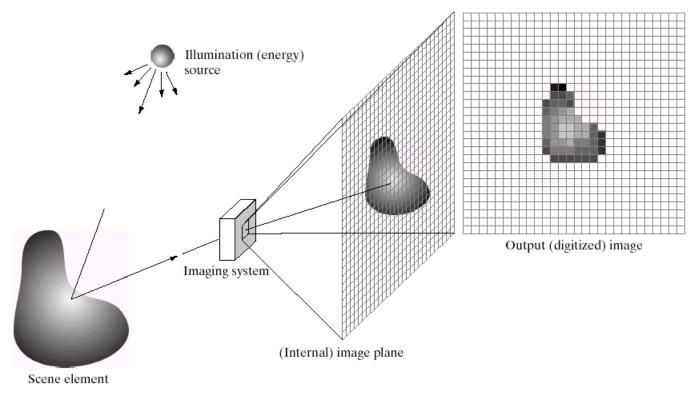
Point Processing & Filtering

CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015

Image Formation

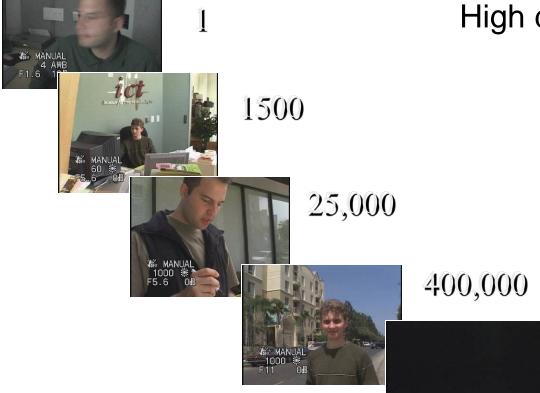


a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

f(x,y) = reflectance(x,y) * illumination(x,y)Reflectance in [0,1], illumination in [0,inf]

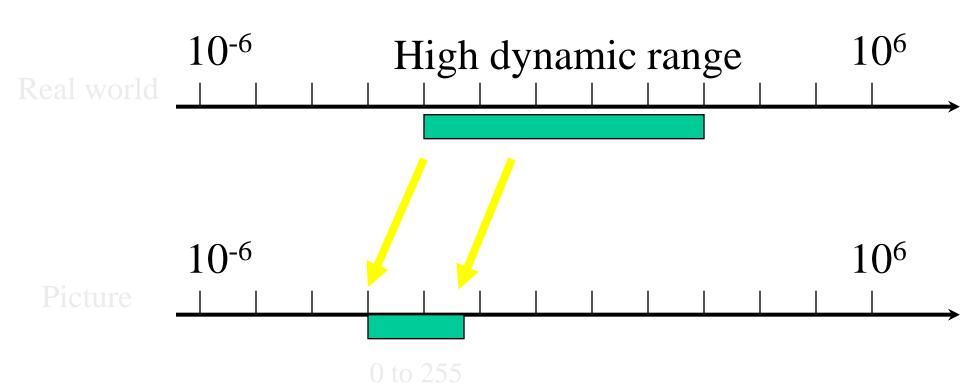
Problem: Dynamic Range



The real world is High dynamic range

2,000,000,000

Long Exposure



Short Exposure

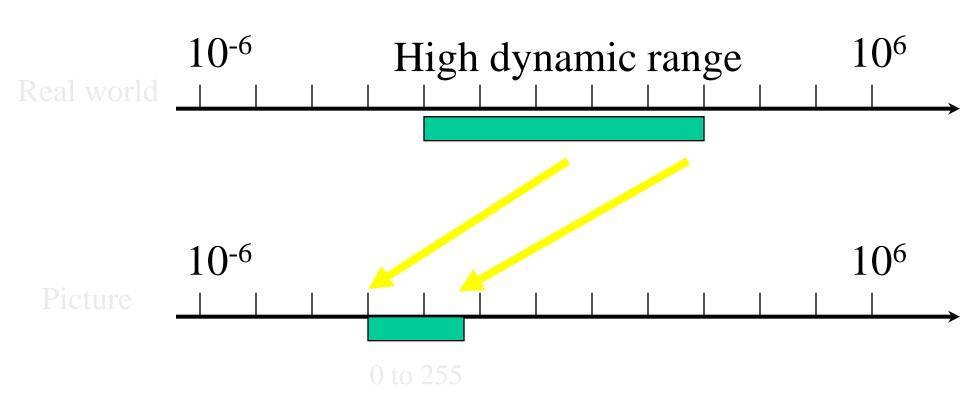
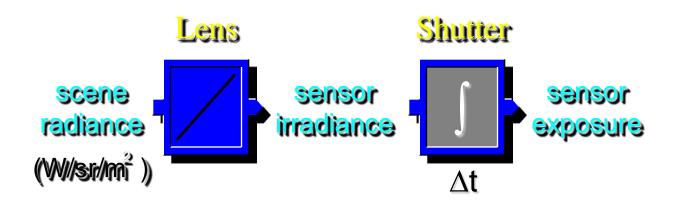
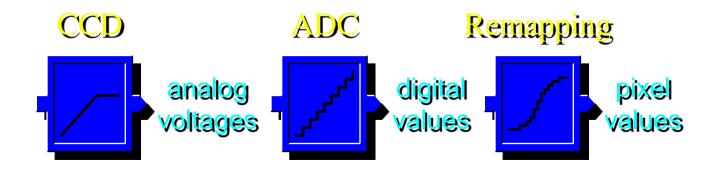


Image Acquisition Pipeline





Simple Point Processing: Enhancement

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0,4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Power-law transformations

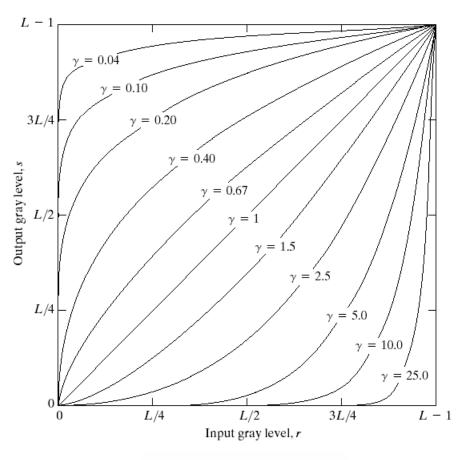
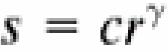
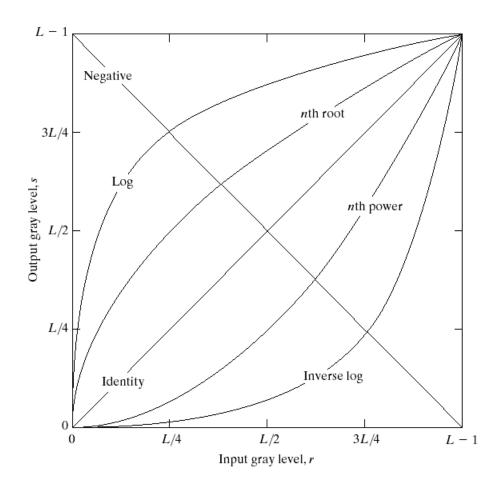


FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

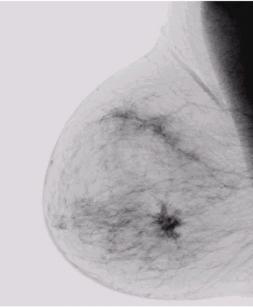


Basic Point Processing

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.



Negative



a b

FIGURE 3.4

(a) Original digital mammogram.

(b) Negative image obtained using the negative transformation in Eq. (3.2-1).

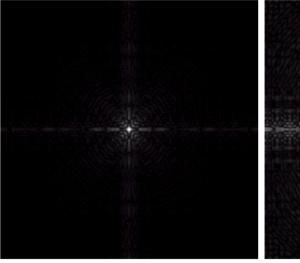
(Courtesy of G.E. Medical Systems.)

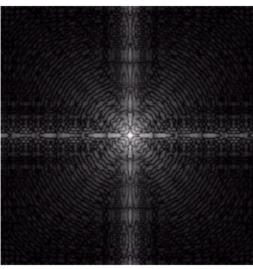
a b

FIGURE 3.5

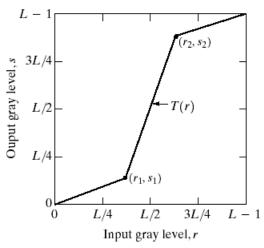
(a) Fourier

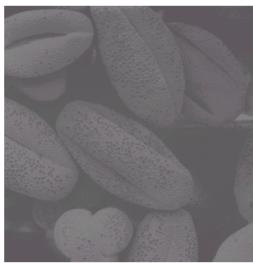
(a) Fourier spectrum.
(b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.





