More Mosaic Madness

© Jeffrey Martin (jeffrey-martin.com)

CS194: Image Manipulation & Computational Photography
Alexei Efros, UC Berkeley, Fall 2018

with a lot of slides stolen from Steve Seitz and Rick Szeliski
Spherical Panoramas

All light rays through a point form a panorama

Totally captured in a 2D array -- \(P(\theta,\phi) \)

Where is the geometry???
Homography

A: Projective – mapping between any two PPs with the same center of projection

• rectangle should map to arbitrary quadrilateral
• parallel lines aren’t
• but must preserve straight lines
• same as: project, rotate, reproject

called Homography

\[
\begin{bmatrix}
wx' \\
wy' \\
w
\end{bmatrix}
=
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
l
\end{bmatrix}
\]

To apply a homography \(H \)

• Compute \(p' = Hp \) (regular matrix multiply)
• Convert \(p' \) from homogeneous to image coordinates
Rotational Mosaics

Can we say something more about rotational mosaics? i.e. can we further constrain our H?
3D → 2D Perspective Projection

\((x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z})\)

\[
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}
\]

\[K\]
3D Rotation Model

Projection equations

1. Project from image to 3D ray
 \[(x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c, f)\]

2. Rotate the ray by camera motion
 \[(x_1, y_1, z_1) = R_{01} (x_0, y_0, z_0)\]

3. Project back into new (source) image
 \[(u_1, v_1) = (fx_1/z_1 + u_c, fy_1/z_1 + v_c)\]

Therefore:

\[H = K_0 R_{01} K_1^{-1}\]

Our homography has only 3, 4 or 5 DOF, depending if focal length is known, same, or different.

- This makes image registration much better behaved
Pairwise alignment

Procrustes Algorithm [Golub & VanLoan]

Given two sets of matching points, compute R

$$
p_i' = R p_i
$$
with 3D rays

$$
p_i = N(x_i, y_i, z_i) = N(u_i - u_c, v_i - v_c, f)
$$

$$
A = \Sigma_i p_i p_i' = \Sigma_i p_i p_i^T R^T = USVT = (USUT)R^T
$$

$$
VT = UT^T R^T
$$

$$
R = VU^T
$$
Rotation about vertical axis

What if our camera rotates on a tripod?
What’s the structure of H?
Do we have to project onto a plane?
Full Panoramas

What if you want a 360° field of view?

mosaic Projection Cylinder
Cylindrical projection

- Map 3D point \((X,Y,Z)\) onto cylinder
 \[
 (\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}}(X, Y, Z)
 \]
- Convert to cylindrical coordinates
 \[
 (\sin\theta, h, \cos\theta) = (\hat{x}, \hat{y}, \hat{z})
 \]
- Convert to cylindrical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)
 \]
Cylindrical Projection
Inverse Cylindrical projection

\[\theta = \frac{(x_{cyl} - x_c)}{f} \]
\[h = \frac{(y_{cyl} - y_c)}{f} \]
\[\hat{x} = \sin \theta \]
\[\hat{y} = h \]
\[\hat{z} = \cos \theta \]
\[x = f\hat{x}/\hat{z} + x_c \]
\[y = f\hat{y}/\hat{z} + y_c \]
Cylindrical panoramas

Steps

• Reproject each image onto a cylinder
• Blend
• Output the resulting mosaic
Cylindrical image stitching

What if you don’t know the camera rotation?

• Solve for the camera rotations
 – Note that a rotation of the camera is a **translation** of the cylinder!
Assembling the panorama

Stitch pairs together, blend, then crop
Problem: Drift

Vertical Error accumulation
 • small (vertical) errors accumulate over time
 • apply correction so that sum = 0 (for 360° pan.)

Horizontal Error accumulation
 • can reuse first/last image to find the right panorama radius
Full-view (360°) panoramas
Spherical projection

- Map 3D point \((X,Y,Z)\) onto sphere
 \[
 (\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X,Y,Z)
 \]

- Convert to spherical coordinates
 \[
 (\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi) = (\hat{x}, \hat{y}, \hat{z})
 \]

- Convert to spherical image coordinates
 \[
 (\tilde{x}, \tilde{y}) = (f \theta, f h) + (\tilde{x}_c, \tilde{y}_c)
 \]
Spherical Projection
Inverse Spherical projection

\[\theta = \frac{(x_{sph} - x_c)}{f} \]
\[\varphi = \frac{(y_{sph} - y_c)}{f} \]
\[\hat{x} = \sin \theta \cos \varphi \]
\[\hat{y} = \sin \varphi \]
\[\hat{z} = \cos \theta \cos \varphi \]
\[x = \frac{f\hat{x}}{\hat{z}} + x_c \]
\[y = \frac{f\hat{y}}{\hat{z}} + y_c \]
3D rotation

