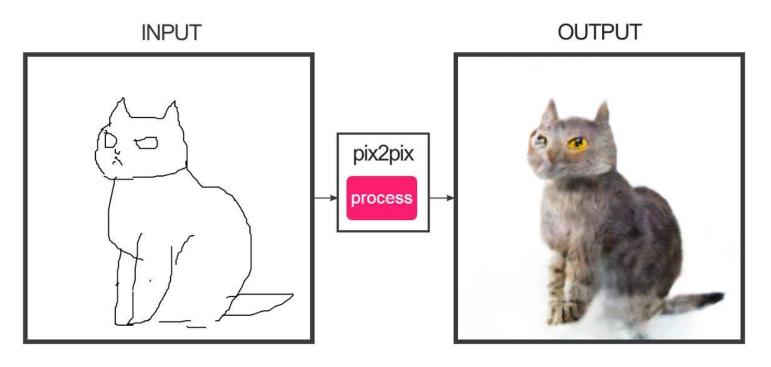
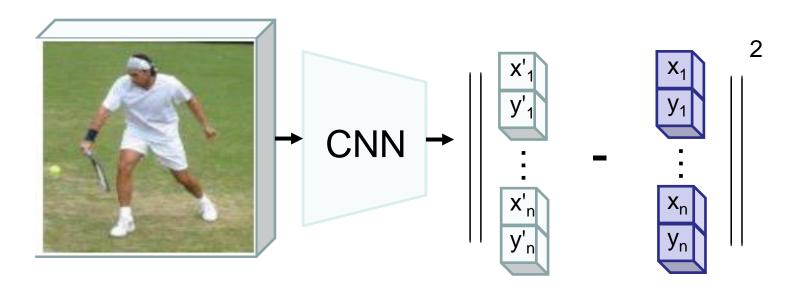
ConvNet for image-to-image tasks



Many slides from Herr Prof. David Fouhey

CS194: Computer Vision and Comp. Photo Alexei Efros, UC Berkeley, Fall 2022

Regression Objective



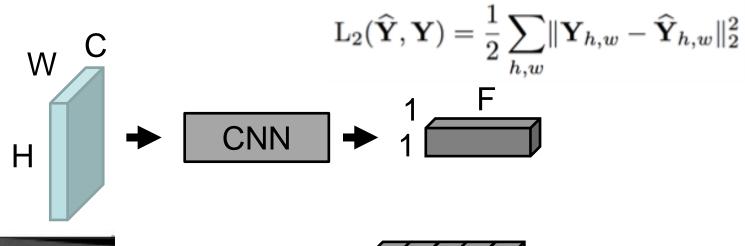
This is what you implement in part 1. But this is not what the SoTA models do in practice

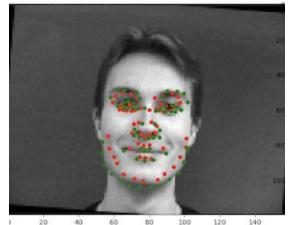
Downsides of regression objective

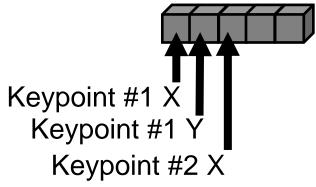
Locally a lot of things look similar!!

With regression objective you have to commit to ONE location and only get one training signal on how correct that location was.

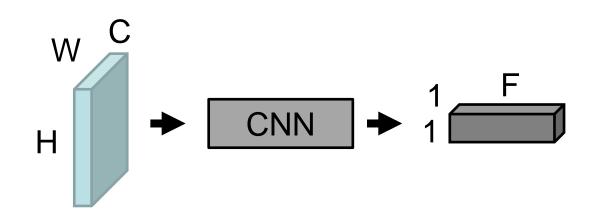
Regression Loss (e.g. Part 1)



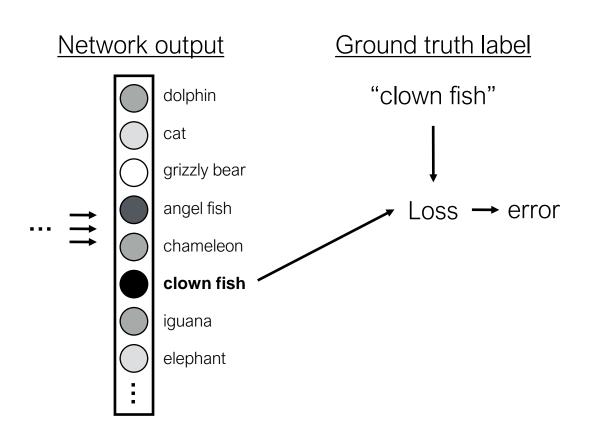


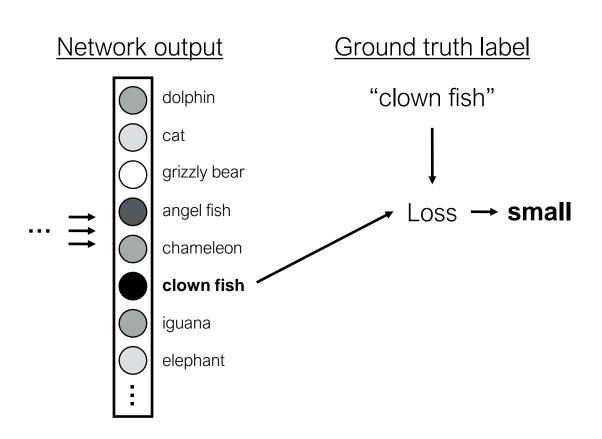


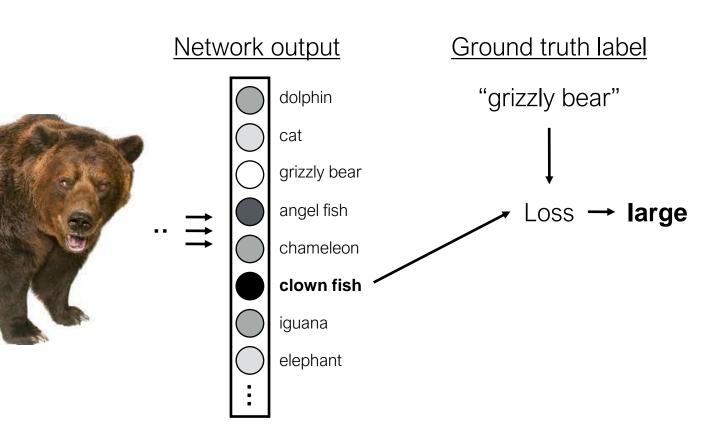
Classification Loss (e.g. ImageNet)



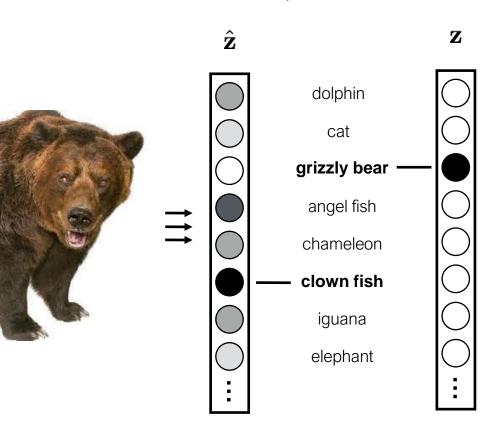
P(image is class #1)
P(image is class #2)
P(image is class #F)







Network output Ground truth label

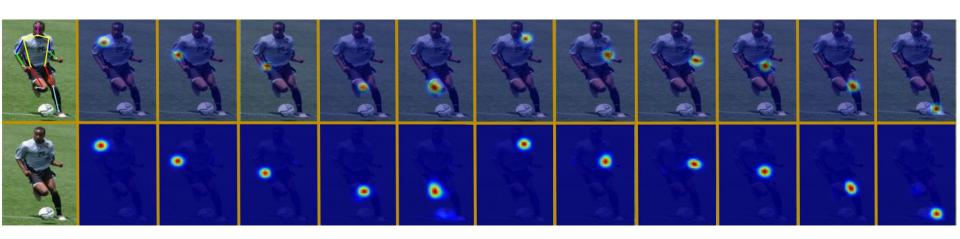


Cross-entropy Loss:
Probability of the
observed data under
the model

$$H(\hat{\mathbf{z}},\mathbf{z}) = -\sum_{c} \hat{\mathbf{z}}_c \log \mathbf{z}_c$$

Results in learning a probability model $p(c|\mathbf{x})$

Belief/Confidence map formulation



[Thompson et al. NeurIPS 2014, CVPR 2015, Convolutional Pose Machine, Wei et al. CVPR 2016, (figure credit: Ning et al TMM 2017)...]