Contrast Stretching





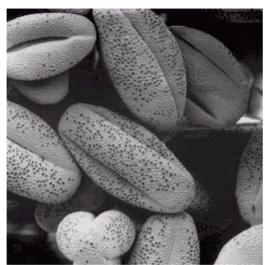
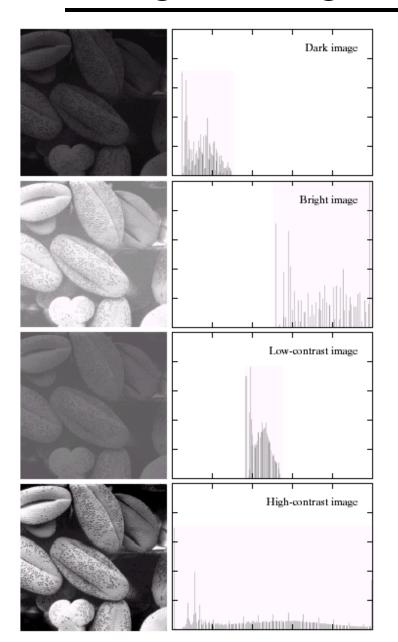
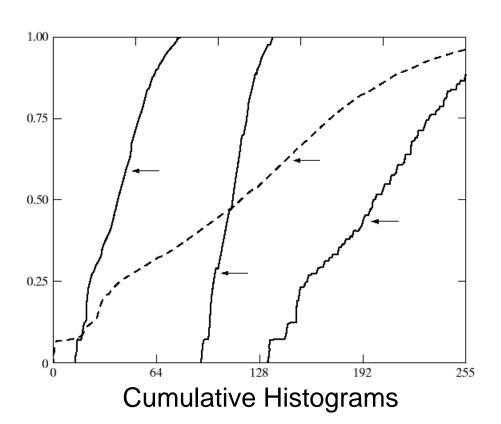


FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Image Histograms





$$s = T(r)$$

a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Histogram Equalization

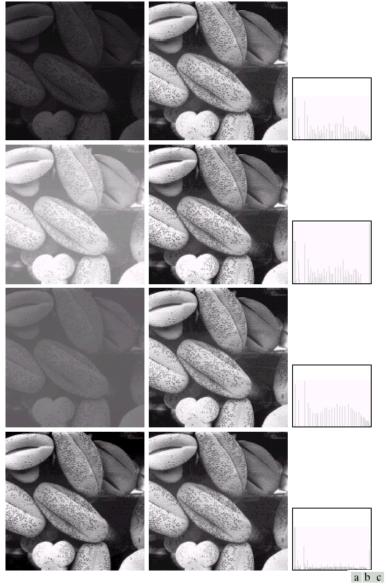
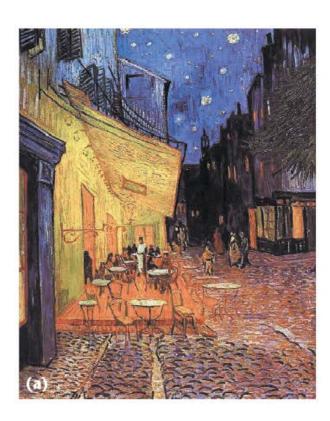


FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.

Color Transfer [Reinhard, et al, 2001]



Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between Images. *IEEE Computer Graphics and Applications*, 21(5), pp. 34–41. September 2001.

Limitations of Point Processing

Q: What happens if I reshuffle all pixels within the image?

A: It's histogram won't change. No point processing will be affected...

What is an image?

We can think of an **image** as a function, *f*, from R² to R:

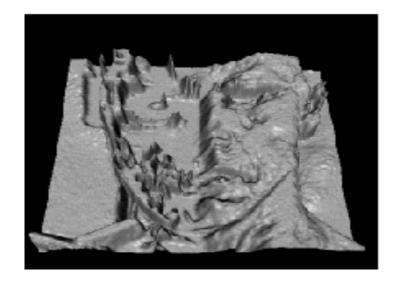
- f(x, y) gives the **intensity** at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

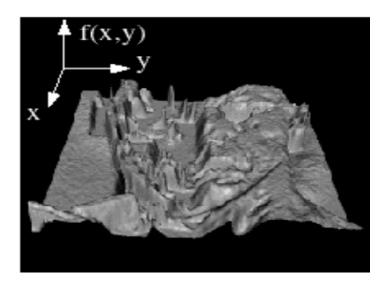
$$-f:[a,b]\mathbf{x}[c,d] \rightarrow [0,1]$$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

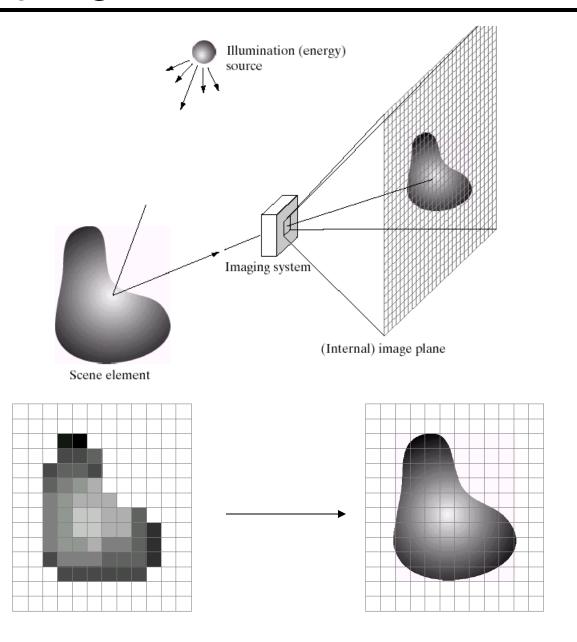
$$f(x, y) = \begin{vmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{vmatrix}$$

Images as functions



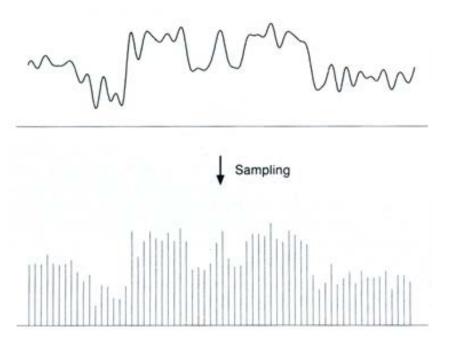


Sampling and Reconstruction



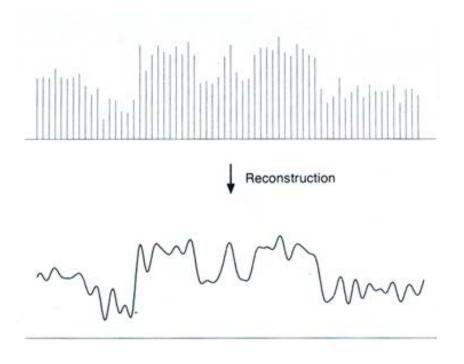
Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points

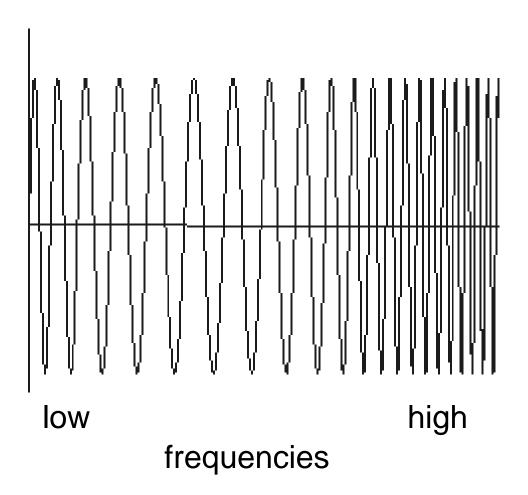


Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between

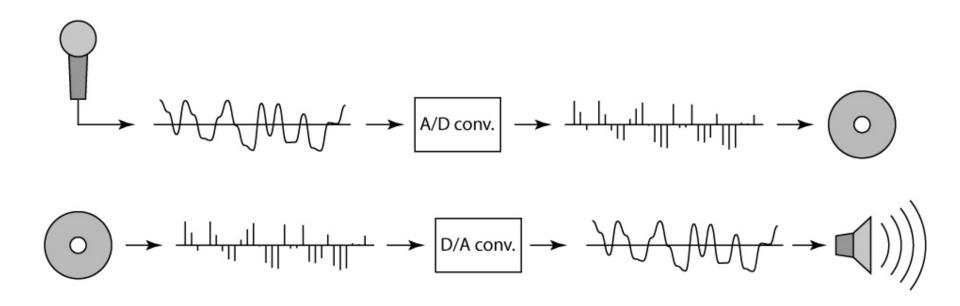


1D Example: Audio



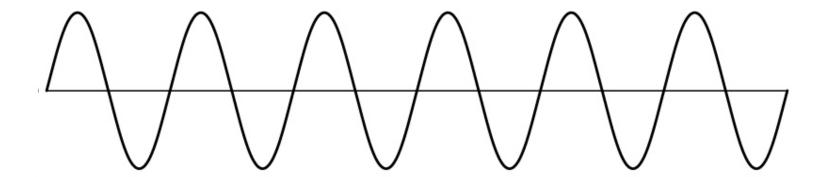
Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?