Rotate image before placing on unrolled sphere

\[\theta = \frac{(x_{sph} - x_c)}{f} \]
\[\varphi = \frac{(y_{sph} - y_c)}{f} \]
\[\hat{x} = \sin \theta \cos \varphi \]
\[\hat{y} = \sin \varphi \]
\[\hat{z} = \cos \theta \cos \varphi \]
\[x = \frac{f \hat{x}}{\hat{z}} + x_c \]
\[y = \frac{f \hat{y}}{\hat{z}} + y_c \]
Full-view Panorama
Other projections are possible

You can stitch on the plane and then warp the resulting panorama
 • What’s the limitation here?

Or, you can use these as stitching surfaces
 • But there is a catch…
Cylindrical reprojection

\[(x', y') \]

\[\begin{align*}
(x, \hat{y}, \hat{z}) \\
(x, \hat{y}, \hat{z}) \\
(x, \hat{y}, \hat{z})
\end{align*} \]

top-down view

Focal length – the dirty secret...

Image 384x300
\[f = 180 \text{ (pixels)} \]
\[f = 280 \]
\[f = 380 \]
What’s your focal length, buddy?

Focal length is (highly!) camera dependant

• Can get a rough estimate by measuring FOV:

\[
\begin{align*}
\theta/2 & \quad f \\
& \quad W/2
\end{align*}
\]

• Can use the EXIF data tag (might not give the right thing)
• Can use several images together and try to find \(f \) that would make them match
• Can use a known 3D object and its projection to solve for \(f \)
• Etc.

There are other camera parameters too:

• Optical center, non-square pixels, lens distortion, etc.
Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
Radial distortion

Correct for “bending” in wide field of view lenses

\[
\hat{r}^2 = \hat{x}^2 + \hat{y}^2
\]

\[
\hat{x}' = \frac{\hat{x}}{1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4}
\]

\[
\hat{y}' = \frac{\hat{y}}{1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4}
\]

\[
x = f \hat{x}' / \hat{z} + x_c
\]

\[
y = f \hat{y}' / \hat{z} + y_c
\]

Use this instead of normal projection
Polar Projection

Extreme “bending” in ultra-wide fields of view

\[\tilde{r}^2 = \tilde{x}^2 + \tilde{y}^2 \]

\[(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) = s (x, y, z)\]

Equations become

\[x' = s\phi \cos \theta = s \frac{x}{r} \tan^{-1} \frac{r}{z}, \]

\[y' = s\phi \sin \theta = s \frac{y}{r} \tan^{-1} \frac{r}{z}, \]
Camera calibration

Determine camera parameters from *known* 3D points or calibration object(s)

1. *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio:
 what kind of camera?

2. *external* or *extrinsic* (pose) parameters:
 where is the camera in the world coordinates?
 - World coordinates make sense for multiple cameras / multiple images

How can we do this?
Approach 1: solve for projection matrix

Place a known object in the scene
- identify correspondence between image and scene
- compute mapping from scene to image

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix}
\in \mathbb{R}^2 \rightarrow
\begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix}
\begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
 1
\end{bmatrix}
\]
Direct linear calibration

\[
\begin{bmatrix}
 u_i \\
v_i \\
1
\end{bmatrix}
= \begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix}
\begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
1
\end{bmatrix}
\]

Solve for Projection Matrix Π using least-squares (just like in homework)

Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image

Disadvantages:
- Doesn’t tell us about particular parameters
- Mixes up internal and external parameters
 - pose specific: move the camera and everything breaks
Approach 2: solve for parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called “extrinsics,” red are “intrinsics"

Projection equation

$$X = \begin{bmatrix} s_x \\ s_y \\ s \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \Pi X$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\Pi = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3x3} & 0_{3x1} \\ 0_{1x3} & 1 \end{bmatrix} \begin{bmatrix} f_{3x3} \\ T_{3x1} \end{bmatrix}$$

- Solve using non-linear optimization
Multi-plane calibration

Advantage

• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!
 – Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/
 – Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/

Images courtesy Jean-Yves Bouguet, Intel Corp.
Setting alpha: simple averaging

Alpha = .5 in overlap region
Setting alpha: center seam

Alpha = logical(dtrans1 > dtrans2)
Setting alpha: blurred seam

Distance transform

Alpha = blurred
Simplification: Two-band Blending

Brown & Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha
2-band “Laplacian Stack” Blending

Low frequency ($\lambda > 2$ pixels)

High frequency ($\lambda < 2$ pixels)
Linear Blending
2-band Blending