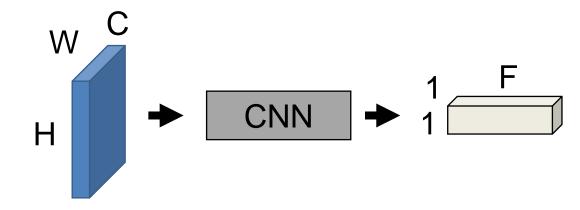
For K keypoints, train model to predict K many sheets (h x w) of scores of how likely the pixel is k-th keypoint

Problem

So far, we've only seen examples that output a vector representation out of an image.

How do we do dense (per-pixel) predictions?

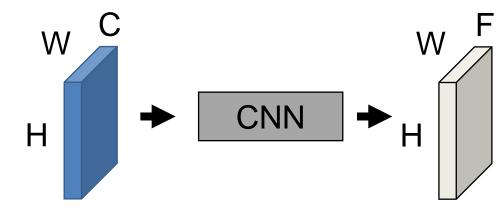
So Far...



Convert HxW image into a F-dimensional vector

Is this image a cat?
At what distance was this photo taken?
Is this image fake?

Pixel Labeling



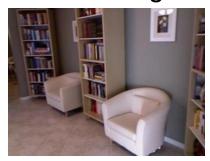
Convert HxW image into a F-dimensional vector

Which pixels in this image are a cat? How far is each pixel away from the camera? Which pixels of this image are fake?

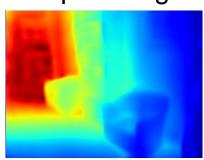
e.g. Depth Prediction

Instead: give label of depthmap, train network to do regression (e.g., $||z_i - \widehat{z_i}||$ where z_i is the ground-truth and $\widehat{z_i}$ the prediction of the network at pixel i).

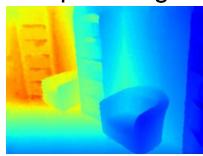
Input HxWx3 RGB Image



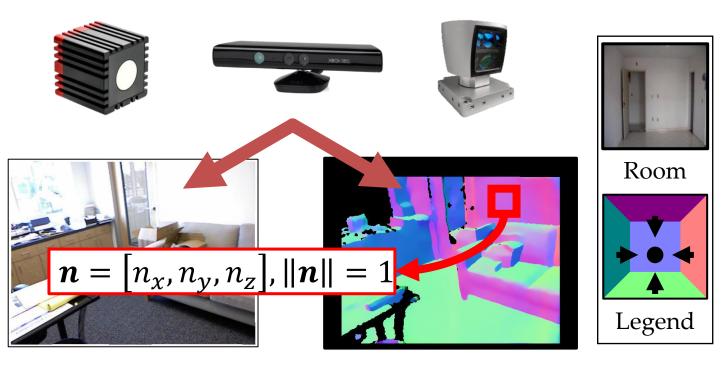
Output HxWx1 Depth Image



True HxWx1 Depth Image



Surface Normals



Color Image

Normals

Surface Normals

Instead: train normal network to minimize $\|\boldsymbol{n}_i - \widehat{\boldsymbol{n}_i}\|$ where \boldsymbol{n}_i is ground-truth and $\widehat{\boldsymbol{n}_i}$ prediction at pixel i.

Input: HxWx3 RGB Image

Output: HxWx3
Normals

Result credit: X. Wang, D. Fouhey, A. Gupta, Designing Deep Networks for Surface Normal Estimation. CVStide by David Fouhey

"Semantic Segmentation"

Each pixel has label, inc. **background**, and unknown Usually visualized by colors.

Note: don't distinguish between object instances

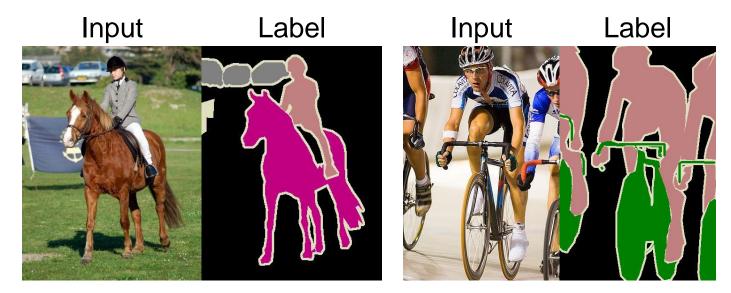
Input Label

Input Label

"Semantic Segmentation"

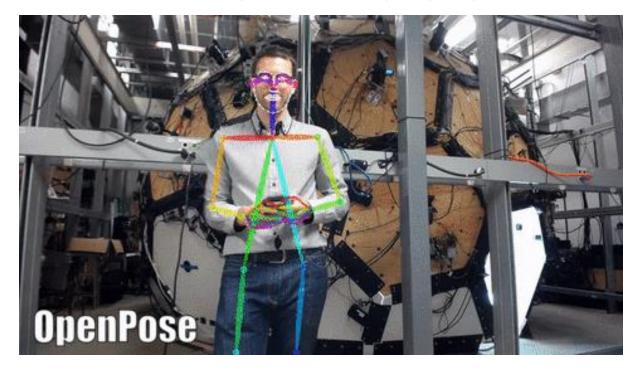
"Semantic": a usually meaningless word.

Meant to indicate here that we're **naming** things.



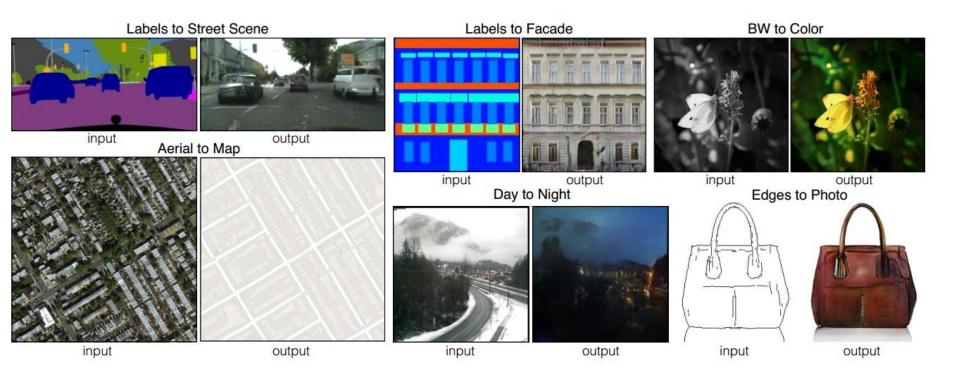
OpenPose

Great opensource tool, builds on convolutional pose machine architecture, adapted to multiple people



Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, Yaser Sheikh '16-17

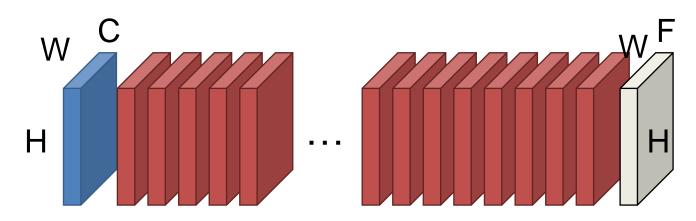
Generic Image-to-Image Translation



First – Two "Wrong" Ways

It's helpful to see two "wrong" ways to do this.

Why Not Stack Convolutions?

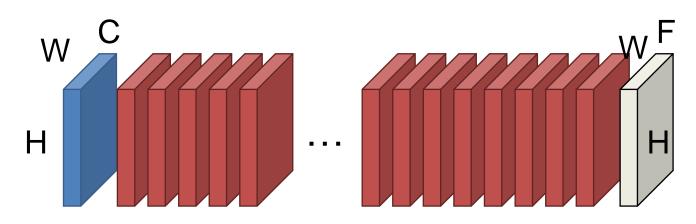


n 3x3 convs have a receptive field of 2n+1 pixels

How many convolutions until >=200 pixels?

100

Why Not Stack Convolutions?



Suppose 200 3x3 filters/layer, H=W=400

Storage/layer/image: 200 * 400 * 400 * 4 bytes = 122MB

Uh oh!*

*100 layers, batch size of 20 = 238GB of memory!

Idea #2

Crop out every sub-window and predict the label in the middle.

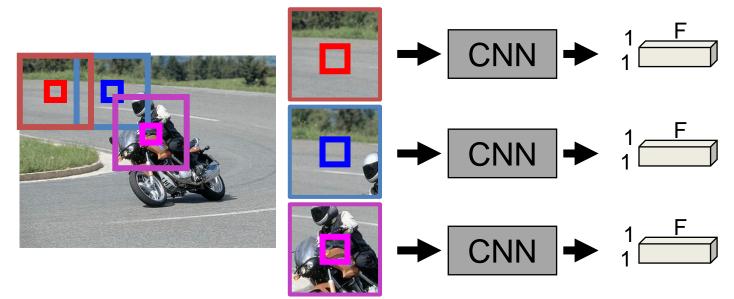
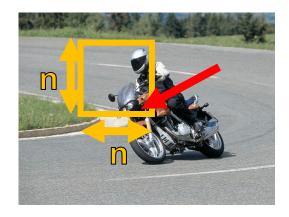


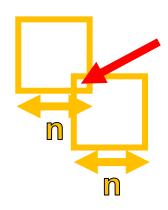
Image credit: PASCAL VOC, Everingham et al.

Idea #2

Meet "Gabor". We extract NxN patches and do independent CNNs. How many times does Gabor filter the red pixel?

Gabor





Answer: (2n-1)*(2n-1)

The Big Issue

We need to:

- 1. Have large receptive fields to figure out what we're looking at
- 2. Not waste a ton of time or memory while doing so

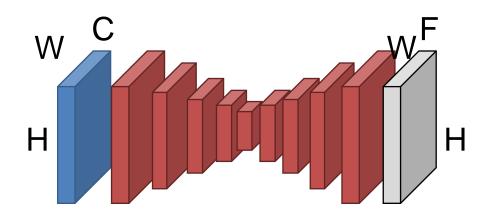
These two objectives are in total conflict

Encoder-Decoder

Key idea: First **downsample** towards middle of network. Then **upsample** from middle.

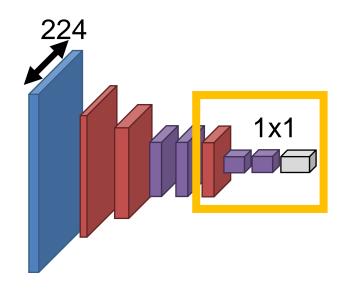
How do we downsample?

Convolutions, pooling



Where Do We Get Parameters?

Convnet that maps images to vectors

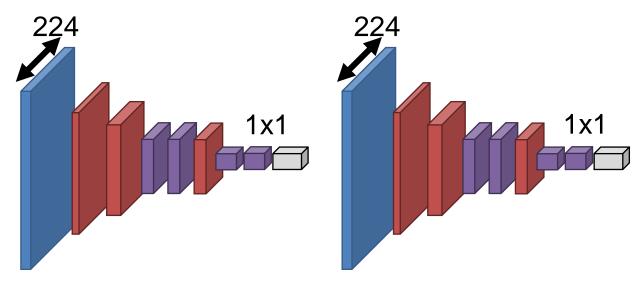


Recall that we can rewrite any vector-vector operations via 1x1 convolutions

Where Do We Get Parameters?

Convnet that maps images to vectors

Convnet that maps images to images

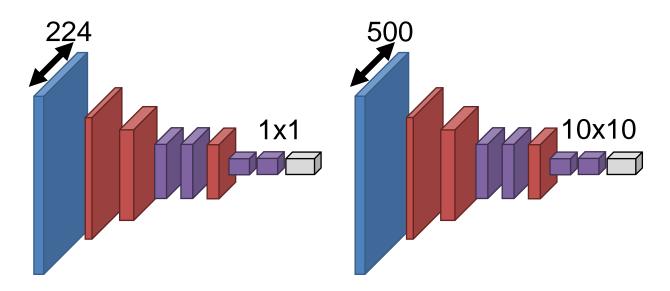


What if we make the input bigger?

Where Do We Get Parameters?

Convnet that maps images to vectors

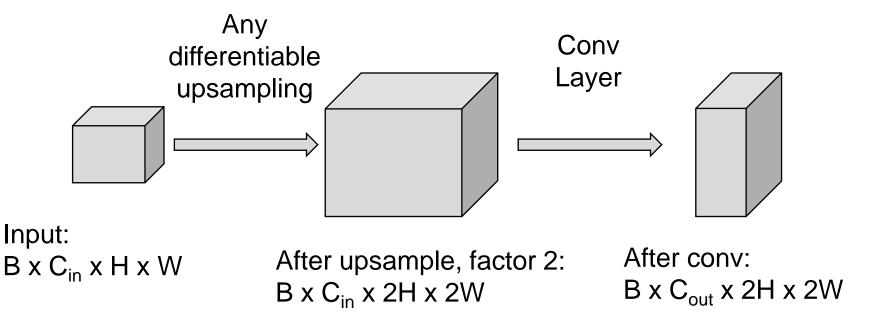
Convnet that maps images to images



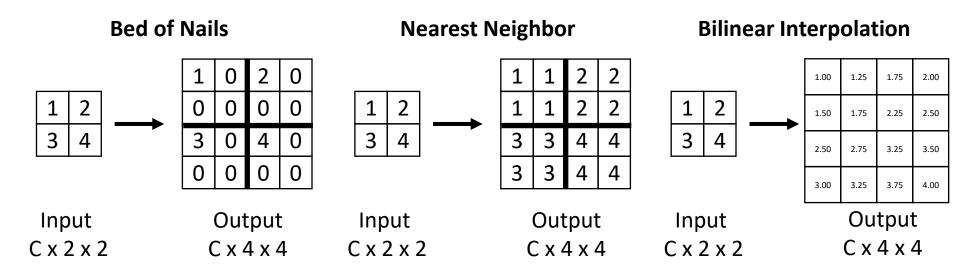
How to upsample with convnets?

Simple solution

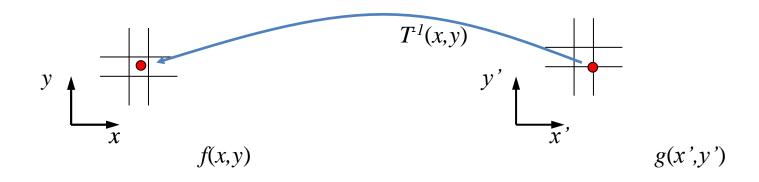
Upsample, followed by a regular Convolution



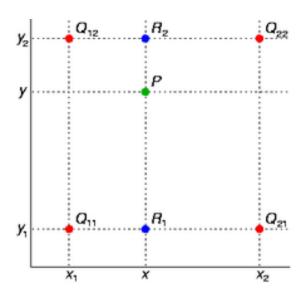
How to Upsample



Recall from Morphing Lecture: Inverse warping Don't splat! Do inverse warping. You know this from project 3



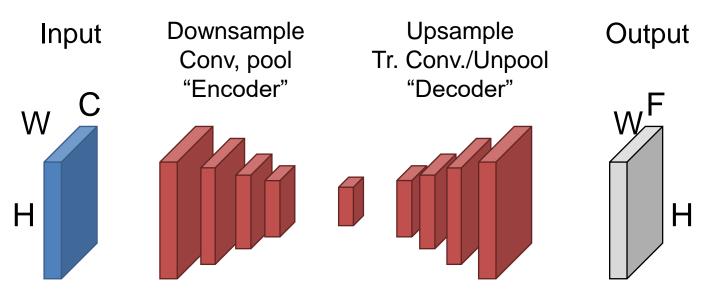
Recall: Bilinear Interpolation



http://en.wikipedia.org/wiki/Bilinear_interpolation
Help interp2

Putting it Together

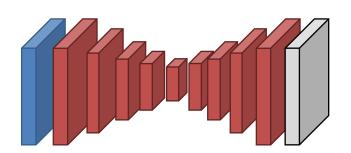
Convolutions + pooling downsample/compress/encode Transpose convs./unpoolings upsample/uncompress/decode



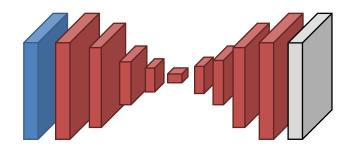
Putting It Together – Block Sizes

- Networks come in lots of forms
- Don't take any block sizes literally.
- Often (not always) keep some spatial resolution

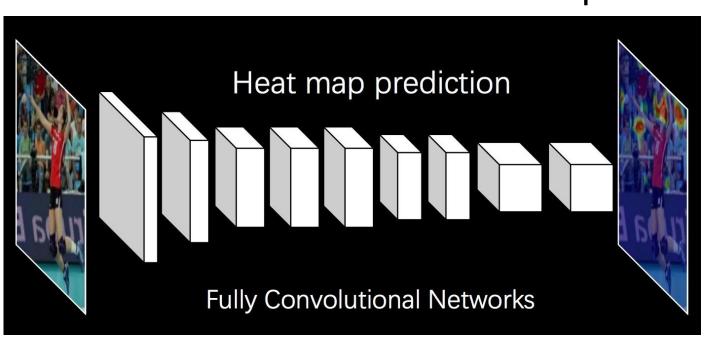
Encode to spatially smaller tensor, then decode.

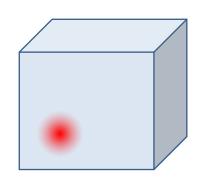


Encode to 1D vector then decode



Application to pose detection: Predict heat maps





Target: K+1 x H x W
Gaussian around
(x,y) for k-th
keypoint in the k-th
channel

K+1 for K parts + background

You will implement this in project 5!

L2 Training Loss

 L2 loss on the target heatmap (peaky gaussian around the gt keypoint)

$$L = \sum_{k=1}^{K+1} \sum_{(x,y)} ||b^k(x,y) - b_*^k(x,y)||$$

Target "belief map":

K+1 x H x W

Gaussian around

(x,y) for k-th

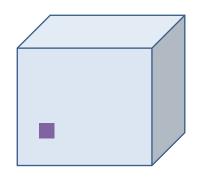
keypoint in the k-th

channel

You will implement this in project 5!

Log Loss Training Loss

- Log loss (or cross entropy loss) on the target heatmap probabilities
- The target must also sum to 1
- Mask RCNN just uses 1 at the target, 0 everywhere else.
- Experiment



Target "belief map":

K+1 x H x W

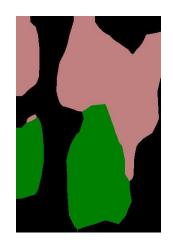
1 at Grount truth
location (x,y) for kth keypoint in the kth channel

Missing Details

While the output *is* HxW, just upsampling often produces results without details/not aligned with the image.

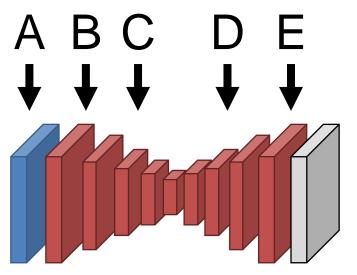
Why?

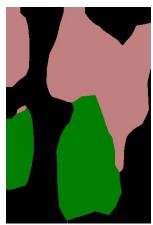
Information about details lost when downsampling!



Missing Details

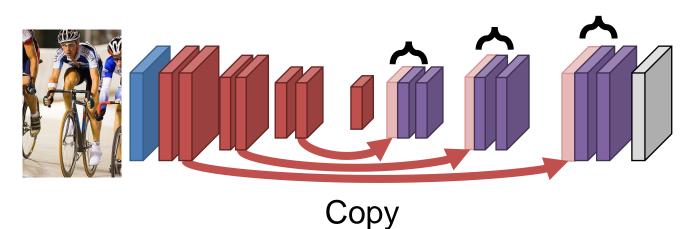
Where is the useful information about the high-frequency details of the image?

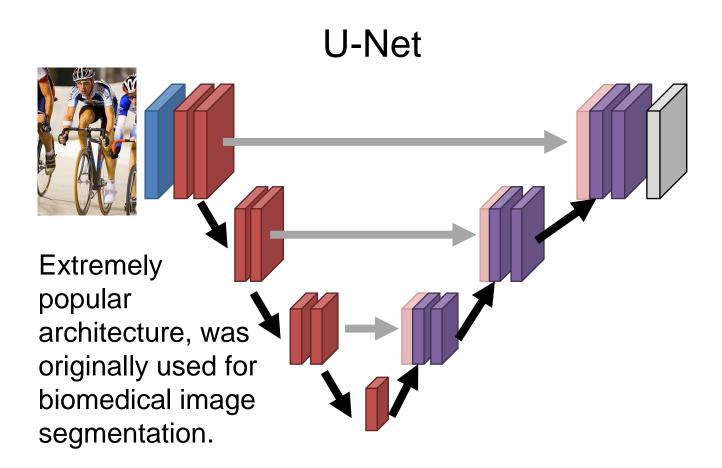




Missing Details

How do you send details forward in the network?
You copy the activations forward.
Subsequent layers at the same resolution figure out how to fuse things.





U-Net improves performance

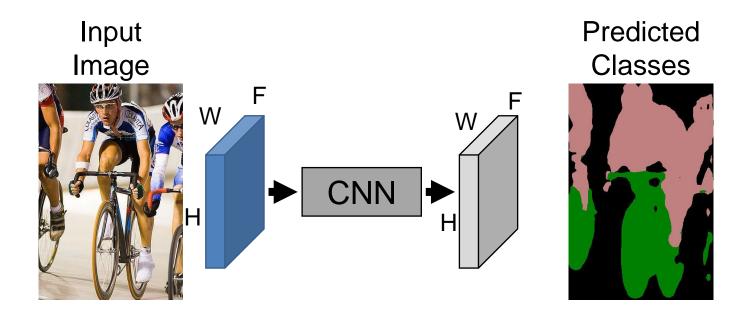
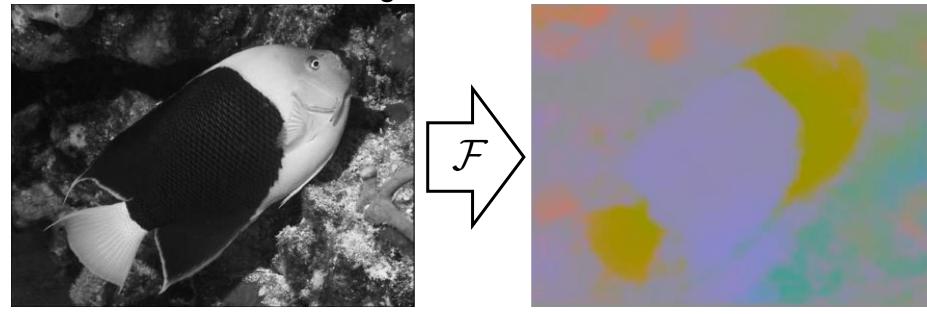
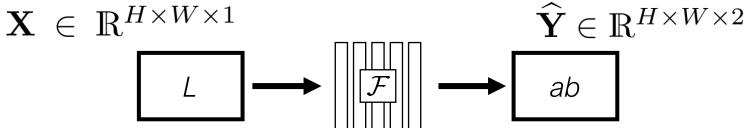


Image Colorization

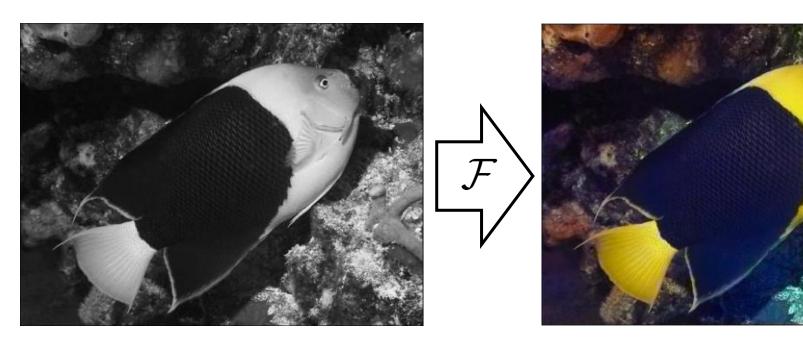


Grayscale image: L channel



Zhang, Isola, Efros. *Colorful Image Colorization*. In *ECCV*, 2016.

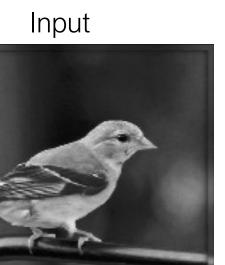
Color information: ab channels



Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ Concatenate (L,ab) channels $(\mathbf{X},\widehat{\mathbf{Y}})$

Zhang, Isola, Efros. *Colorful Image Colorization*. In *ECCV*, 2016.

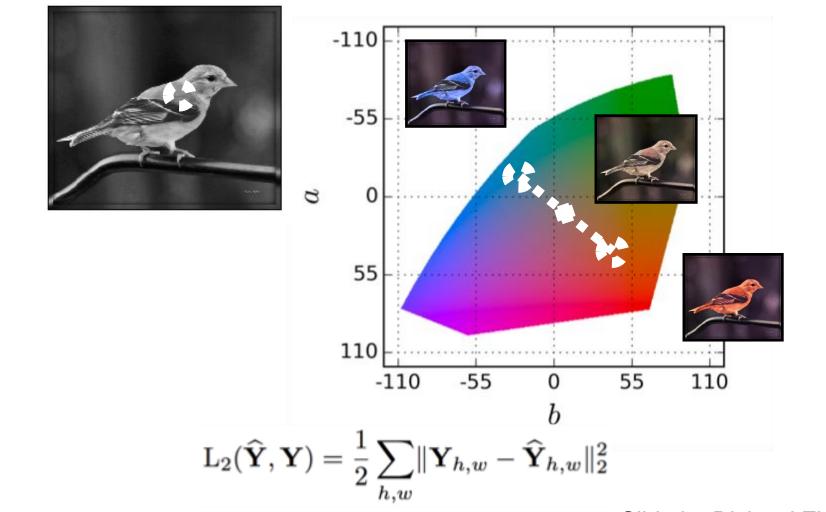
Regressing to pixel values doesn't work 🕾



Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} ||\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}||_2^2$$



Slide by Richard Zhang

Better Loss Function

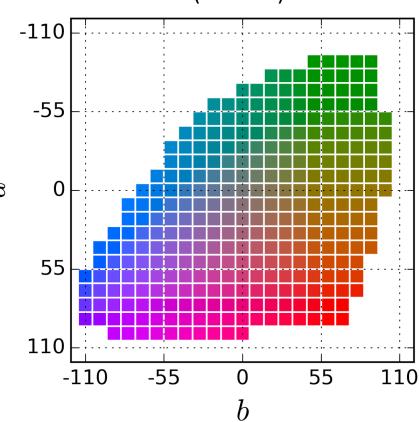
$$\theta^* = \arg\min_{\theta} \ell(\mathcal{F}_{\theta}(\mathbf{X}), \mathbf{Y})$$

Regression with L2 loss inadequate

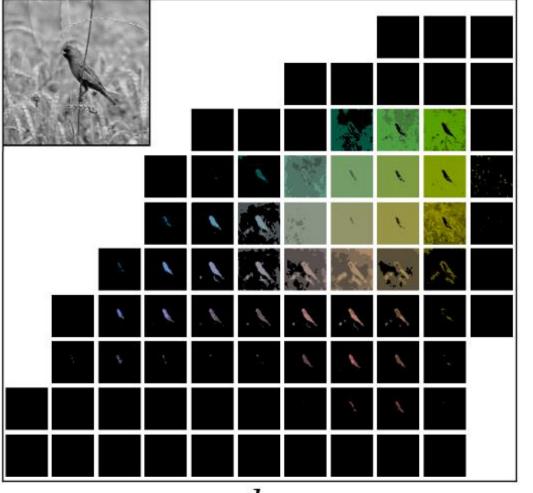
$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} \|\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}\|_2^2$$

• Use per-pixel multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$



Slide by Richard Zhang



a

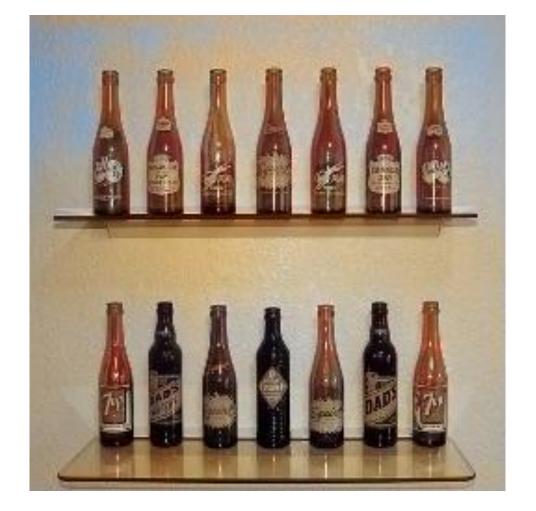
Designing pixel loss functions

Input



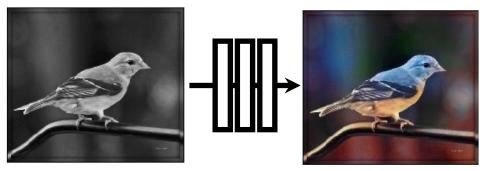
Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.



Designing pixel loss functions

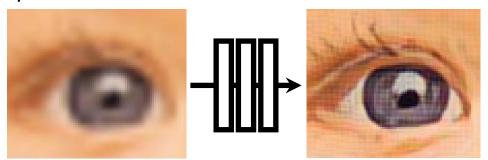
Image colorization



Cross entropy loss, with colorfulness term

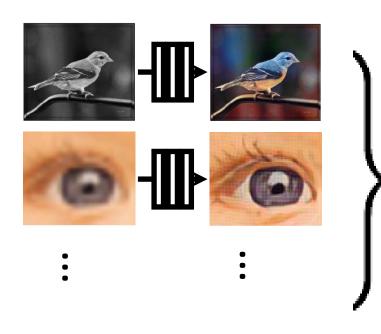
[Zhang et al. 2016]

Super-resolution



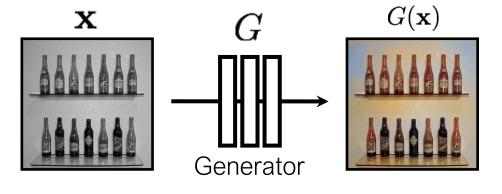
[Johnson et al. 2016]

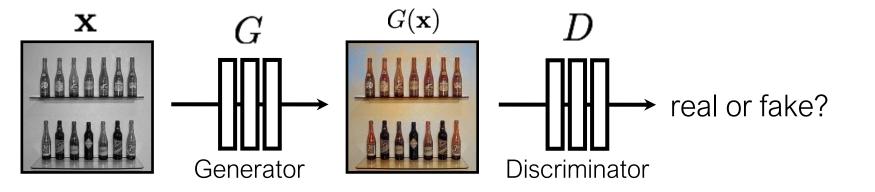
"semantic feature loss" (VGG feature covariance matching objective)



Universal loss?

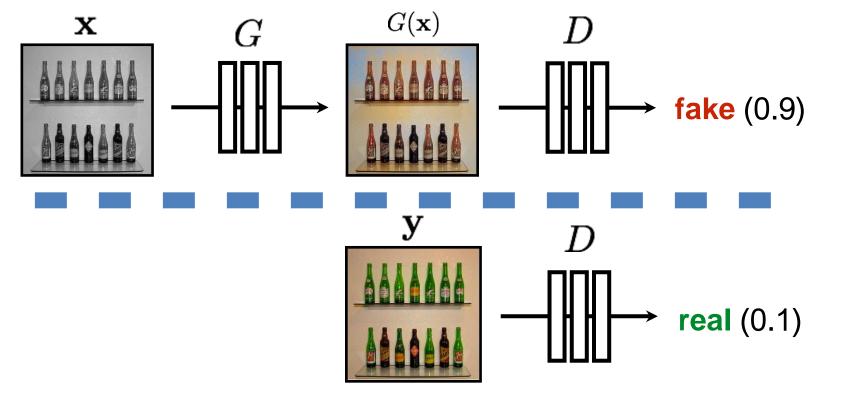
Generated images **Generative Adversarial Network** (GANs) Generated vs Real (classifier) Real photos [Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]





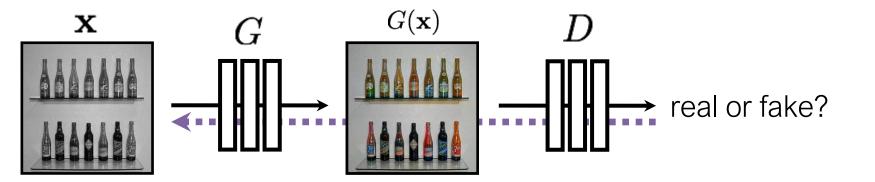
G tries to synthesize fake images that fool **D**

D tries to identify the fakes



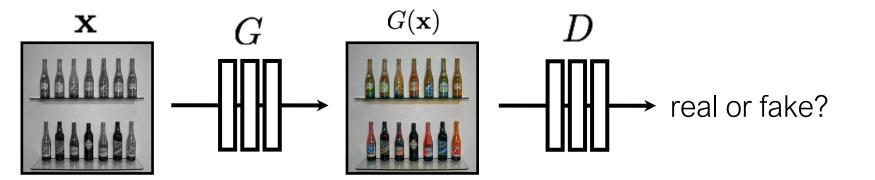
$$\underset{D}{\operatorname{arg\,max}} \; \mathbb{E}_{\mathbf{x},\mathbf{y}}[\; \log D(G(\mathbf{x})) \; + \; \log(1 - D(\mathbf{y})) \;]$$

[Goodfellow et al., 2014]



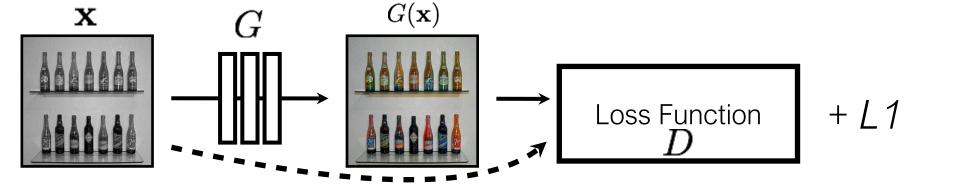
G tries to synthesize fake images that **fool D**:

$$\underset{G}{\operatorname{arg}} \min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



G tries to synthesize fake images that **fool** the **best D**:

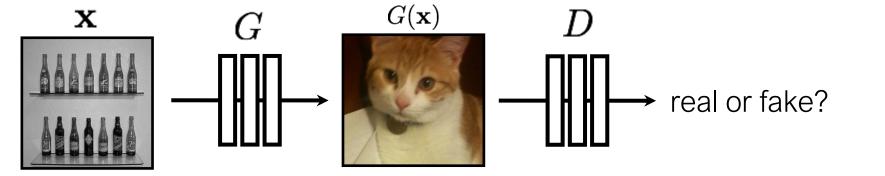
$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



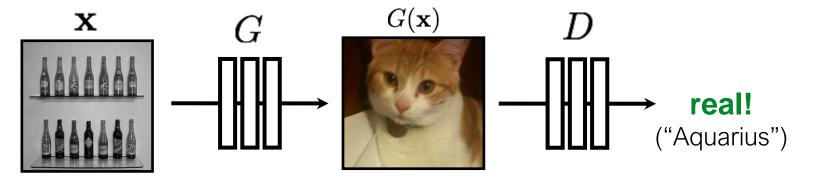
G's perspective: **D** is a loss function.

Rather than being hand-designed, it is learned.

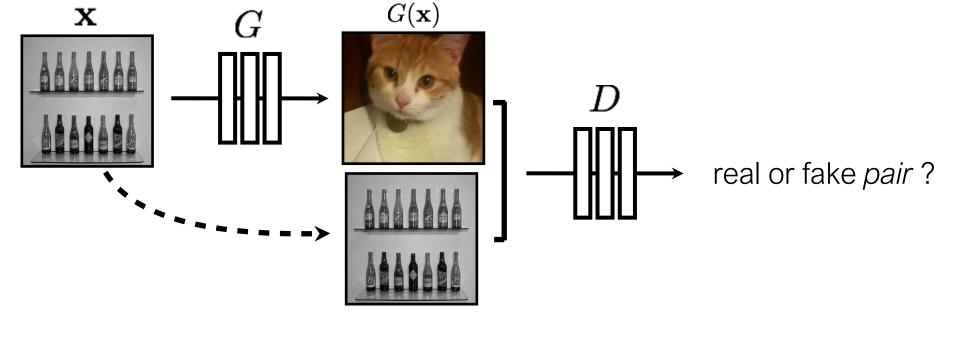
[Goodfellow et al., 2014] [Isola et al., 2017]



$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

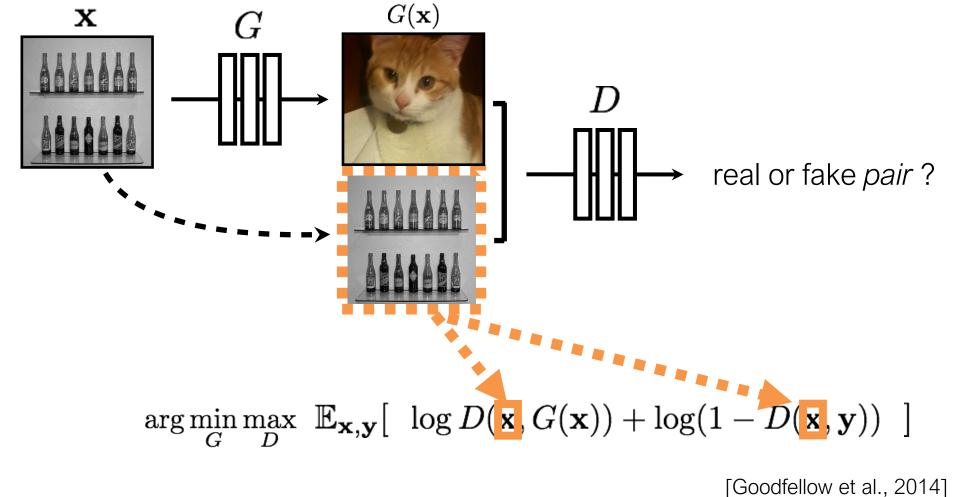


$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

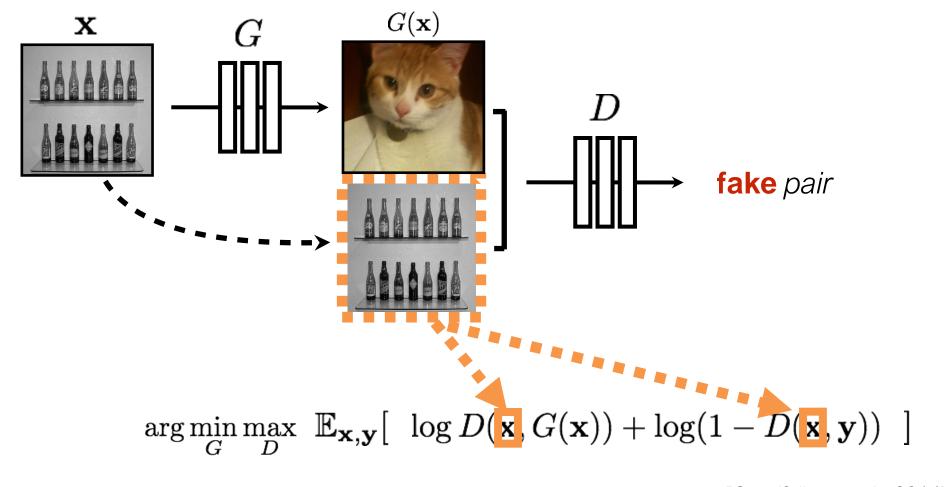


$$rg \min_{G} \max_{D} \; \mathbb{E}_{\mathbf{x},\mathbf{y}}[\; \log D(G(\mathbf{x})) \; + \; \log(1-D(\mathbf{y})) \;]$$
 [Goodfellow et al., 2014]

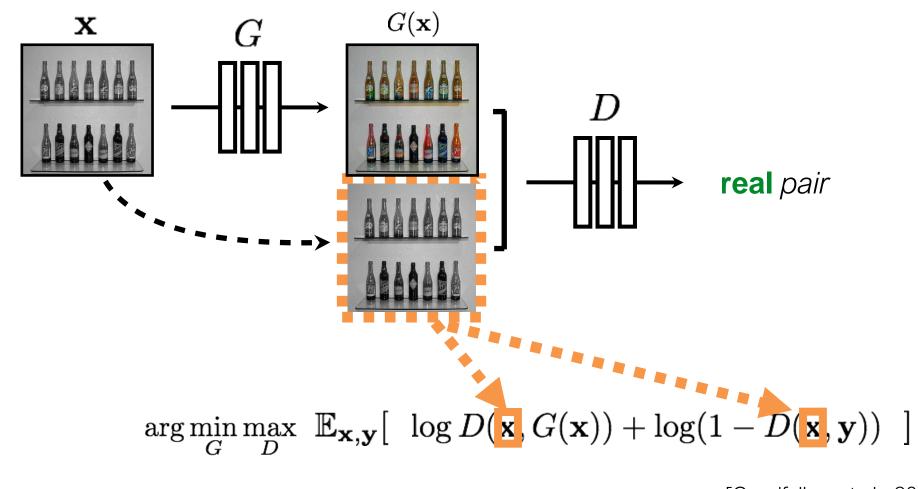
[Isola et al., 2017]



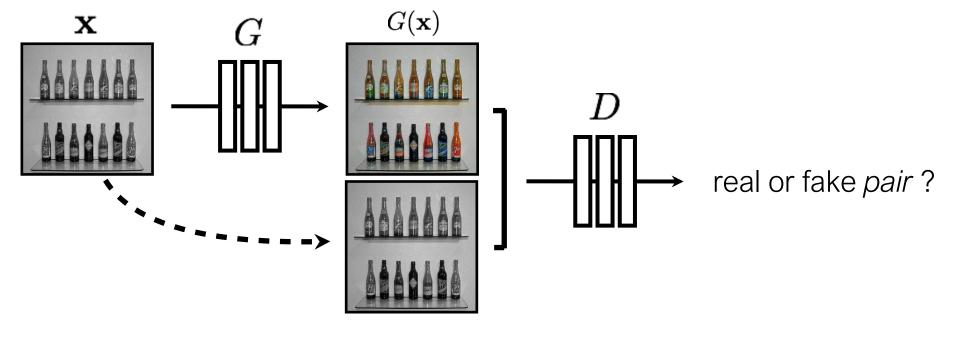
[Isola et al., 2017]



[Goodfellow et al., 2014] [Isola et al., 2017]



[Goodfellow et al., 2014] [Isola et al., 2017]



$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(\mathbf{x},G(\mathbf{x})) + \log(1 - D(\mathbf{x},\mathbf{y}))]$$

[Goodfellow et al., 2014]

[Isola et al., 2017]

BW → Color

Data from [Russakovsky et al. 2015]

BW → Color

Data from [Russakovsky et al. 2015]

Data from [maps.google.com]

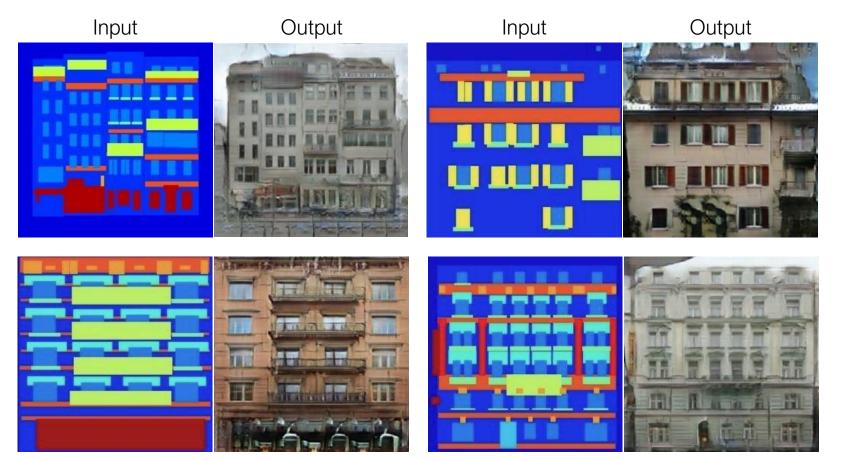
Input Output

Data from [maps.google

Labels → Facades

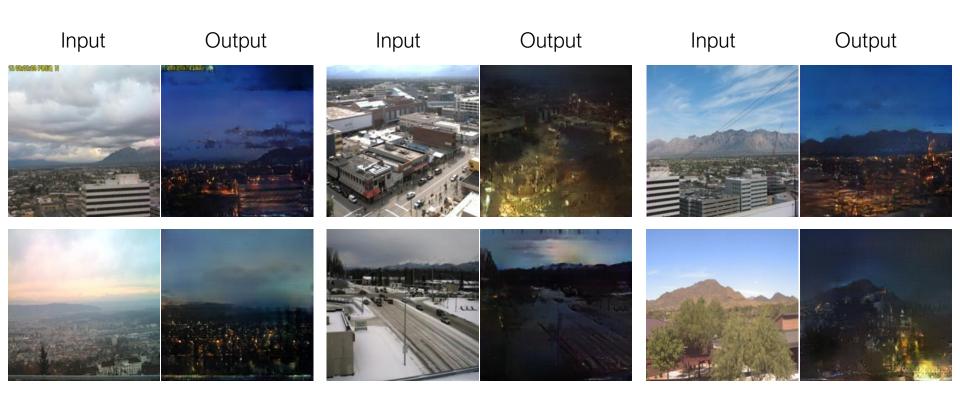
Input Output

Labels → Facades

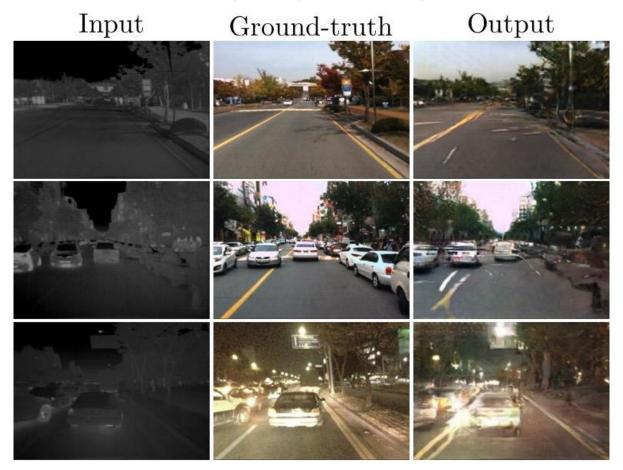


Data from [Tylecek, 2013]

Day → Night



Thermal → RGB

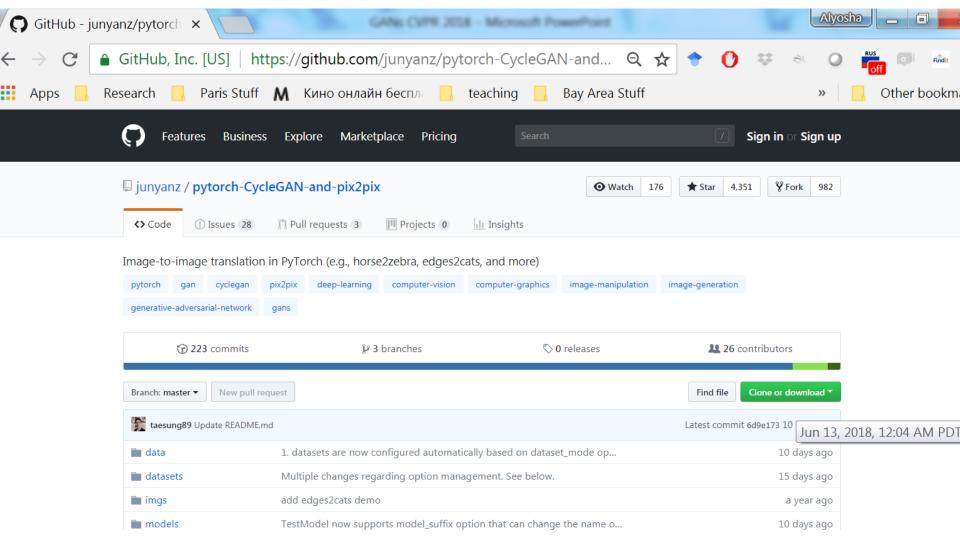


Edges → Images

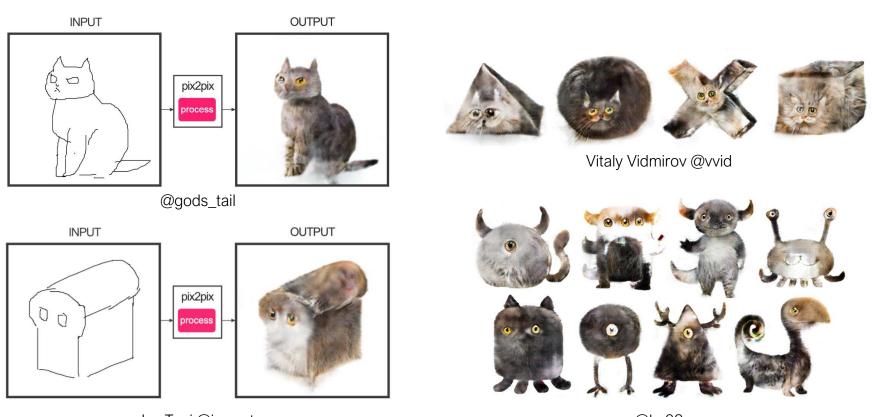
Sketches → Images

Trained on Edges → Images

Data from [Eitz, Hays, Alexa, 2012]

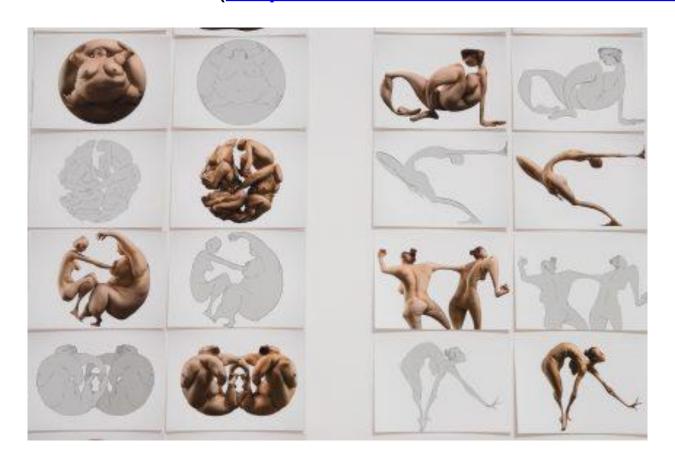


#edges2cats [Christopher Hesse]

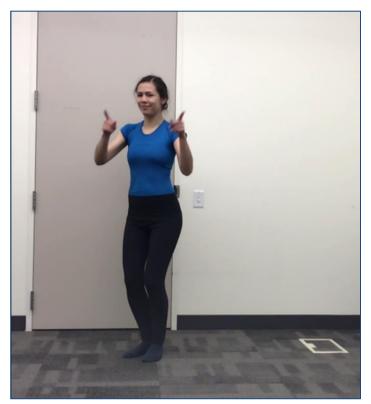


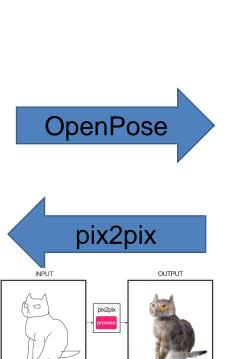
Ivy Tasi @ivymyt @ka92

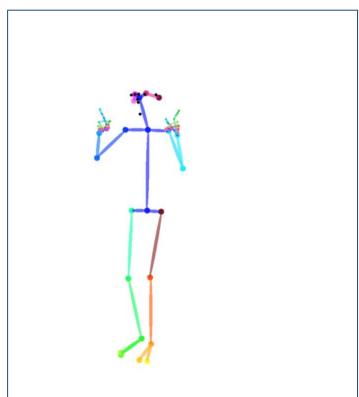
Scott Eaton (http://www.scott-eaton.com/)



"Do as I Do"







Everybody Dance Now

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros UC Berkeley

Source Subject

Target Subject

Results

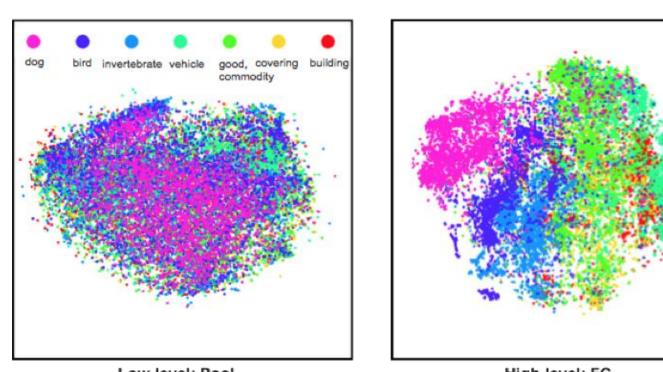
https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

Deep Features & their Embeddings

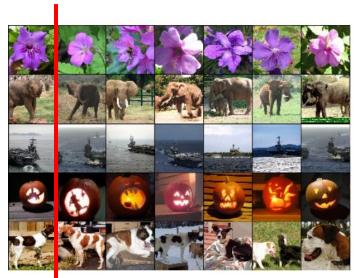
The Unreasonable Effectiveness of Deep Features



Low-level: Pool₁
Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]

Can be used as a generic feature

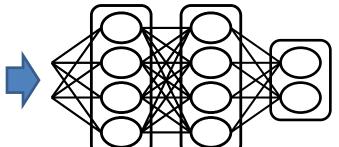
("CNN code" = 4096-D vector before classifier)



query image

nearest neighbors in the "code" space

ImageNet + Deep Learning



- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
 - Depth Estimation

- ..

ImageNet + Deep Learning

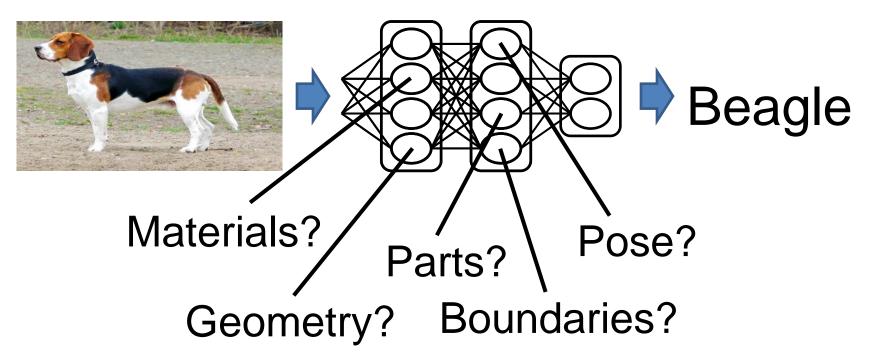


image 2. If small dataset: fix conv-64 all weights (treat CNN conv-64 as fixed feature maxpool extractor), retrain only conv-128 the classifier conv-128 maxpool conv-256 i.e. swap the Softmax conv-256 layer at the end maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

image conv-64 Imagenet conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

1. Train on

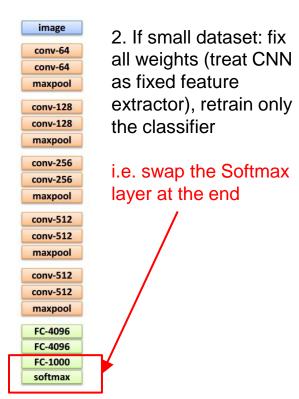


image 3. If you have medium sized conv-64 dataset, "finetune" conv-64 instead: use the old weights maxpool as initialization, train the full conv-128 network or only some of the conv-128 maxpool higher layers conv-256 conv-256 retrain bigger portion of the maxpool network, or even all of it. conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax



1. Train on Imagenet

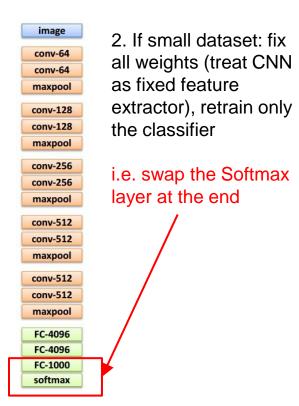


image 3. If you have medium sized conv-64 dataset, "finetune" conv-64 instead: use the old weights maxpool as initialization, train the full conv-128 network or only some of the conv-128 maxpool higher layers conv-256 conv-256 retrain bigger portion of the maxpool network, or even all of it. conv-512 conv-512 maxpool conv-512 conv-512 tip: use only ~1/10th of maxpool the original learning rate FC-4096 FC-4096

FC-1000

softmax

in finetuning to player,

and ~1/100th on

intermediate layers