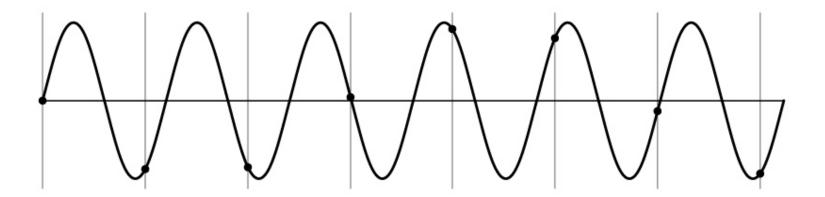
Sampling and Reconstruction

Simple example: a sign wave



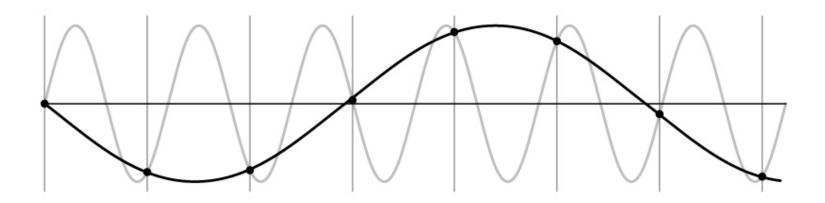
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost



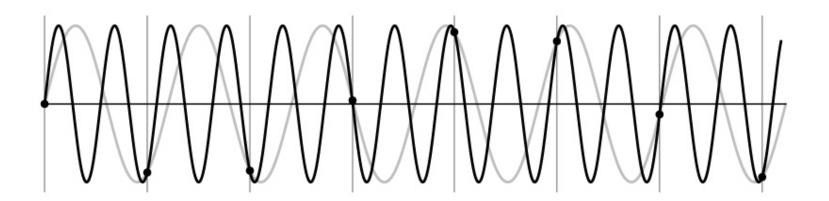
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency



Undersampling

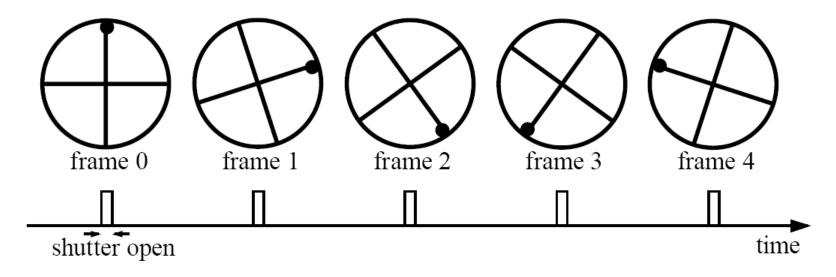
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also, was always indistinguishable from higher frequencies
 - <u>aliasing</u>: signals "traveling in disguise" as other frequencies



Aliasing in video

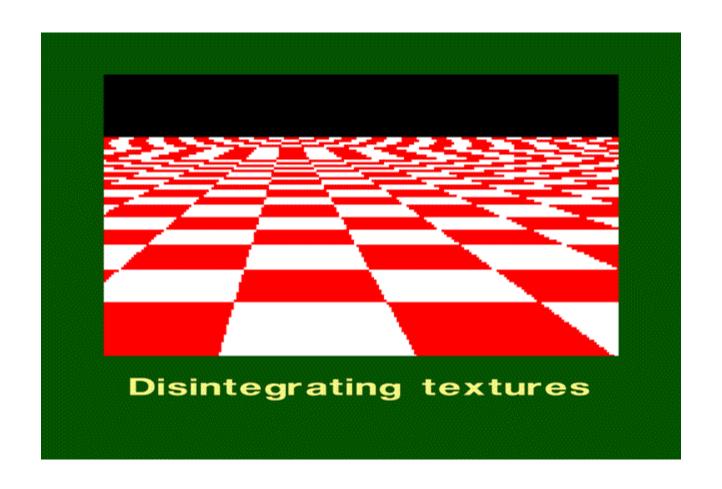
Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

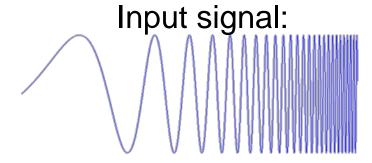


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

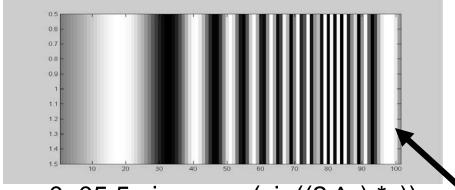
Aliasing in images



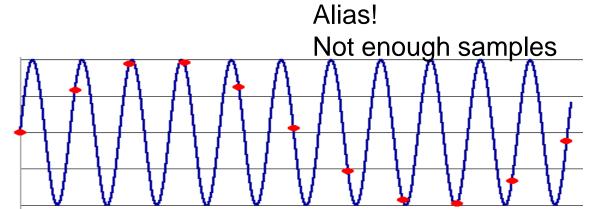
What's happening?



Plot as image:



x = 0:.05:5; imagesc(sin((2.^x).*x))



Antialiasing

What can we do about aliasing?

Sample more often

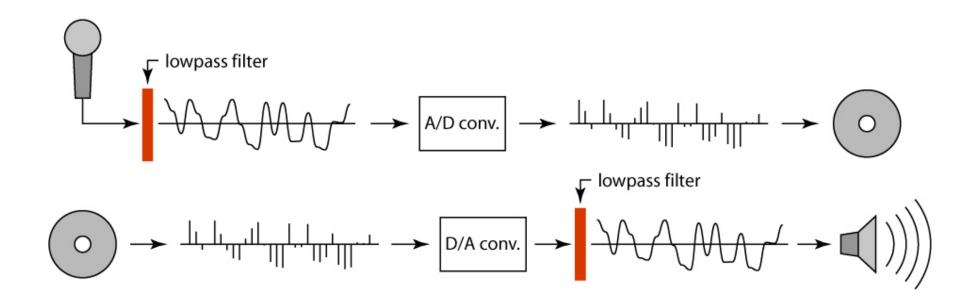
- Join the Mega-Pixel craze of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

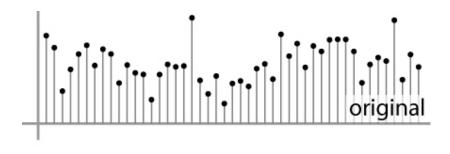


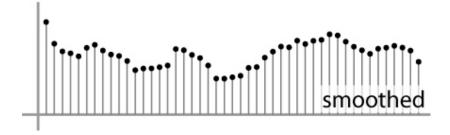
Linear filtering: a key idea

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

Moving Average

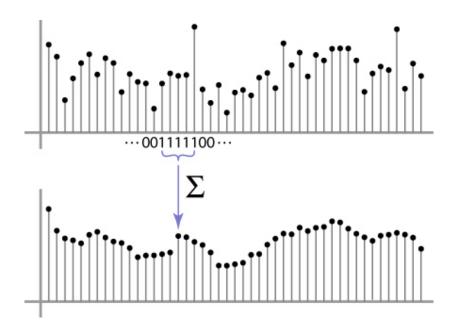
- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing





Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

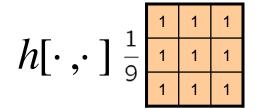
$$G = H \otimes F$$

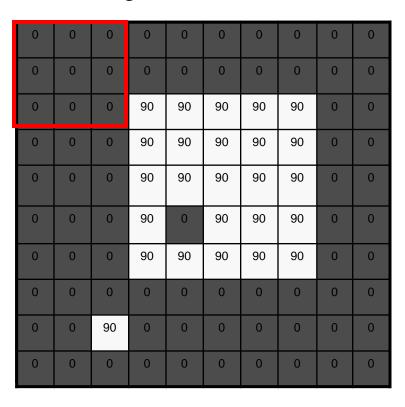
 Can think of as a "dot product" between local neighborhood and kernel for each pixel

