Multi-Perspective Panoramas

CS194: Image Manipulation \& Computational Photography

Objectives

1. Better looking panoramas

2. Let the camera move:

- Any view
- Natural photographing

Stand on the shoulders of giants

Cartographic projections

Cylindrical

Conical

Common panorama projections

Perspective
Stereographic

Cylindircal

Global Projections

Perspective

Stereographic

Cylindircal

Learn from the artists

Multiple view points

De Chirico "Mystery and Melancholy of a Street", 1914

Renaissance painters solution

"School of Athens", Raffaello Sanzio ~1510
Give a separate treatment to different parts of the scene!!

Personalized projections

"School of Athens", Raffaello Sanzio ~1510
Give a separate treatment to different parts of the scene!!

Multiple planes of projection

Sharp discontinuities can often be well hidden

Single view

multi-view result

Single view

multi-view result

Single view

multi-view result

Single view

multi-view result

Objectives - revisited

1. Better looking panoramas

2. Let the camera move:

- Any view
- Natural photographing

Multiple views can live together

Multi-view compositions

David Hockney, Place Furstenberg, (1985)

Why multi-view?

Multiple viewpoints

David Hockney,
Place Furstenberg, 1985

Single viewpoint

Melissa Slénin,
Place Furstenberg, 2003

Long Imaging

Agarwala et al. (SIGGRAPH 2006)

Smooth Multi-View

Google maps

What's wrong in the picture?

Google maps

Non-smooth

Google maps

The Chair

David Hockney (1985)

Joiners are popular

Flickr statistics (Aug'07):
4,985 photos matching joiners.
4,007 photos matching Hockney
41 groups about Hockney
Thousands of members

Main goals:

Automate joiners

Generalize panoramas to general image collections

Objectives

- For Artists:

Reduce manual labor

Manual: ~40min.
Fully automatic

Objectives

- For Artists:

Reduce manual labor

- For non-artists:

Generate pleasing-to-the-eye joiners

Objectives

- For Artists:

Reduce manual labor

- For non-artists:

Generate pleasing-to-the-eye joiners

- For data exploration: Organize images spatially

What's going on here?

A cacti garden

Principles

Principles

- Convey topology

Correct

Incorrect

Principles

- Convey topology
- A 2D layering of images

Blending:
blurry

Graph-cut: cuts hood

Desired joiner

Principles

- Convey topology
- A 2D layering of images
- Don'† distort images

translate

rotate

scale

Principles

- Convey topology
- A 2D layering of images
- Don'† distort images
- Minimize inconsistencies

Algorithm

Step 1: Feature matching

Brown \& Lowe, ICCV'03

Step 2: Align

Large inconsistencies
Brown \& Lowe, ICCV'03

Step 3: Order

Reduced inconsistencies

Ordering images

Try all orders: only for small datasets

Ordering images

Try all orders: only for small datasets
complexity: $(m+n) \alpha$ $\mathrm{m}=$ \# images
n = \# overlaps
$\alpha=\#$ acyclic orders

Ordering images

Observations:

- Typically each image overlaps with only a few others
- Many decisions can be taken locally

Ordering images

Approximate solution:

- Solve for each image independently
- Iterate over all images

Can we do better?

Step 4: Improve alignment

Iterate Align-OrderImportance

Iterative refinement

Initial

Final

Iterative refinement

Initial

Final

Iterative refinement

Initial

Final

What is this?

That's me reading

Anza-Borrego

Tractor

Manual by Photographer

Our automatic result

Failure?

GUI

The Impossible Bridge

Homage to David Hockney

Take home

- A highly related work: "Scene Collages and Flexible Camera Arrays," Y. Nomura, L. Zhang and S.K. Nayar, Eurographics Symposium on Rendering, Jun, 2007.

This Class Project from 2007

