used correctly, framing can draw the eye of the viewer of an interest to a particular part of the scene.
3. Framing can bring a sense of organization or containment to an image.
4. Framing can add context to a shot.

http://digital-photography-school.com/blog/frame-your-images/
Examples of nice framing

http://flickr.com/photos/paulosacramento/226545698/
http://flickr.com/photos/chrisbeach/13868545/
http://flickr.com/photos/74531485@N00/929270814/
http://flickr.com/photos/freakdog/223117229/
http://flickr.com/photos/cdm/253805482/
Rules of Thirds

http://www.photo96.com/blog/?p=371
Other examples
Leading Lines
More examples
Textures and Patterns
Complementary colors (of opposite hue on color wheel)
Side Lighting
Back Lighting
“Golden Hour”
Simplicity

Prof - Obvious what one should be looking at ie easy to separate subject from the background. Snap – unstructured, busy, filled with clutter.

“Look Into” by Josh Brown @ Flickr
Simplicity
Simplicity

“Waiting in line!” by Imapix @ Flickr
(Sur) Realism

“Golden Gate Bridge at Sunset” by Buzz Andersen @ Flickr

“Golden Gate 3” by Justin Burns @ Flickr
(Sur) Realism

“Somewhere Only We Know Prt2 (sic)” by Aki Jinn @ Flickr
Anyone can take great pictures...
I am a sucky photographer...
…but I am a pretty good photo critic!

http://flickr.com/photos/aaefros/

of my Paris photos on Flickr: 32
Total # of my Paris photos: ~1250

~2%
The Postmodern Photographer

The Old Days: a pre-process

• Load film
• Find subject
• Position camera
• Set all the settings “just right”
• Take a deep breath…
• ...Press button!

The New Digital Days: a post-process

• Get a 16 GB memory cartridge
• Take pictures like there is no tomorrow!!!
• …
• Back home, spend hours of agony trying to find 1-2 good ones
How to recognize the good photos?
Applications

Image search for improved quality along with relevance. Automatically select the best photos from a set of vacation pictures to choose the best ones to show. See if computer can perform well on a traditionally human task.
Outline

- Photography 101
- Recognition (CVPR ’06)
 - What makes one photo better than another?
 - What features can we extract?
 - How can we measure our performance?

Not considering semantic measures of what makes a photo good (subject matter, humor, etc). Professional = those you would frame, snapshot = those that would stay in photo album.
Features – Spatial Distribution of Edges

More edges near border due to background clutter

More edges near center of img

“Picture of a picture…” by Ted Johnson @ Flickr

Trying to capture a photo’s “simplicity”
Spatial Distribution of Edges

Mean Laplacian of snapshots

More uniformly distributed

Mean Laplacian of professional

More concentrated

Low quality photos

High quality photos

Expect high quality photos to have high spatial frequency edges nearer to center than snapshots.
Edge width

Calculate area that edges occupy – width of bounding box covering 96% of edge energy

Cluttered regions should tend to produce a larger bounding box, and well defined subjects should produce a smaller one.
Color Distribution

- **K-NN on color histogram**

For query image find k nearest neighbors in training set. Quality = number of prof neighbors in top 5.

$q_{cd} = \#professional_neighbors$
20 bin histogram defining possible unique hues

Hue Count

- # unique hues smaller for prof photos even though they tend to look more vibrant and colorful (S,V may vary more) – another measure related to “simplicity”

\[q_h = 20 - (\# \text{ hues} > \text{threshold}) \]
Most unlikely colors…

From Lalonde and Efros, ICCV’2007
Blur

- Look at frequency distribution.
- Measure the amount of blur in the sharpest object, instead of the *average* blur.
Low Level Features - Contrast

Prof photos usually have higher contrast.

Contrast = width of middle 98% mass of hist
Contrast

$p(x)$

Contrast (98% mass) [0, 255]
Professional photographers may adjust exposure to be correct on subject only so subj pops from bkd. Cameras tend to adjust brightness to average at 50% gray, but prof photos might deviate significantly. Use ave brightness as feature.
Use photos average rating as ground truth quality measure

Use only top 10%, bottom 10% as dataset.

Use half for training/half for testing.
Difficulty of Dataset

- **Snapshot**
- **Professional**
Results

\[
\text{recall} = \frac{\# \text{ professional photos above threshold}}{\text{total } \# \text{ professional photos}}
\]

\[
\text{precision} = \frac{\# \text{ professional photos above threshold}}{\# \text{ photos above threshold}}.
\]
Most Distinctive Feature: Blur

- A badness metric, rather than a goodness metric.
Results

72% classification rate
Web Retrieval Results
Web Retrieval Results
Web Retrieval Results
Lucky Imaging

THANK YOU!

That's All Folks