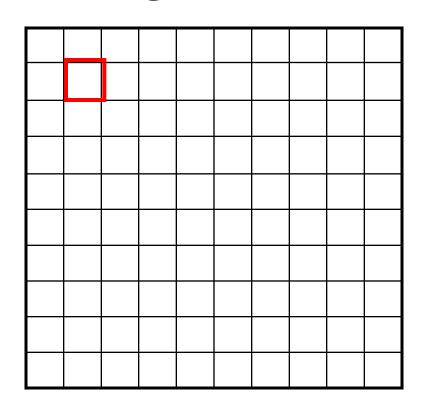
In 2D: box filter

$$h[\cdot\,,\cdot\,]$$

$$\frac{1}{9} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

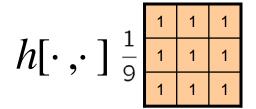




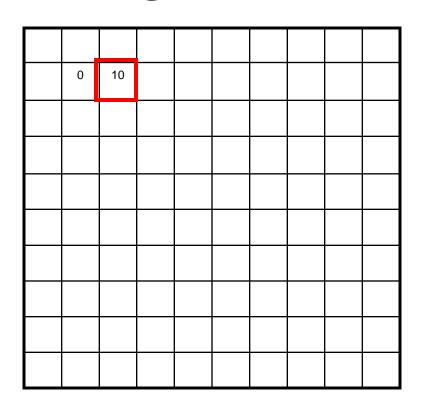


$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

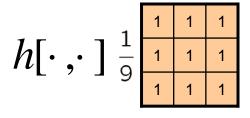


0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

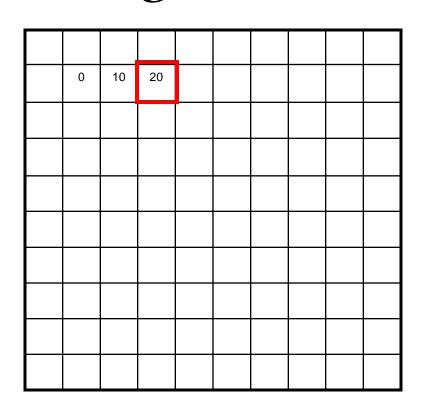


$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz



0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



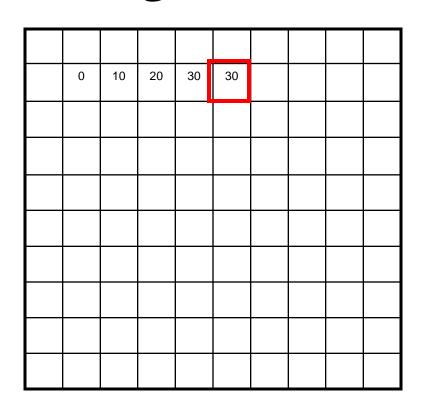
			1	1	1	1
$h[\cdot]$	•	1	<u> </u>	1	1	1
•			9	1	1	1

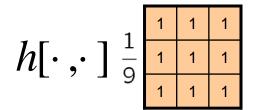
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

1	1	1	1
$h[\cdot,\cdot]^{\frac{1}{2}}$	1	1	1
L , J 9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



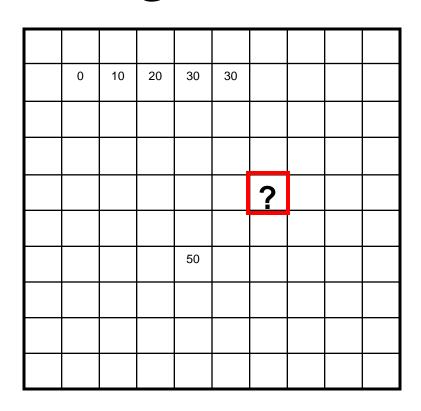


0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			?			

1	1	1	1
$h[\cdot,\cdot]^{\frac{1}{2}}$	1	1	1
L / J 9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[\cdot,\cdot]$$
 $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

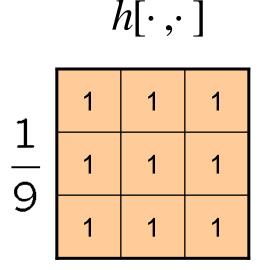
$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

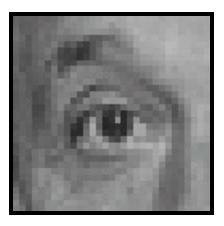
Box Filter

What does it do?

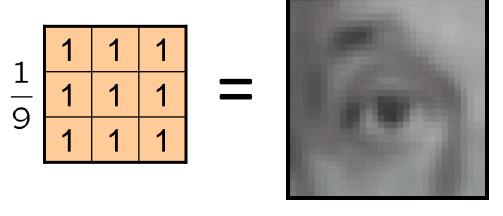
- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



Linear filters: examples



Original



Blur (with a mean filter)

Original

0	0	0
0	~	0
0	0	0

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
1	0	0
0	0	0

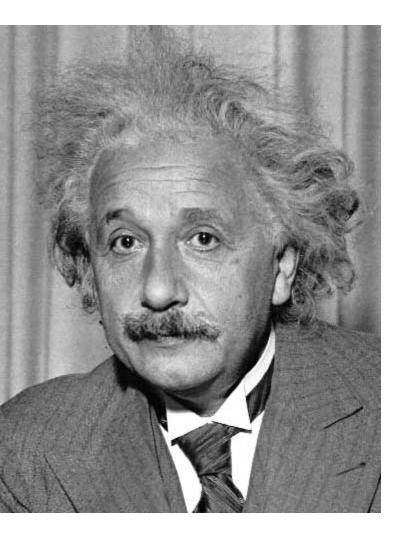
?

Original

0	0	0
0	0	1
0	0	0

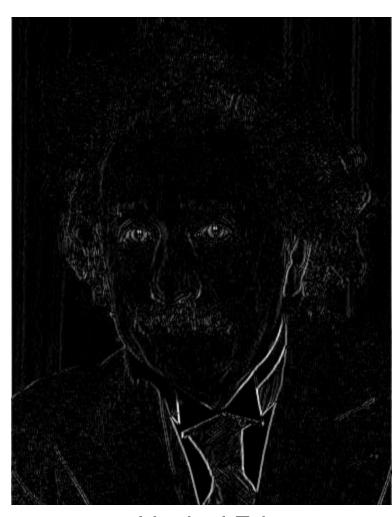
Shifted left By 1 pixel

Other filters



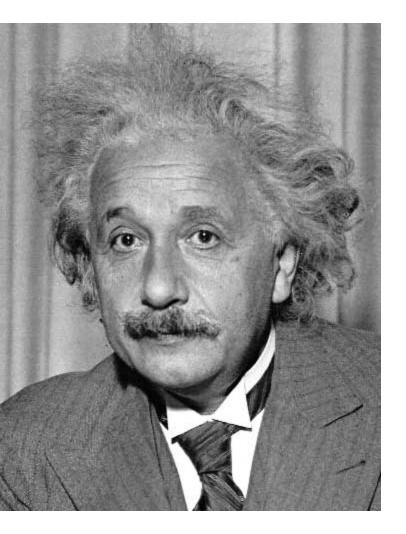
1	0	-1
2	0	-2
1	0	-1

Sobel



Vertical Edge (absolute value)

Other filters



1	2	1
0	0	0
-1	-2	-1

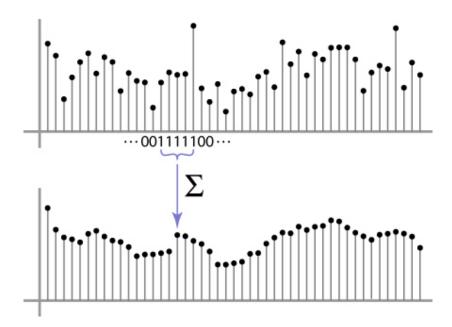
Sobel

Horizontal Edge (absolute value)

Back to the box filter

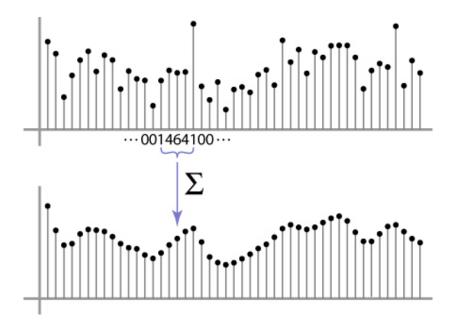
Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



Weighted Moving Average

bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]



Moving Average In 2D

What are the weights H?

				9					
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



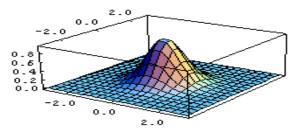
Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

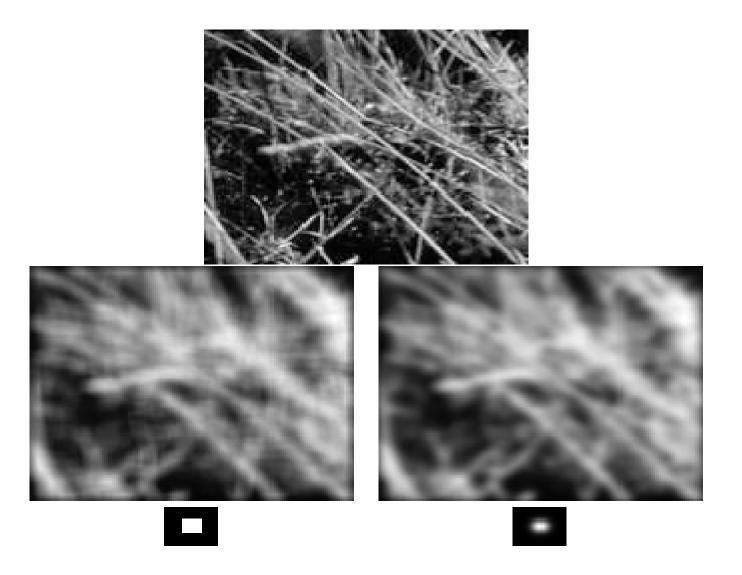
$$\overline{F[x,y]}$$

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$



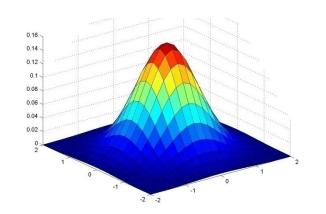
This kernel is an approximation of a Gaussian function:

