Multi-Perspective Panoramas

CS194: Image Manipulation & Computational Photography
Alexei Efros, UC Berkeley, Fall 2022

- 1. Better looking panoramas
- 2. Let the camera move:
 - Any view
 - Natural photographing

Stand on the shoulders of giants

Cartographers

Artists

Cartographic projections

Common panorama projections

Perspective

Stereographic

Cylindircal

Global Projections

Perspective

Stereographic

Cylindircal

Learn from the artists

Multiple view points

De Chirico "Mystery and Melancholy of a Street", 1914

Renaissance painters solution

"School of Athens", Raffaello Sanzio ~1510

Give a separate treatment to different parts of the scene!!

Personalized projections

"School of Athens", Raffaello Sanzio ~1510

Give a separate treatment to different parts of the scene!!

Multiple planes of projection

Sharp discontinuities can often be well hidden

Single view

Single view

Single view

Single view

Objectives - revisited

- 1. Better looking panoramas
- 2. Let the camera move:
 - Any view
 - Natural photographing

Multiple views can live together

Multi-view compositions

David Hockney, Place Furstenberg, (1985)

Why multi-view?

Multiple viewpoints

David Hockney, Place Furstenberg, 1985 Single viewpoint

Melissa Slamin, Place Furstenberg, 2003

Long Imaging

Agarwala et al. (SIGGRAPH 2006)

Smooth Multi-View

What's wrong in the picture?

Non-smooth

Google maps

The Chair

David Hockney (1985)

Joiners are popular

Flickr statistics (Aug'07):

4,985 photos matching joiners.

4,007 photos matching Hockney

41 groups about Hockney

Thousands of members

Main goals:

Automate joiners

Generalize panoramas to general image collections

For Artists:
 Reduce manual labor

Fully automatic

For Artists:
 Reduce manual labor

For non-artists:
 Generate pleasing-to-the-eye joiners

For Artists:
 Reduce manual labor

For non-artists:
 Generate pleasing-to-the-eye joiners

For data exploration:
 Organize images spatially

What's going on here?

A cacti garden

Convey topology

Correct

Incorrect

- Convey topology
- A 2D layering of images

Blending: blurry

Graph-cut: cuts hood

Desired joiner

- Convey topology
- A 2D layering of images
- Don't distort images

ate scale

- Convey topology
- A 2D layering of images
- Don't distort images
- Minimize inconsistencies

Algorithm

Step 1: Feature matching

Brown & Lowe, ICCV'03

Step 2: Align

Large inconsistencies

Brown & Lowe, ICCV'03

Step 3: Order

Reduced inconsistencies

Try all orders: only for small datasets

Try all orders: only for small datasets

```
complexity: (m+n)α

m = # images

n = # overlaps

α = # acyclic orders
```


Observations:

- Typically each image overlaps with only a few others
- Many decisions can be taken locally

Approximate solution:

- Solve for each image independently
- Iterate over all images

Can we do better?

Step 4: Improve alignment

Iterate Align-Order-Importance

Iterative refinement

Initial Final

Iterative refinement

Initial Final

Iterative refinement

What is this?

That's me reading

Anza-Borrego

Tractor

Manual by Photographer

Our automatic result

Failure?

GUI

The Impossible Bridge

Homage to David Hockney

Take home

A highly related work:
 "Scene Collages and Flexible Camera Arrays,"
 Y. Nomura, L. Zhang and S.K. Nayar,
 Eurographics Symposium on Rendering, Jun, 2007.

This Class Project from 2007

http://www.cs.cmu.edu/afs/andrew/scs/cs/5-463/f07/proj_final/www/echuangs/