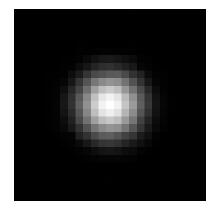
Mean vs. Gaussian filtering



Important filter: Gaussian

Weight contributions of neighboring pixels by nearness





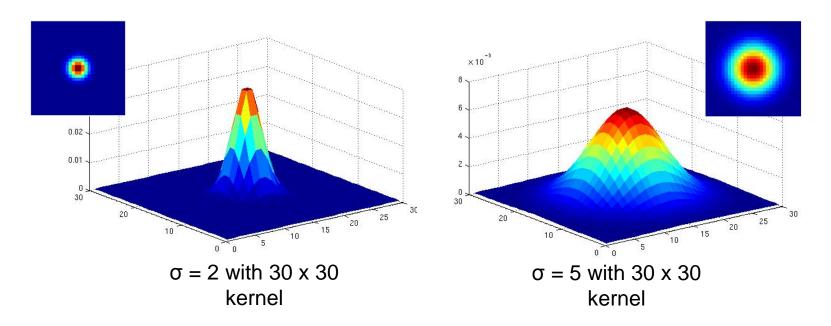
				0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Gaussian Kernel

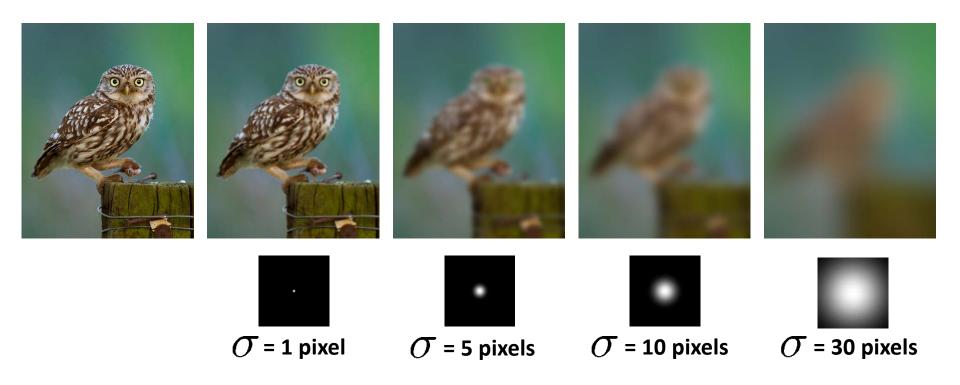
$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$



• Standard deviation σ : determines extent of smoothing

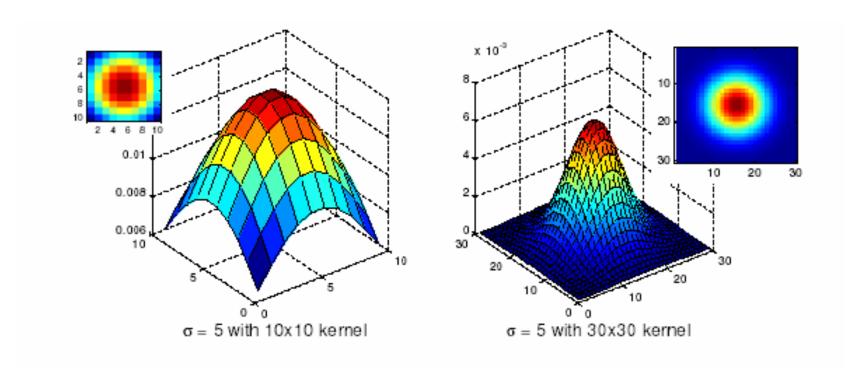
Source: K. Grauman

Gaussian filters



Choosing kernel width

 The Gaussian function has infinite support, but discrete filters use finite kernels

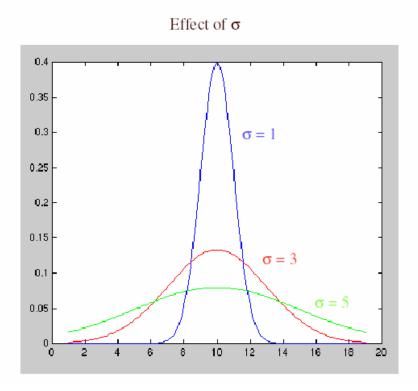


Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 σ



Cross-correlation vs. Convolution

cross-correlation: $G = H \otimes F$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

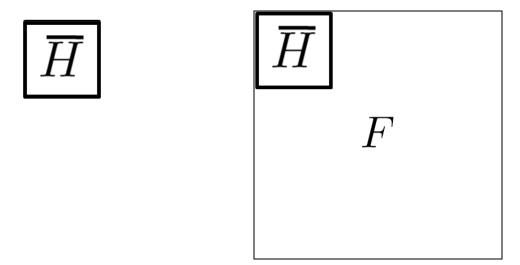
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Convolution is commutative and associative

Convolution



Convolution is nice!

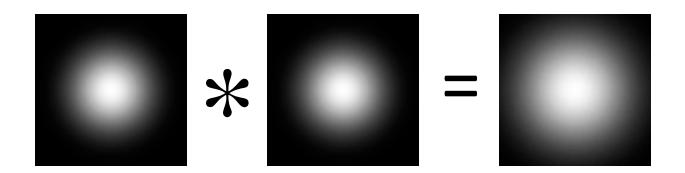
- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b+c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

$$a \star e = a$$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Gaussian and convolution

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian



– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?

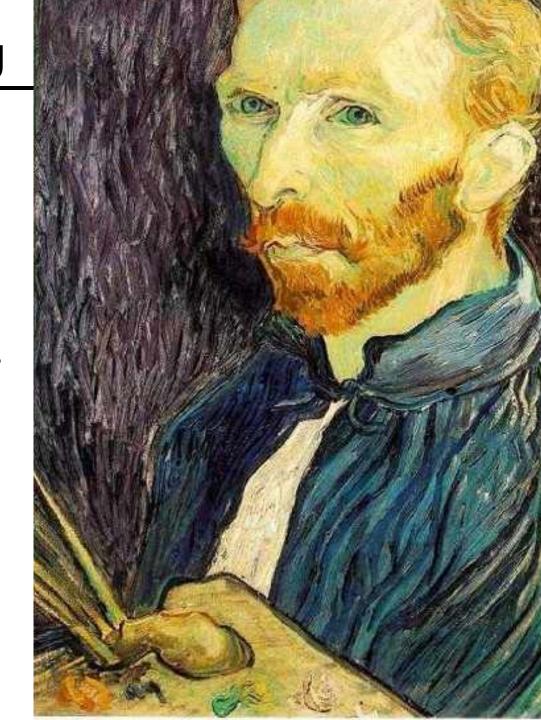
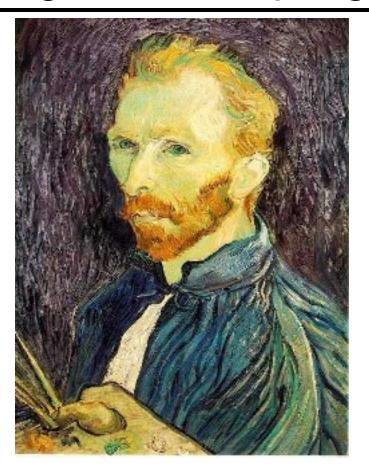


Image sub-sampling

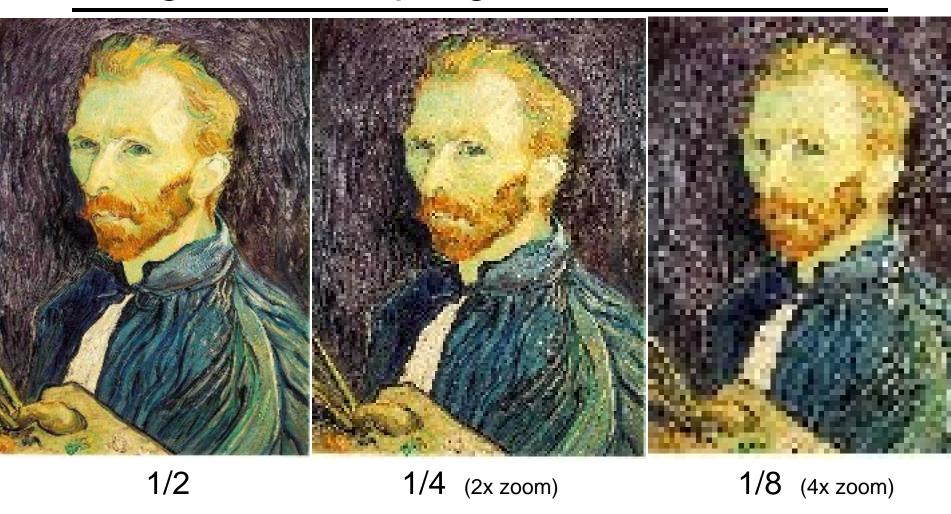


1/8

1/4

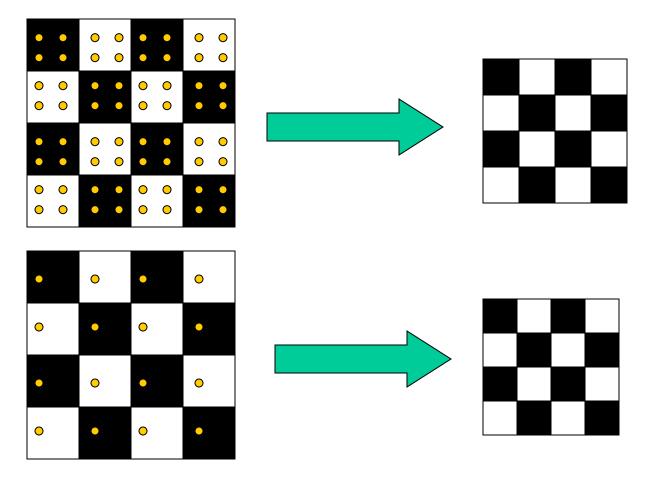
Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling



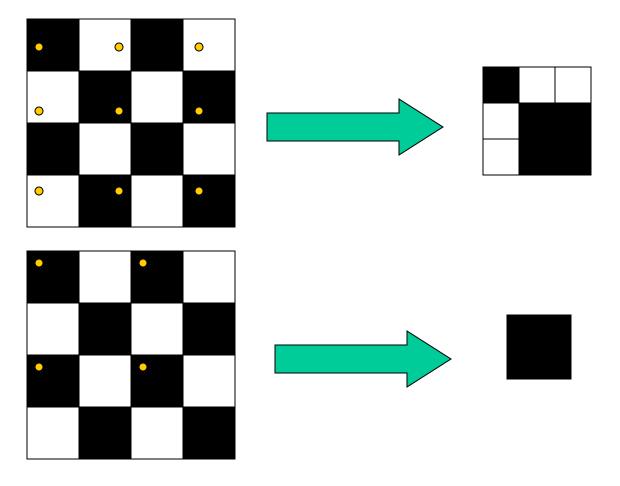
Aliasing! What do we do?

Sampling an image



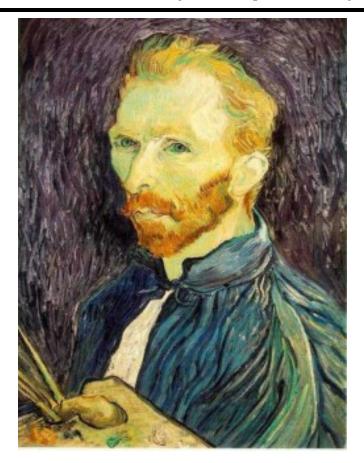
Examples of GOOD sampling

Undersampling



Examples of BAD sampling -> Aliasing

Gaussian (lowpass) pre-filtering



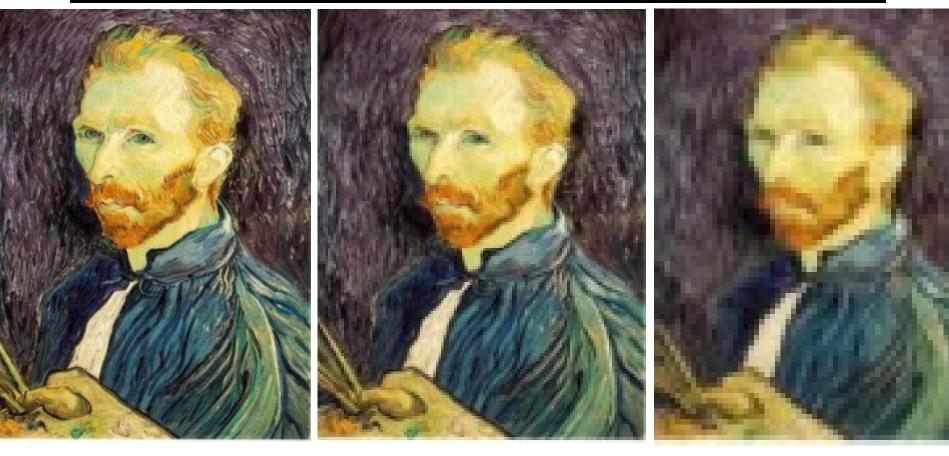
G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

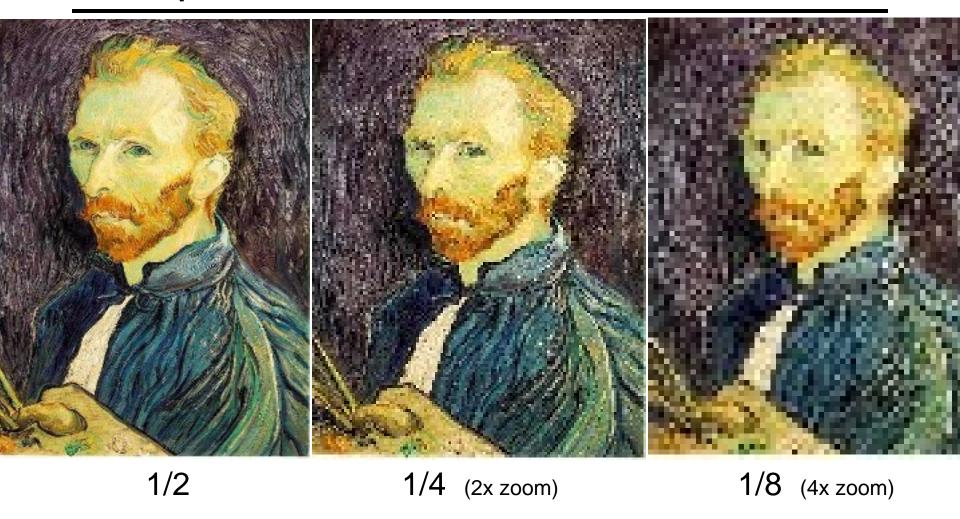
Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering

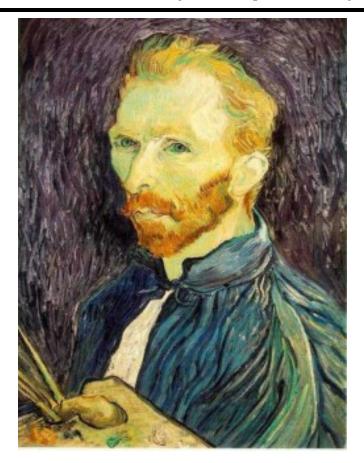


Gaussian 1/2 G 1/4 G 1/8

Compare with...



Gaussian (lowpass) pre-filtering



G 1/4

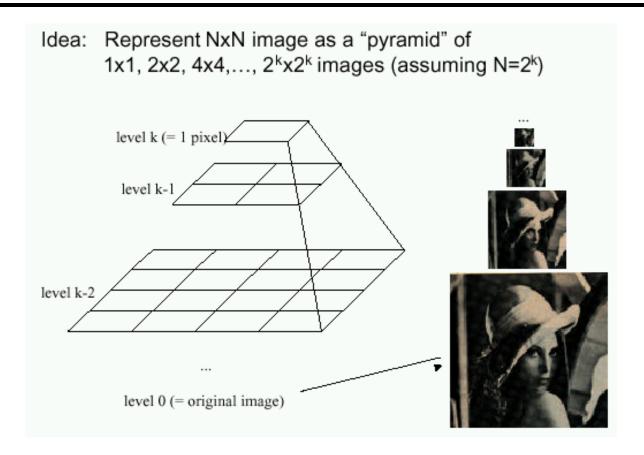
G 1/8

Gaussian 1/2

Solution: filter the image, then subsample

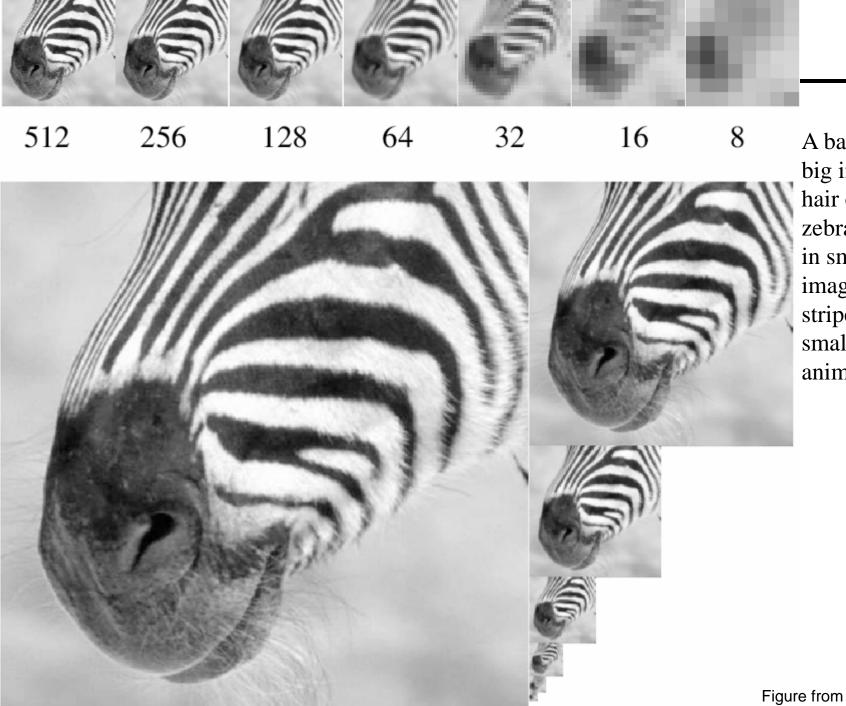
- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Image Pyramids



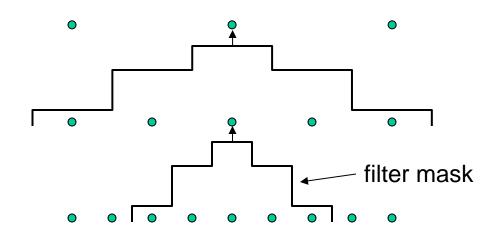
Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform



A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Gaussian pyramid construction



Repeat

- Filter
- Subsample

Until minimum resolution reached

can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

What are they good for?

Improve Search

- Search over translations
 - Classic coarse-to-fine strategy
- Search over scale
 - Template matching
 - E.g. find a face at different scales

Taking derivative by convolution

Partial derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:
$$M_z = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 & -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Image gradient

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

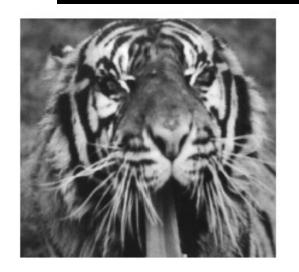
The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

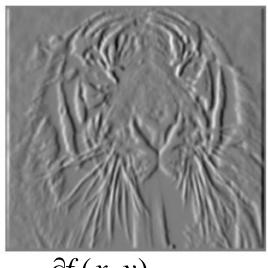
The edge strength is given by the gradient magnitude

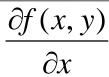
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

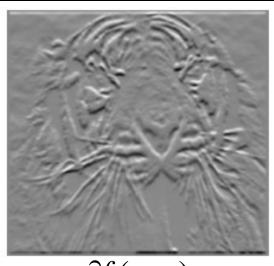
Source: Steve Seitz

Image Gradient









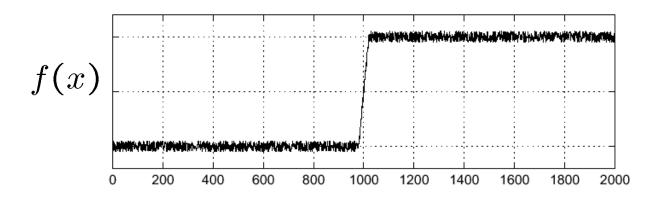
$$\frac{\partial f(x,y)}{\partial y}$$

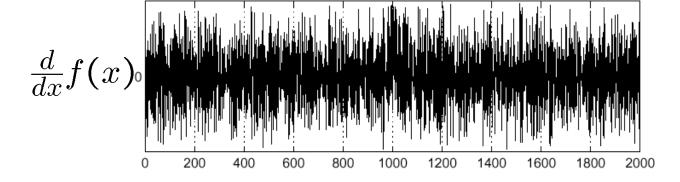
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

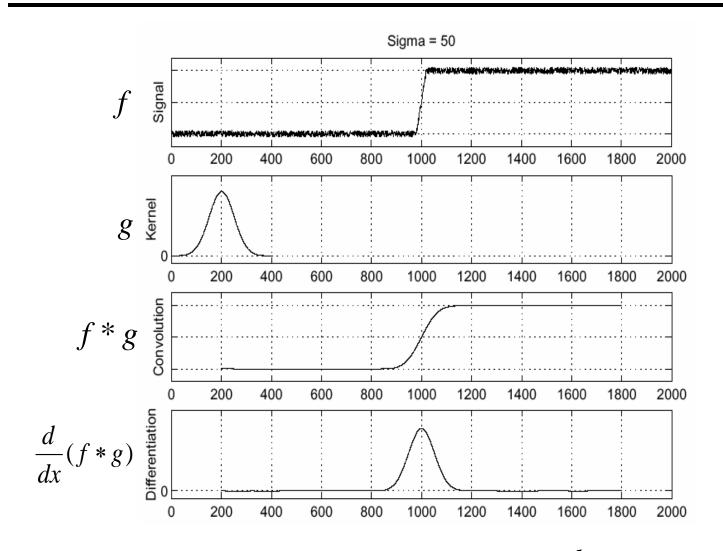
Plotting intensity as a function of position gives a signal





Where is the edge?

Solution: smooth first



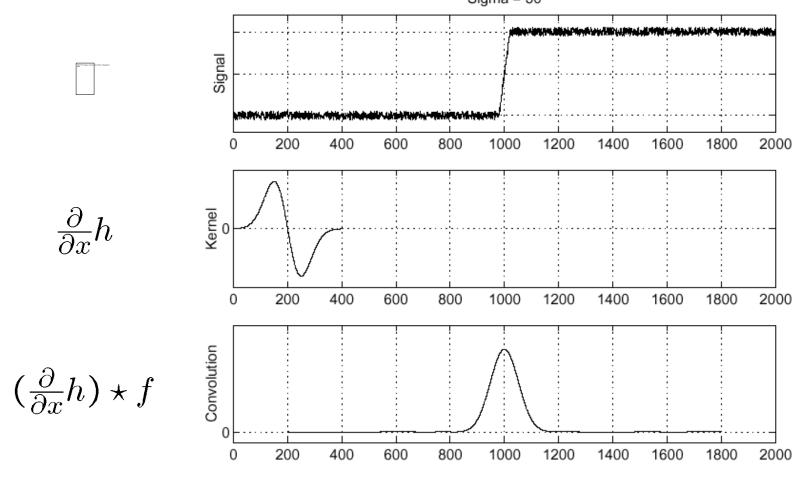
• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

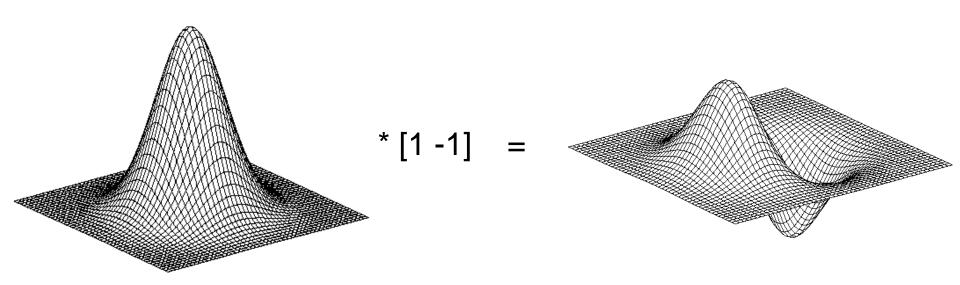
Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

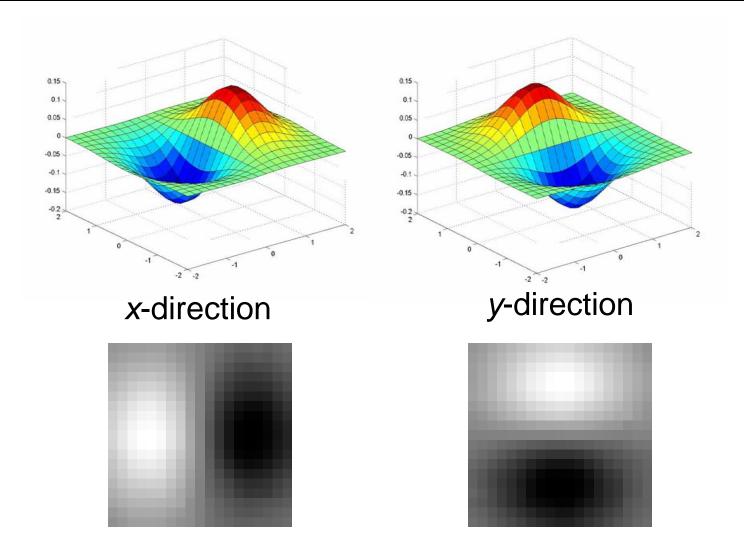
This saves us one operation:



Derivative of Gaussian filter



Derivative of Gaussian filter



Which one finds horizontal/vertical edges?

Example

input image ("Lena")

Compute Gradients (DoG)

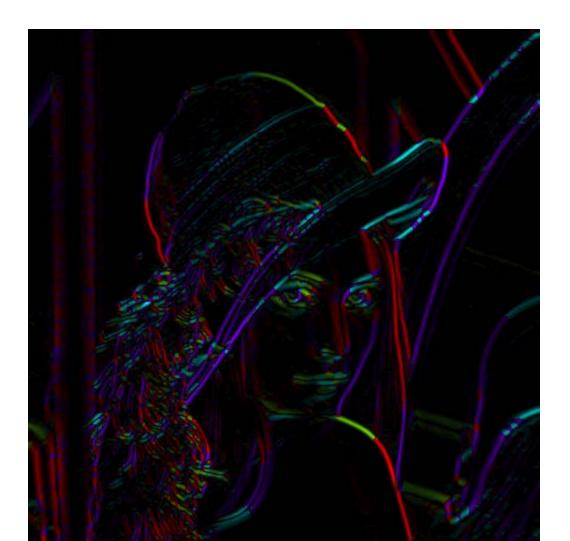
X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Get Orientation at Each Pixel

Threshold at minimum level Get orientation



theta = atan2(-gy, gx)

MATLAB demo

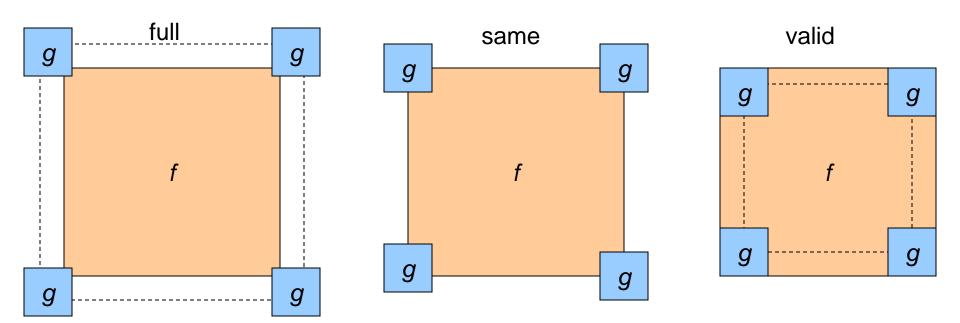
```
im = im2double(imread(filemane));
g = fspecial('gaussian',15,2);
imagesc(g);
surfl(g);
gim = conv2(im, g, 'same');
imagesc(conv2(im,[-1 1],'same'));
imagesc(conv2(gim,[-1 1], 'same'));
dx = conv2(q, [-1 1], 'same');
Surfl(dx);
imagesc(conv2(im,dx,'same'));
```

Practical matters

What is the size of the output?

MATLAB: filter2(g, f, shape) or conv2(g,f,shape)

- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g



Practical matters

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Practical matters

methods (MATLAB):

- clip filter (black): imfilter(f, g, 0)

– wrap around: imfilter(f, g, 'circular')

- copy edge: imfilter(f, g, 'replicate')

– reflect across edge: imfilter(f, g, 'symmetric')

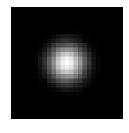
Review: Smoothing vs. derivative filters

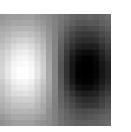
Smoothing filters

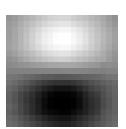
- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero:** no response in constant regions
- High absolute value at points of high contrast





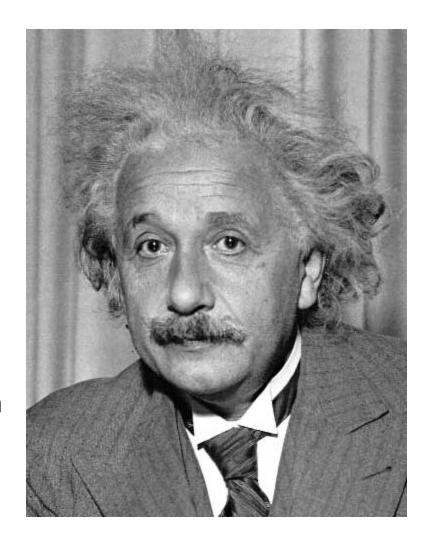


Template matching

Goal: find **m** in image

Main challenge: What is a good similarity or distance measure between two patches?

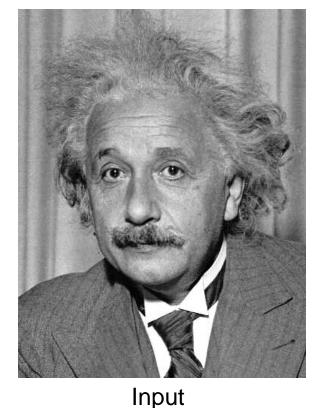
- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross Correlation

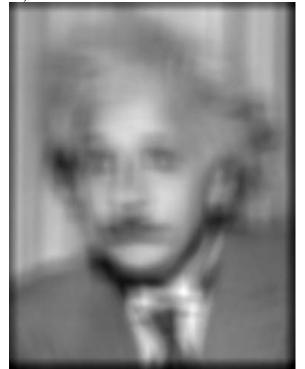


Goal: find in image

Method 0: filter the image with eye patch

 $h[m,n] = \sum g[k,l] f[m+k,n+l]$





What went wrong?

f = image

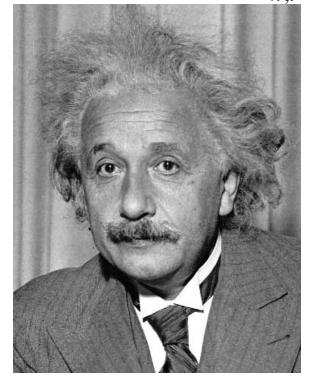
g = filter

Filtered Image

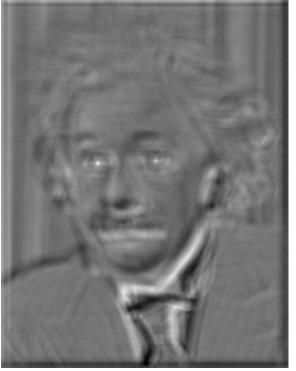
Goal: find image

Method 1: filter the image with zero-mean eye

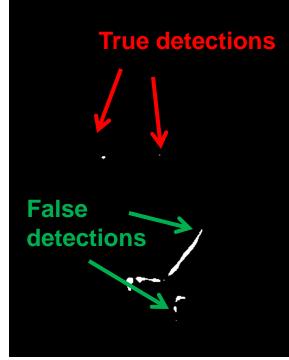
$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) (g[m+k,n+l])$$
mean of f



Input



Filtered Image (scaled)

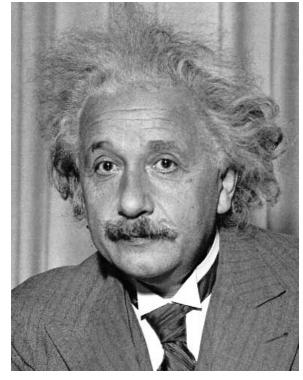


Thresholded Image

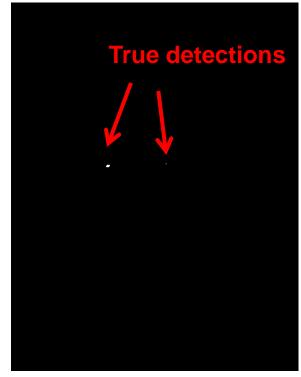
Goal: find image

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$



1- sqrt(SSD)



Thresholded Image

Can SSD be implemented with linear filters?

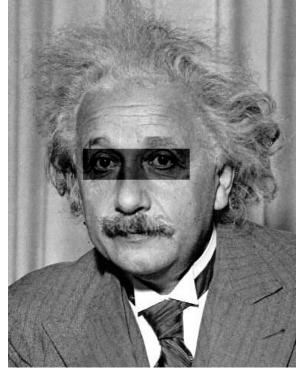
$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$

Goal: find image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$



Input 1- sqrt(SSD)

Side by Derek Hoiem

Goal: find image

Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\displaystyle\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\displaystyle\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

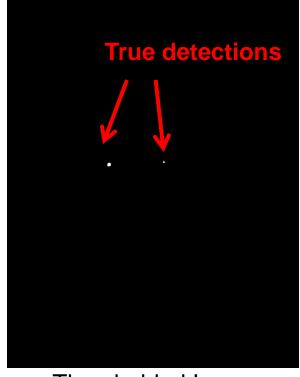
Goal: find image

Method 3: Normalized cross-correlation



Input

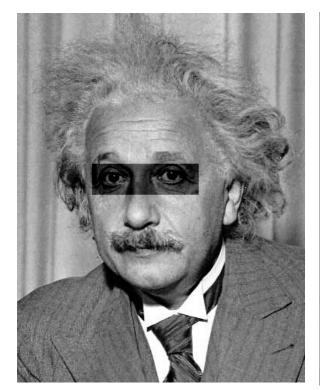
Normalized X-Correlation



Thresholded Image

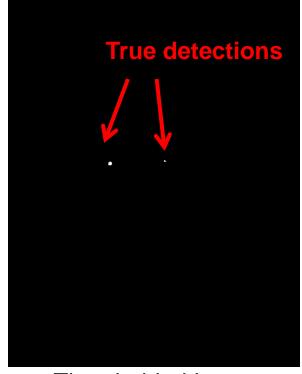
Goal: find image

Method 3: Normalized cross-correlation



Input

Normalized X-Correlation



Thresholded Image

Q: What is the best method to use?

- A: Depends
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast