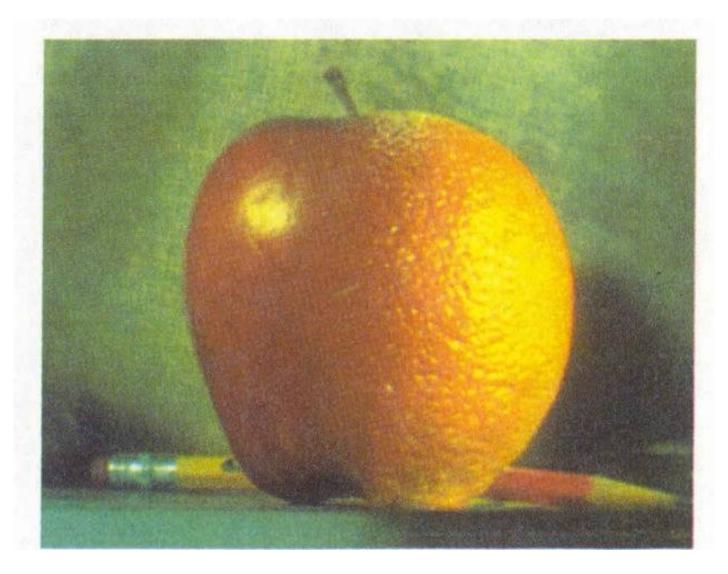
Pyramid Blending, Templates, NL Filters



CS194: Intro to Comp. Vision and Comp. Photo Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2022

5 min recap to watch

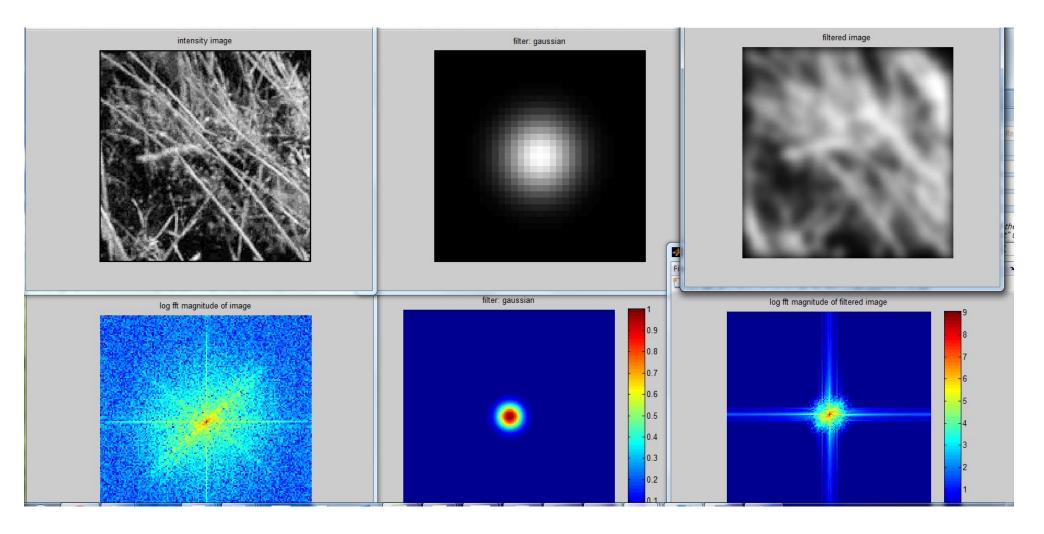
Fourier Transform in 5 minutes: The Case of the Splotched Van Gogh, Part 3

https://www.youtube.com/watch?v=JciZYrh36LY

(on the class website)

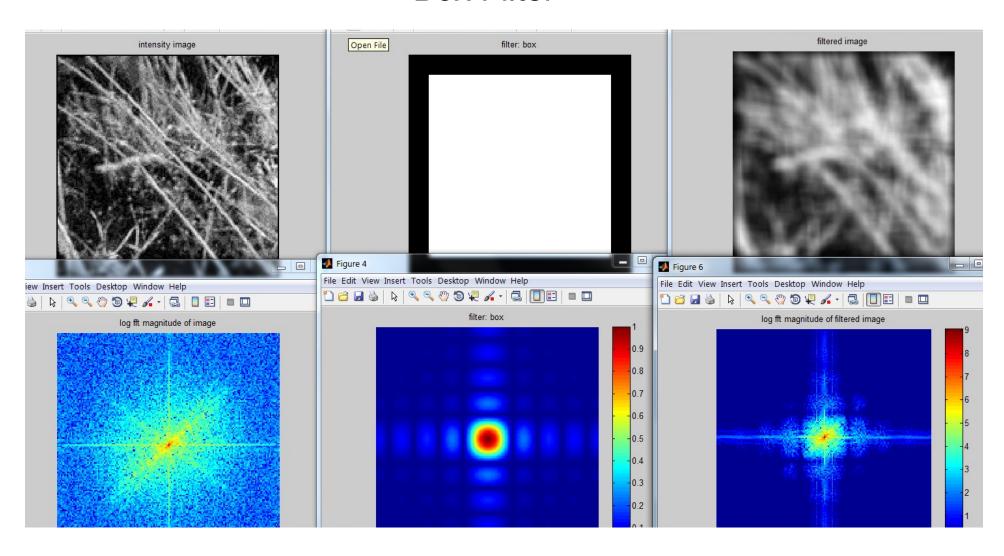
Gaussian is not perfect

Gaussian



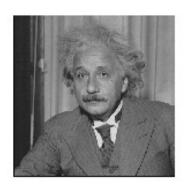
But better than box filter!

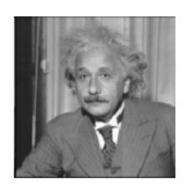
Box Filter



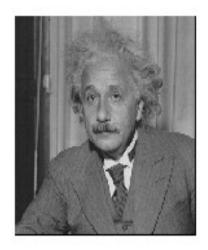
Low-pass, Band-pass, High-pass filters

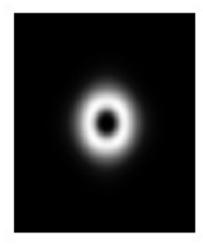
low-pass:



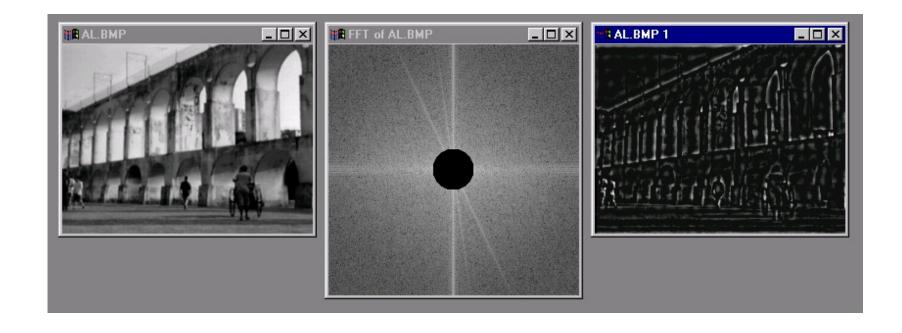


High-pass / band-pass:





Edges in images

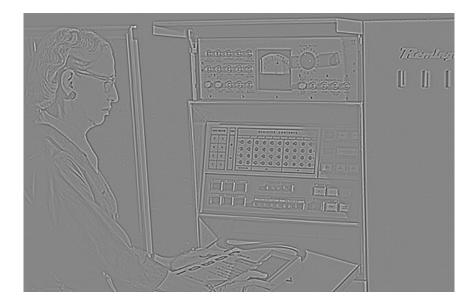


Low Pass vs. High Pass filtering

Image

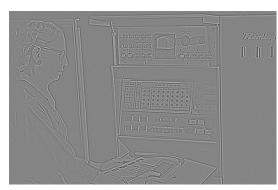
Smoothed

Details

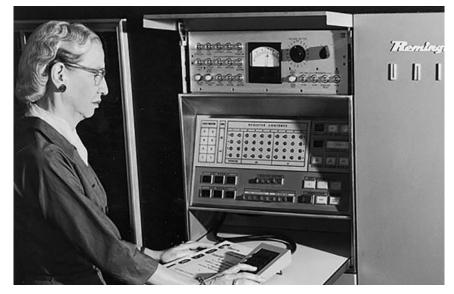


Image

 $+\alpha$

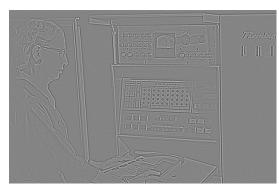


"Sharpened" α=1



Image

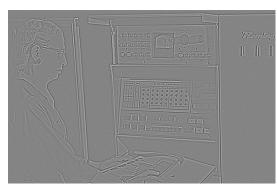
 $+\alpha$



"Sharpened" α=0

Image

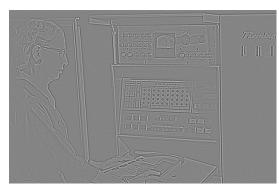
 $+\alpha$



"Sharpened" α=2

Image

 $+\alpha$



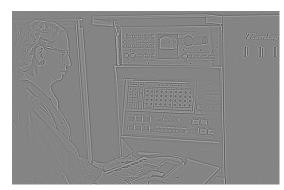
"Sharpened" α=0

Filtering – Extreme Sharpening

Image

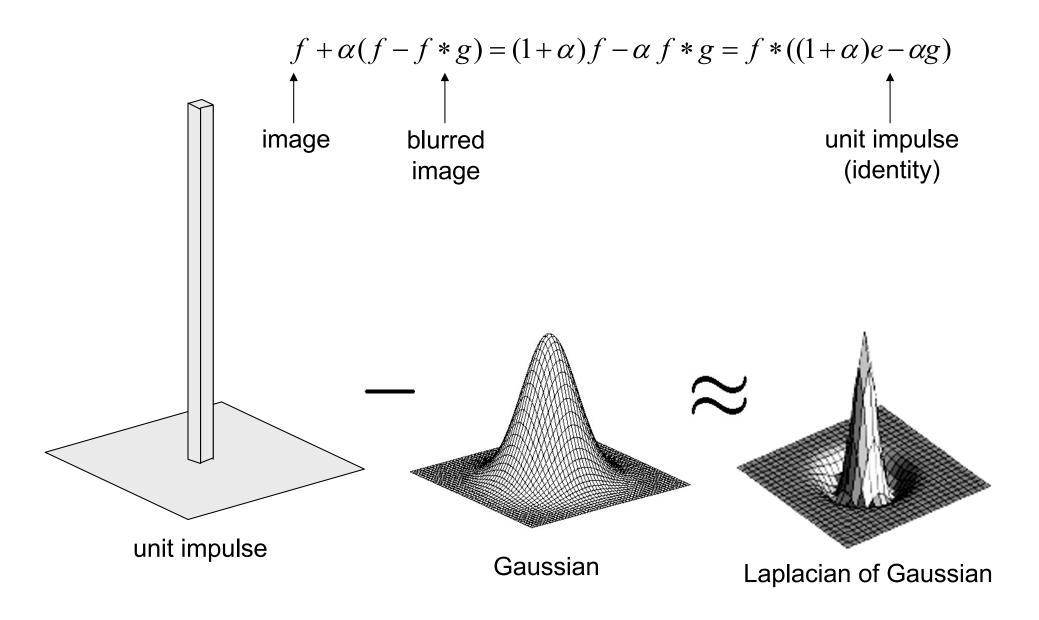
 $+\alpha$

Details



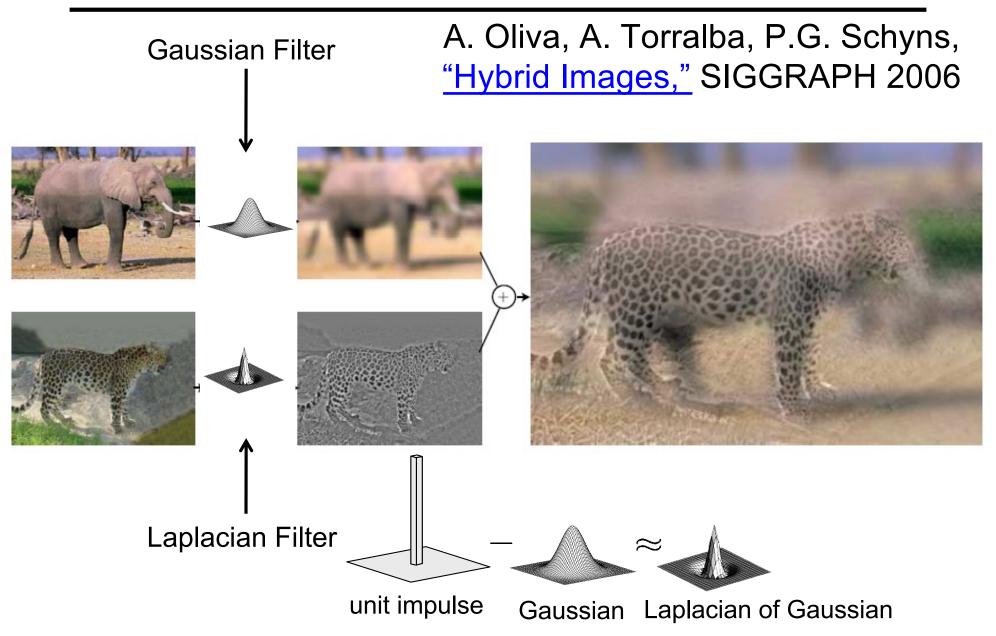
"Sharpened" α =10

Unsharp mask filter



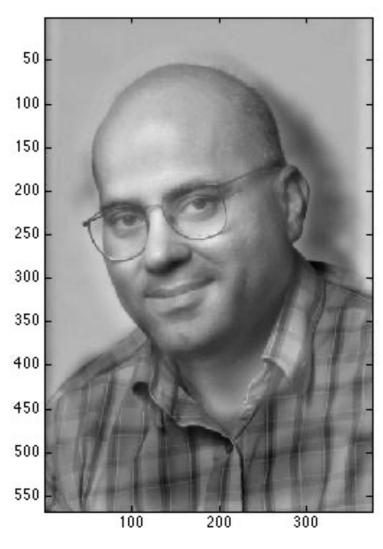
application: Hybrid Images

Application: Hybrid Images



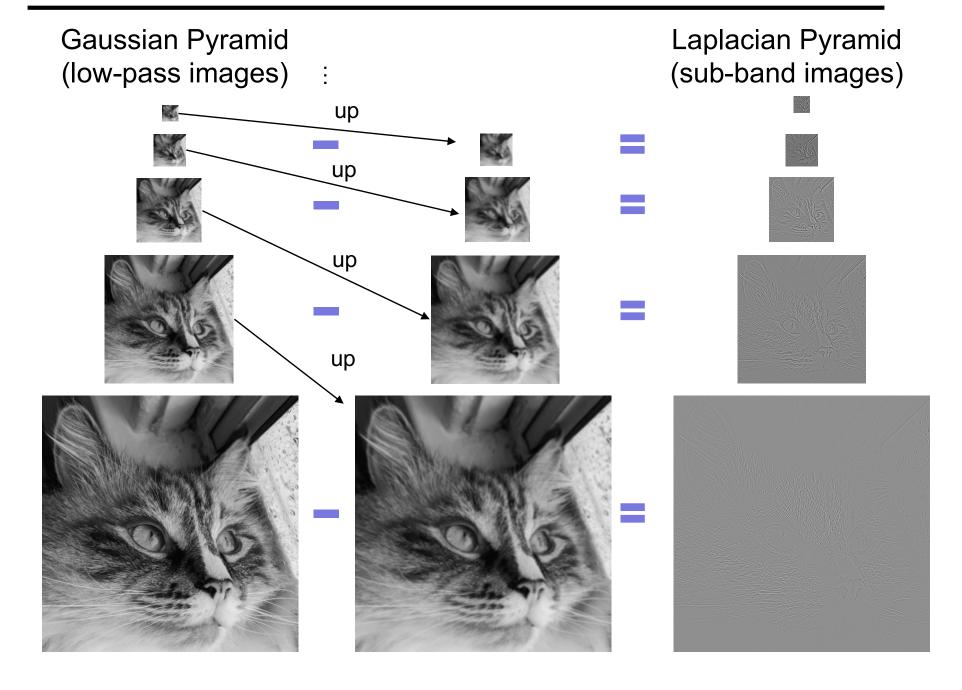
Yestaryear's homework

(CS194-26: Riyaz Faizullabhoy)



Prof. Jitendros Papadimalik

Band-pass filtering in spatial domain



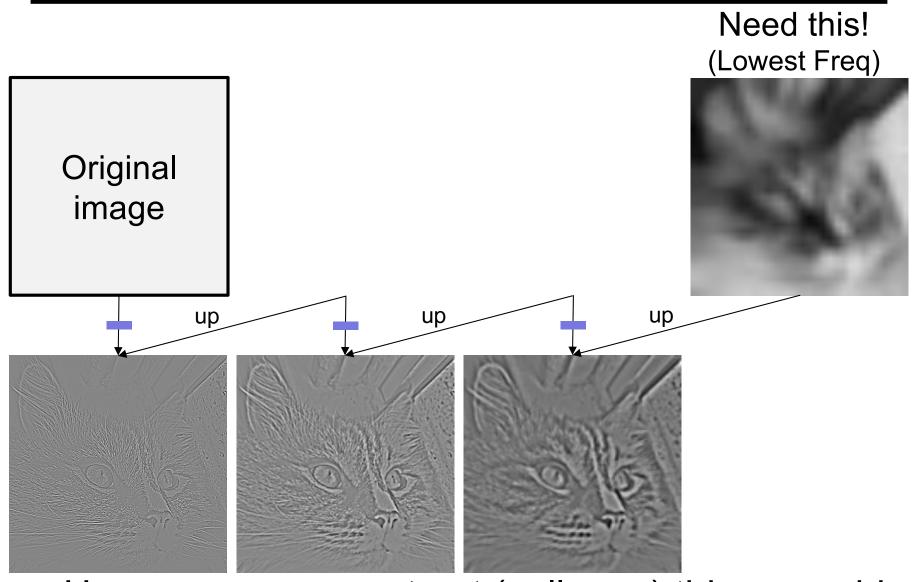
As a stack

Gaussian Pyramid (low-pass images)



Laplacian Pyramid (sub-band images)
Created from Gaussian pyramid by subtraction

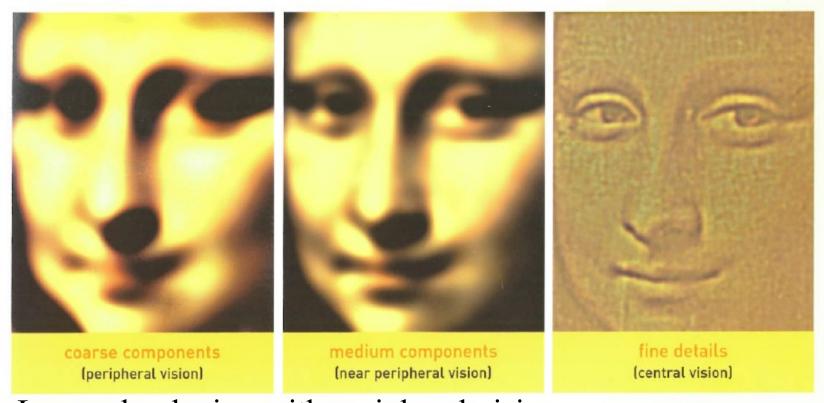
Laplacian Pyramid



How can we reconstruct (collapse) this pyramid into the original image?

Da Vinci and The Laplacian Pyramid

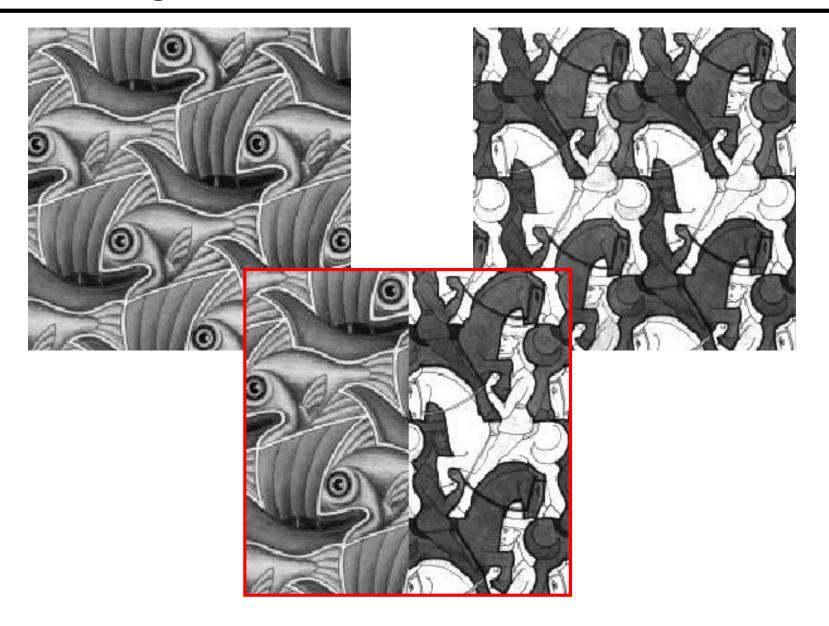
Da Vinci and The Laplacian Pyramid



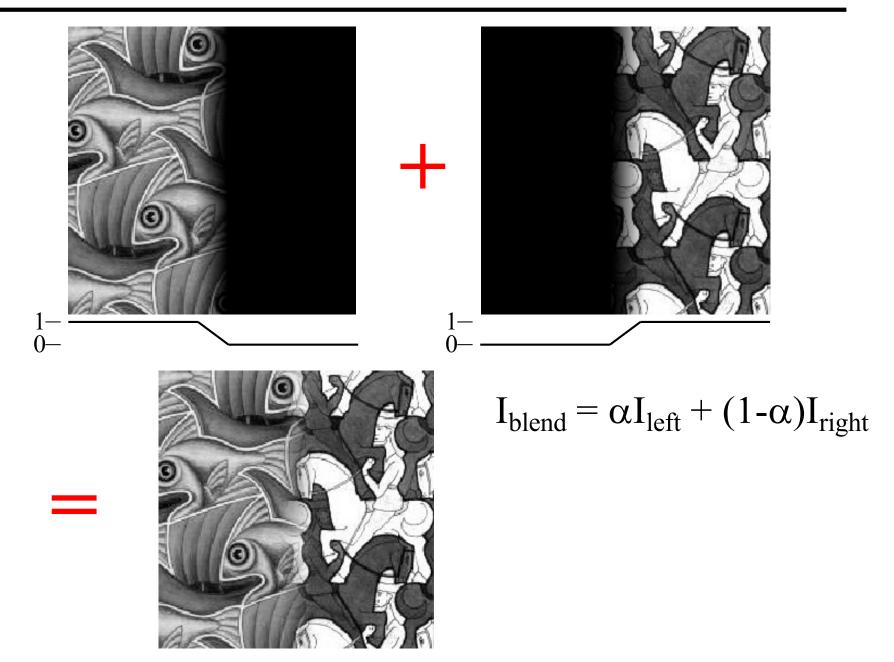
Leonardo playing with peripheral vision

Livingstone, Vision and Art: The Biology of Seeing

Blending

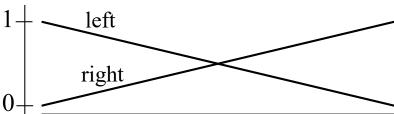


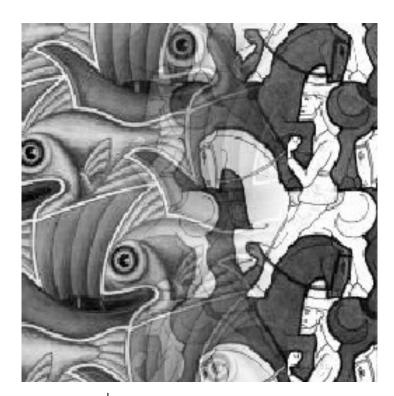
Alpha Blending / Feathering

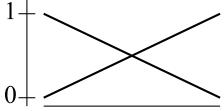


Affect of Window Size



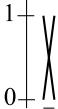


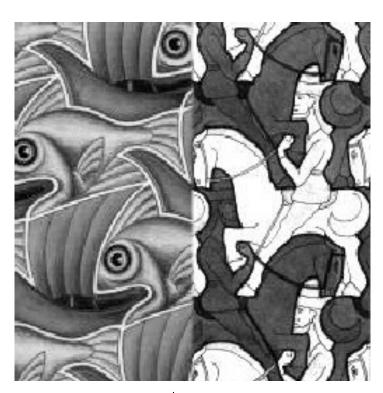




Affect of Window Size







Good Window Size

"Optimal" Window: smooth but not ghosted

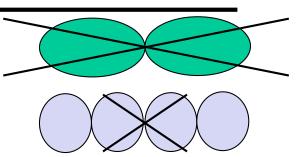
What is the Optimal Window?

To avoid seams

window = size of largest prominent feature

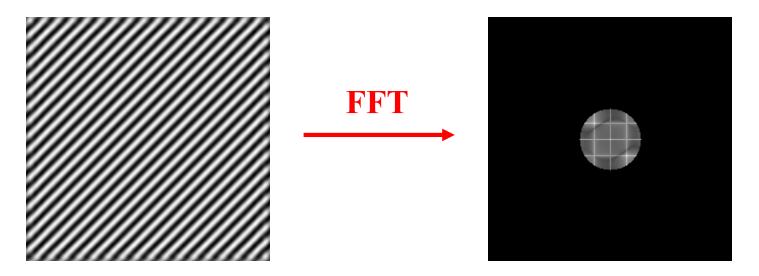
To avoid ghosting

window <= 2*size of smallest prominent feature

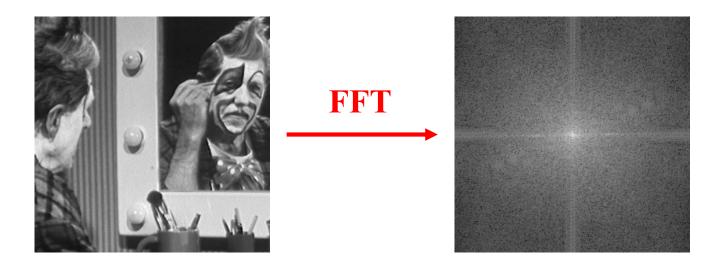


Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)



What if the Frequency Spread is Wide



Idea (Burt and Adelson)

- Compute $F_{left} = FFT(I_{left})$, $F_{right} = FFT(I_{right})$
- Decompose Fourier image into octaves (bands)

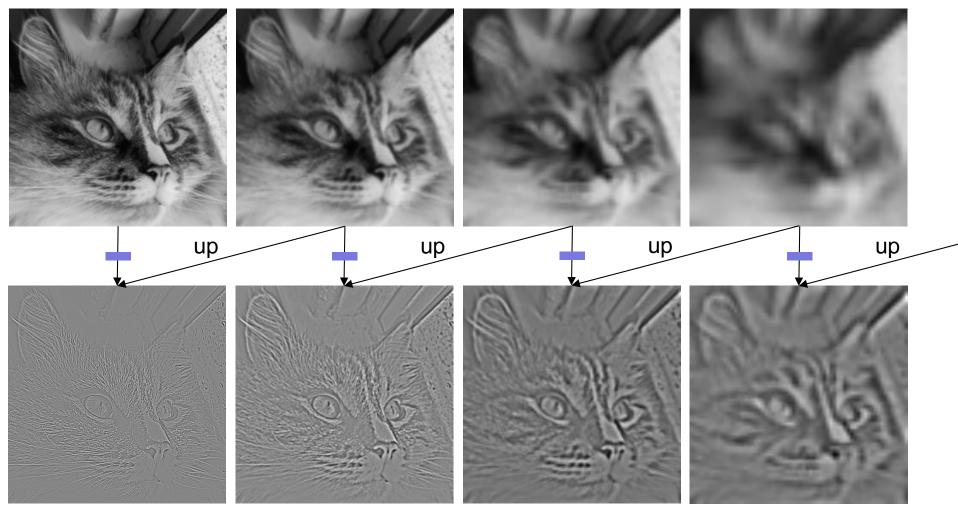
$$-F_{left} = F_{left}^1 + F_{left}^2 + \dots$$

- Feather corresponding octaves F_{left} with F_{right}
 - Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain

Better implemented in spatial domain

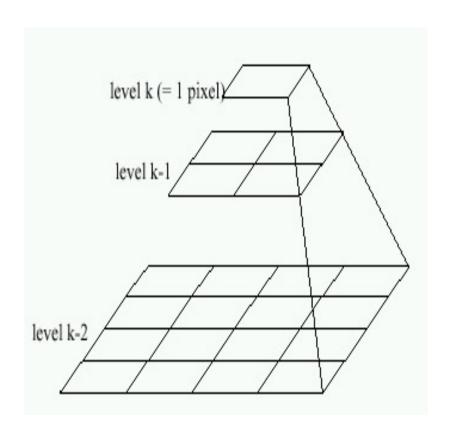
As a stack

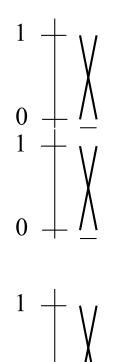
Gaussian Pyramid (low-pass images)

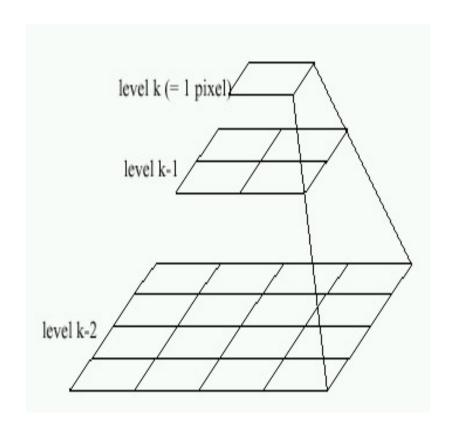


Bandpass Images

Pyramid Blending





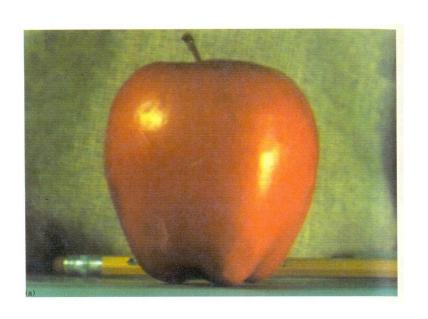


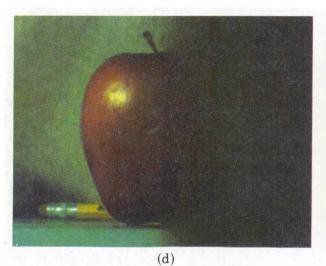
Left pyramid

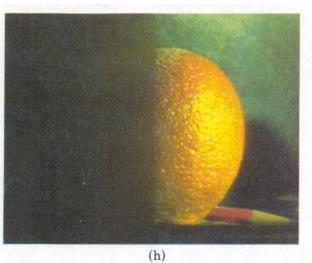
blend

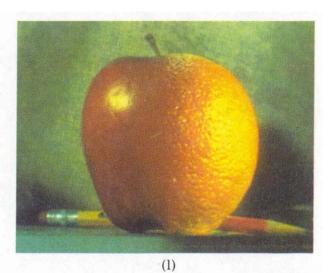
Right pyramid

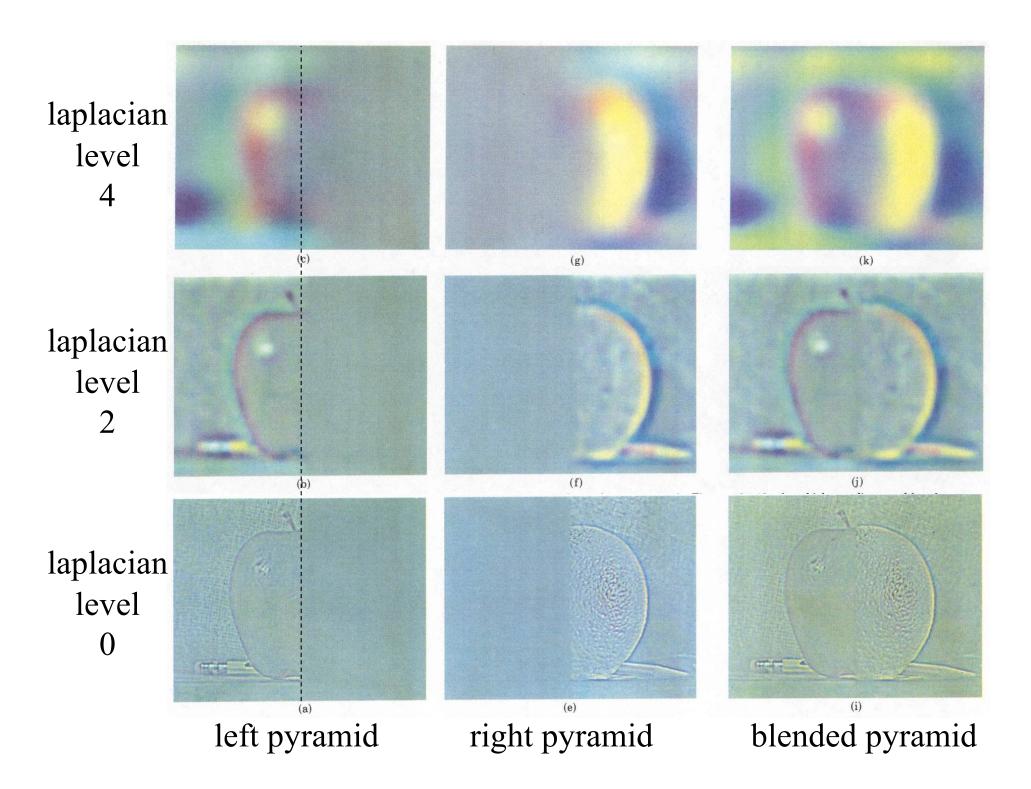
Pyramid Blending











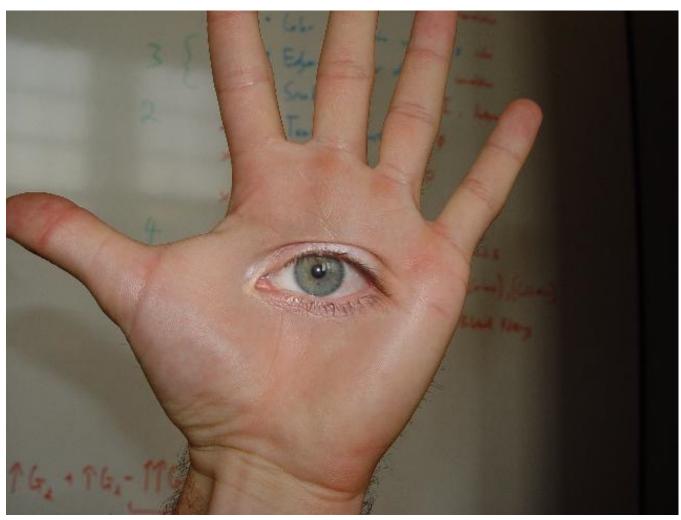
Blending Regions

Laplacian Pyramid: Blending

General Approach:

- 1. Build Laplacian pyramids LA and LB from images A and B
- 2. Build a Gaussian pyramid *GR* from selected region *R*
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
- 4. Collapse the LS pyramid to get the final blended image

Horror Photo



© david dmartin (Boston College)

Results from this class (fall 2005)

© Chris Cameron

Simplification: Two-band Blending

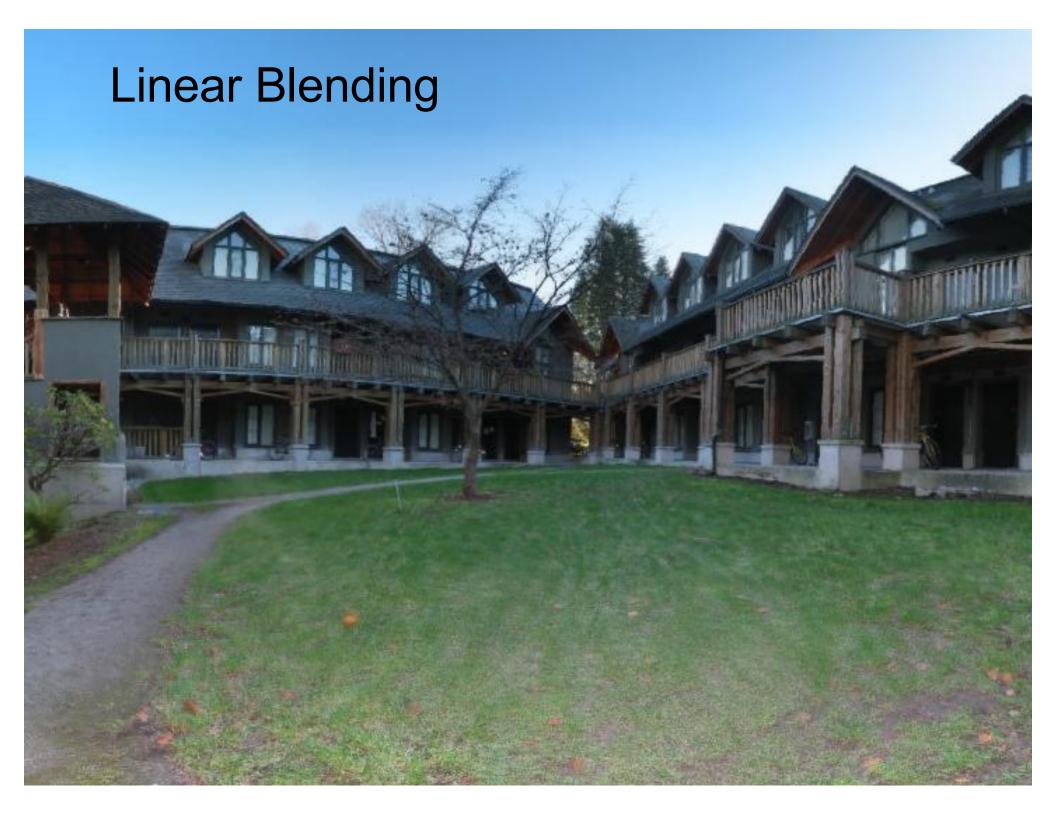
Brown & Lowe, 2003

- Only use two bands -- high freq. and low freq. without downsampling
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

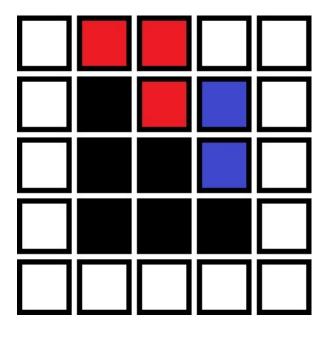
High frequency (λ < 2 pixels)



Side note: Image Compression

Lossless Compression (e.g. Huffman coding)

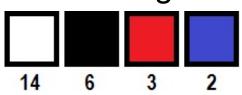
Input image:



Pixel code:

color	freq.	bit code
	14	0
	6	10
	3	110
	2	111

Pixel histogram:

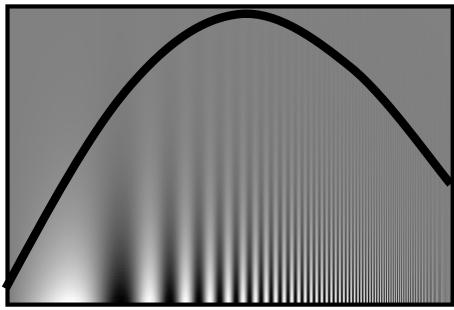


Compressed image:

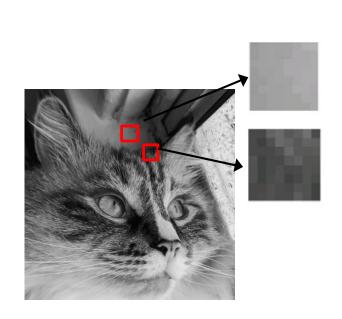
0 110 110 0 0 0 10 110 111 0

. . .

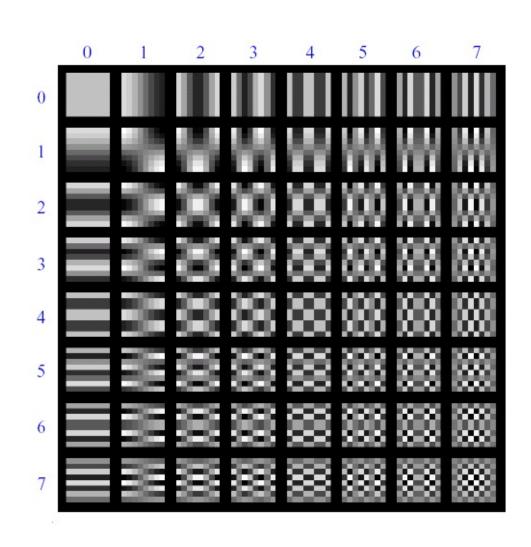
Lossless Compression not enough



Lossy Image Compression (JPEG)



cut up into 8x8 blocks



Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

The first coefficient B(0,0) is the DC component, the average intensity

The top-left coeffs represent low frequencies, the bottom right – high frequencies



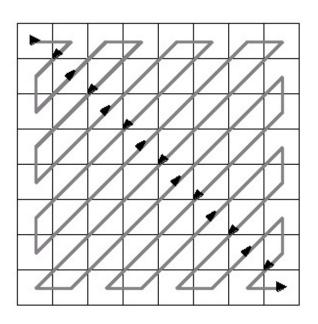


Image compression using DCT

Quantize

- More coarsely for high frequencies (tend to have smaller values anyway)
- Many quantized high frequency values will be zero

Encode

Can decode with inverse dct

Filter responses

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantized values

Quantization table

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Compression Summary

Subsample color by factor of 2

People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block

- a. Compute DCT coefficients
- b. Coarsely quantize
 - Many high frequency components will become zero
- c. Encode (e.g., with Huffman coding)

Spatial dimension of color channels are reduced by 2 (lecture 2)!

http://en.wikipedia.org/wiki/YCbCr http://en.wikipedia.org/wiki/JPEG

Block size in JPEG

Block size

- small block
 - faster
 - correlation exists between neighboring pixels
- large block
 - better compression in smooth regions
- It's 8x8 in standard JPEG

JPEG compression comparison

89k 12k

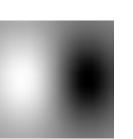
Review: Smoothing vs. derivative filters

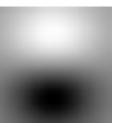
Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast



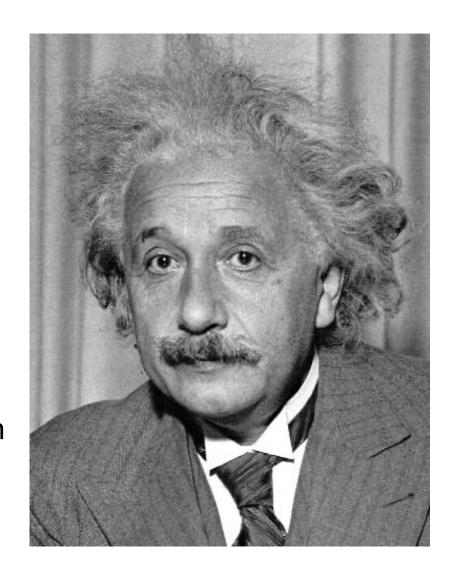


Template matching

Goal: find image

Main challenge: What is a good similarity or distance measure between two patches?

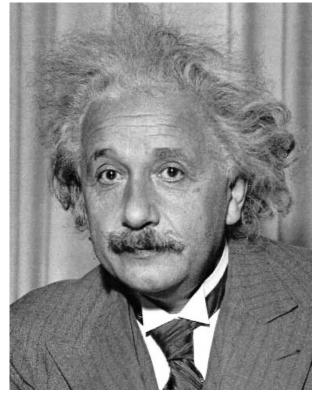
- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross Correlation



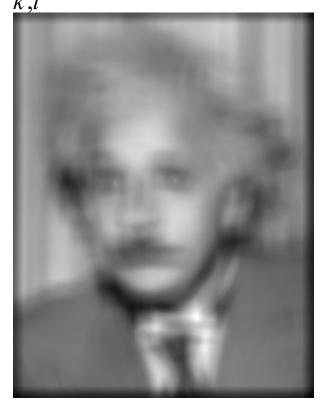
Goal: find image

Method 0: filter the image with eye patch

$$h[m,n] = \sum g[k,l] f[m+k,n+l]$$



Input



Filtered Image

f = image g = filter

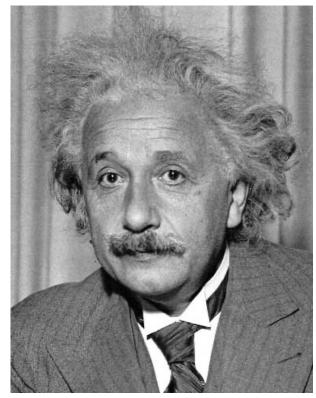
What went wrong?

Goal: find image

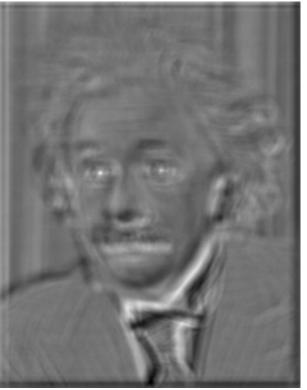
f = image g = filter

Method 1: filter the image with zero-mean eye

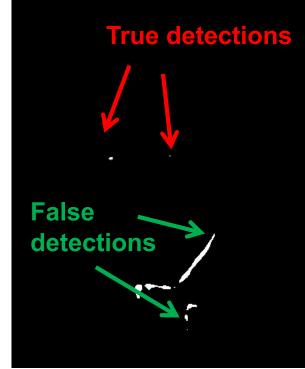
$$h[m,n] = \sum_{k,l} (g[k,l] - \overline{g}) \underbrace{(f[m+k,n+l])}_{\text{mean of g}}$$



Input



Filtered Image (scaled)

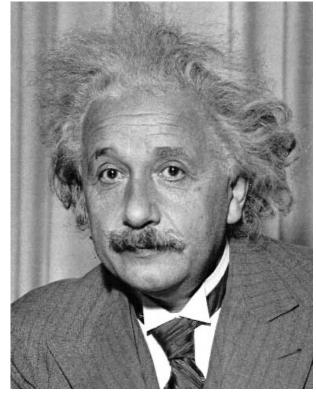


Thresholded Image

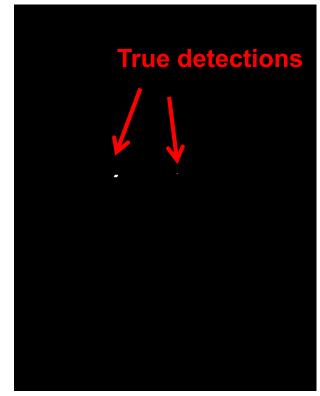
Goal: find image

Method 2: SSD (L2)

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$



1- sqrt(SSD)



Thresholded Image

Can SSD be implemented with linear filters?

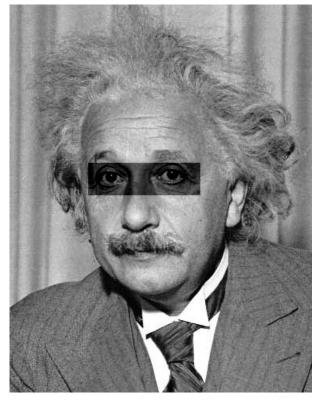
$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

Goal: find **m** in image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$



Input

1- sqrt(SSD)

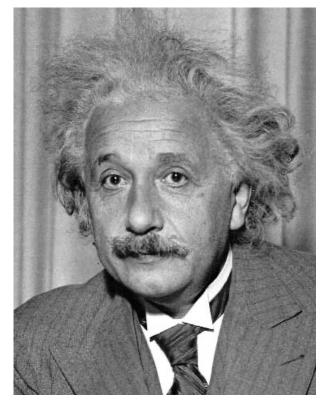
Goal: find image

Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum\limits_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum\limits_{k,l} (g[k,l] - \overline{g})^2 \sum\limits_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

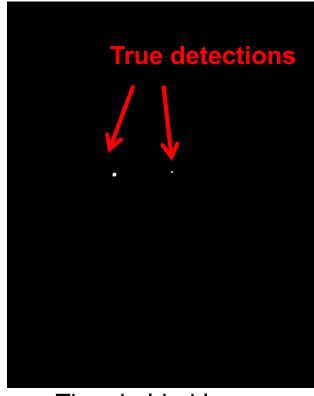
Goal: find image

Method 3: Normalized cross-correlation



Input

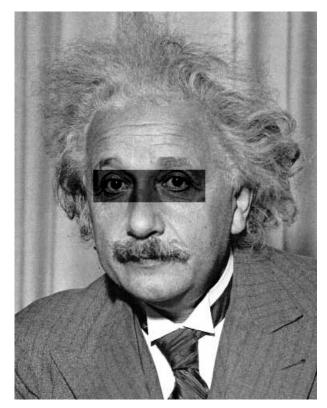
Normalized X-Correlation



Thresholded Image

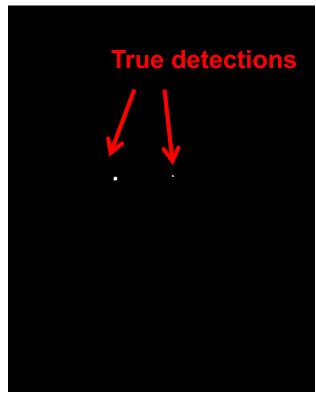
Goal: find image

Method 3: Normalized cross-correlation



Input

Normalized X-Correlation



Thresholded Image

Q: What is the best method to use?

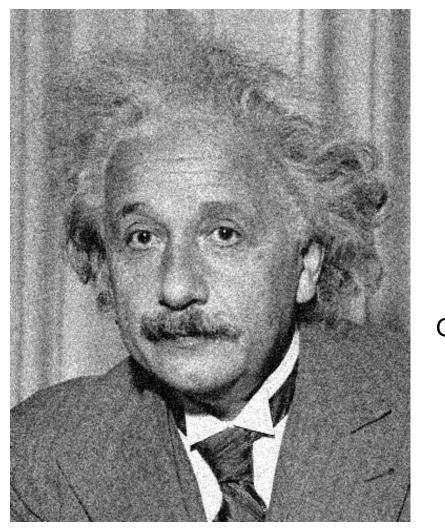
A: Depends

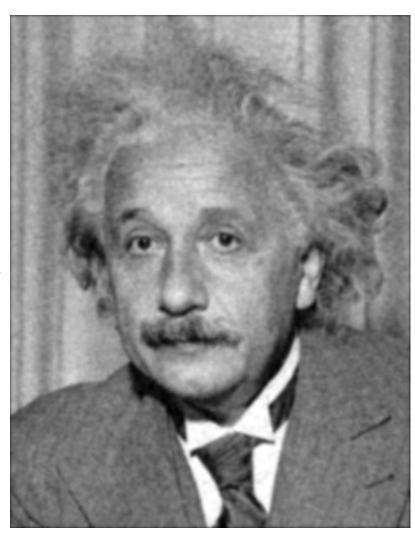
Zero-mean filter: fastest but not a great matcher

SSD: next fastest, sensitive to overall intensity

Normalized cross-correlation: slowest, invariant to local average intensity and contrast

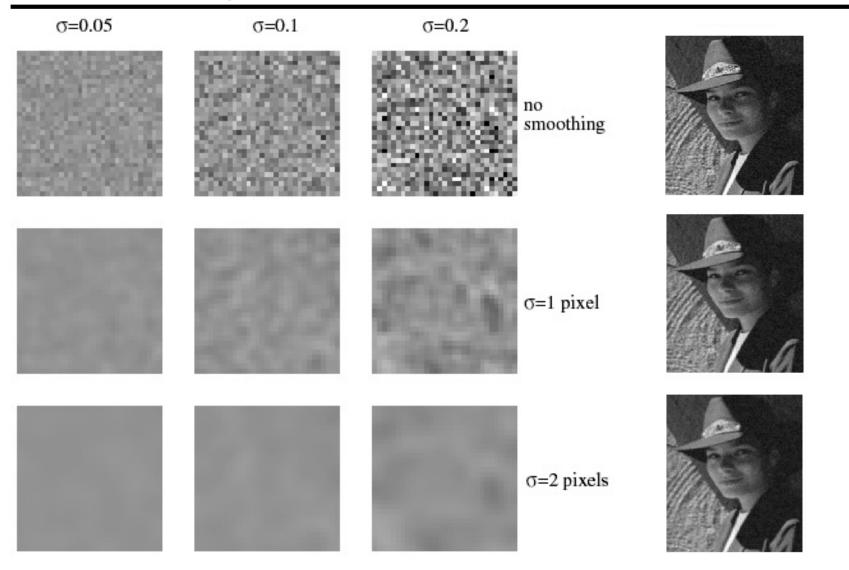
Denoising





Additive Gaussian Noise

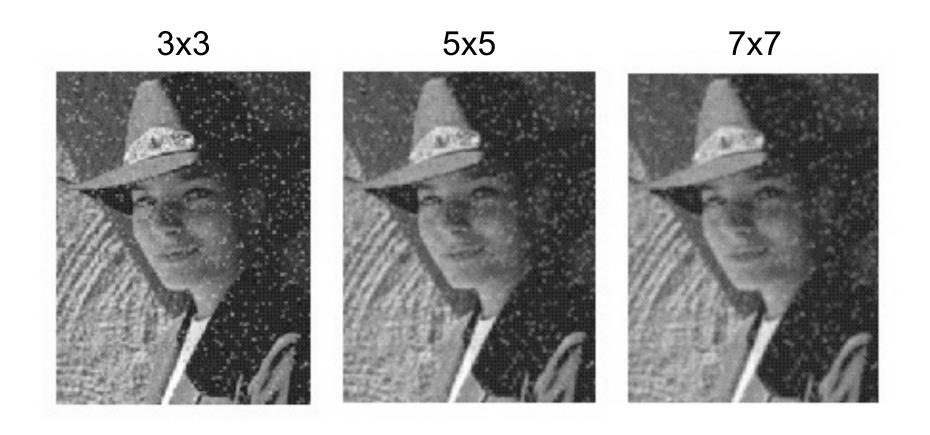
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

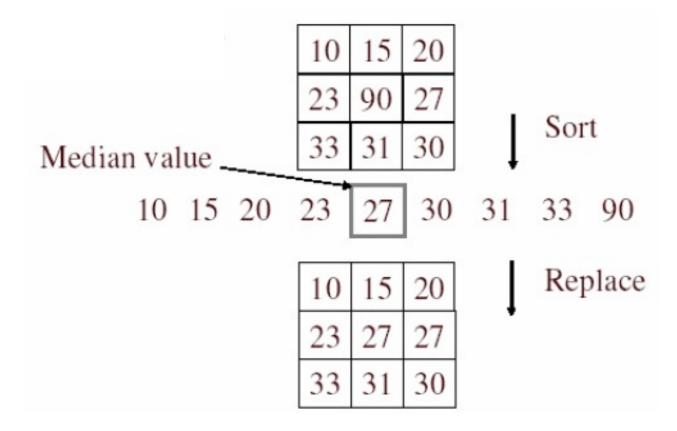
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

A median filter operates over a window by selecting the median intensity in the window



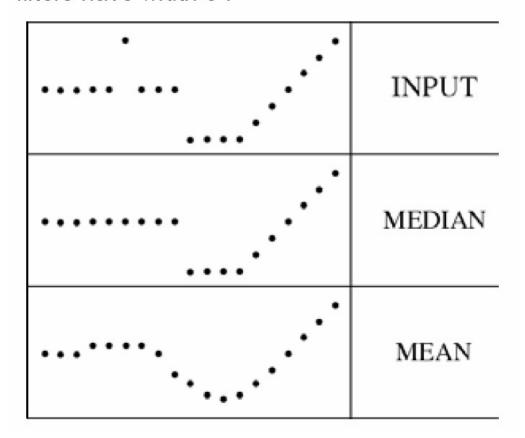
Is median filtering linear?

Median filter

What advantage does median filtering have over Gaussian filtering?

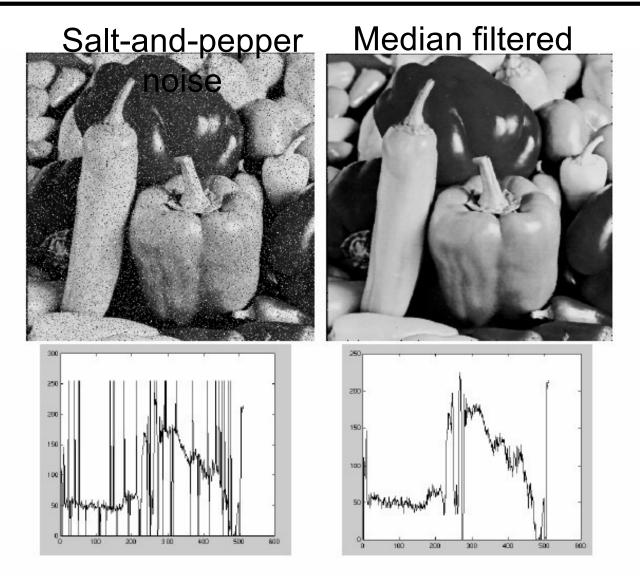
Robustness to outliers

filters have width 5:



Source: K. Grauman

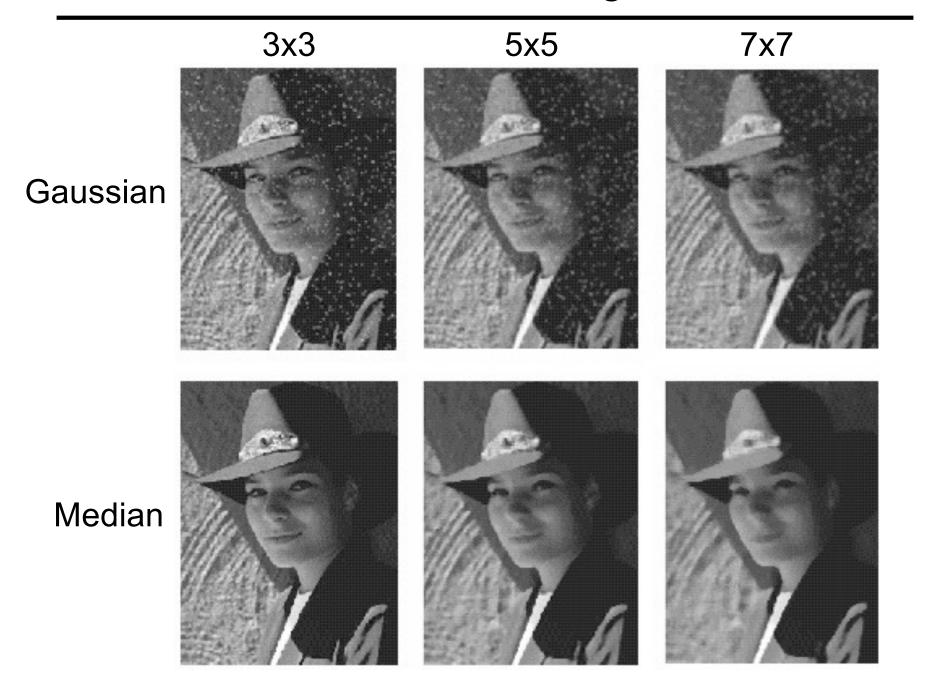
Median filter



MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Median vs. Gaussian filtering

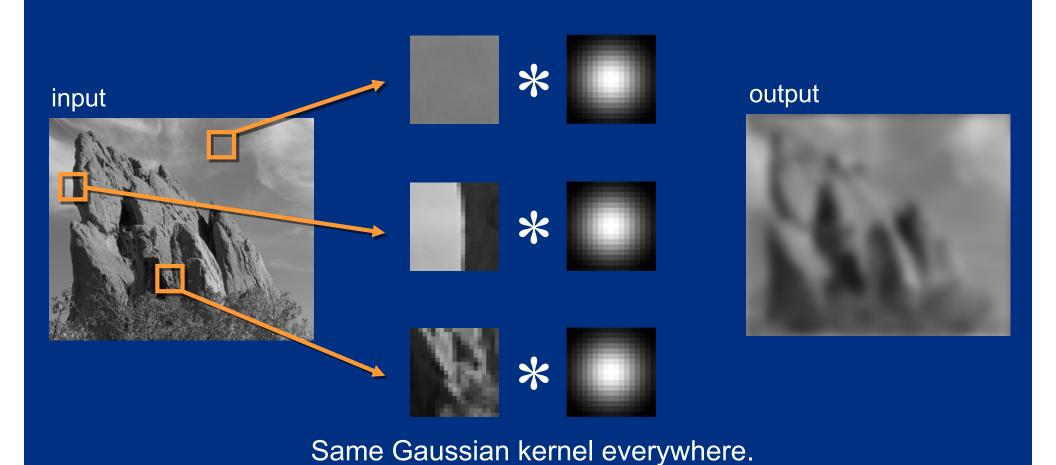


A Gentle Introduction to Bilateral Filtering and its Applications

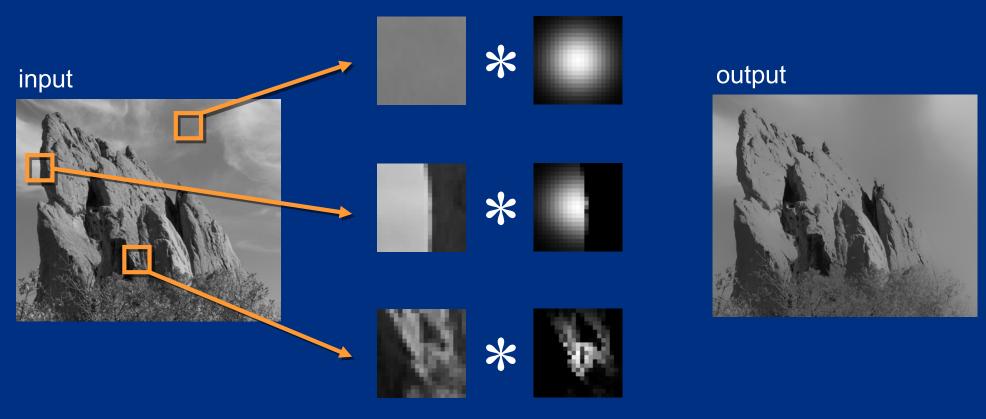
"Fixing the Gaussian Blur": the Bilateral Filter

Sylvain Paris - MIT CSAIL

Blur Comes from Averaging across Edges



Bilateral Filter [Aurich 95, Smith 97, Tomasi 98] No Averaging across Edges



The kernel shape depends on the image content.

Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

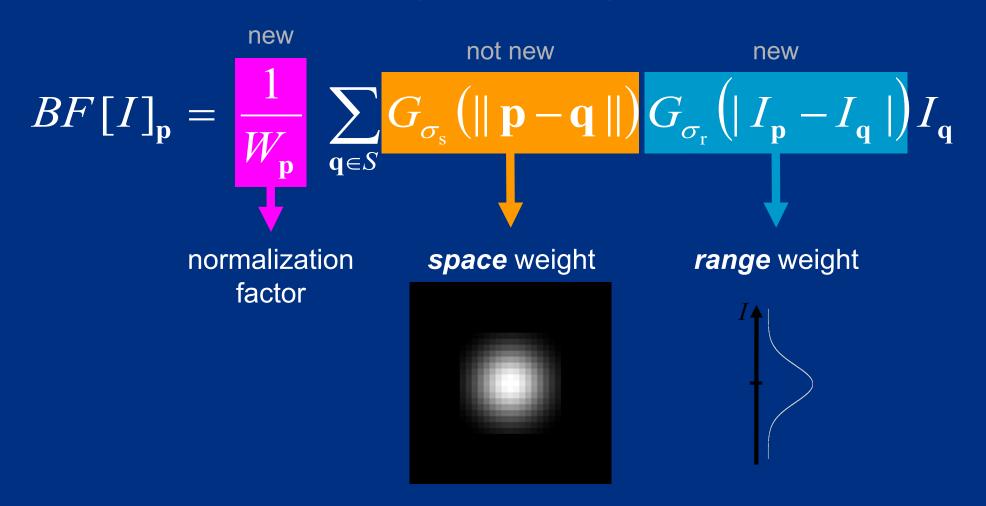
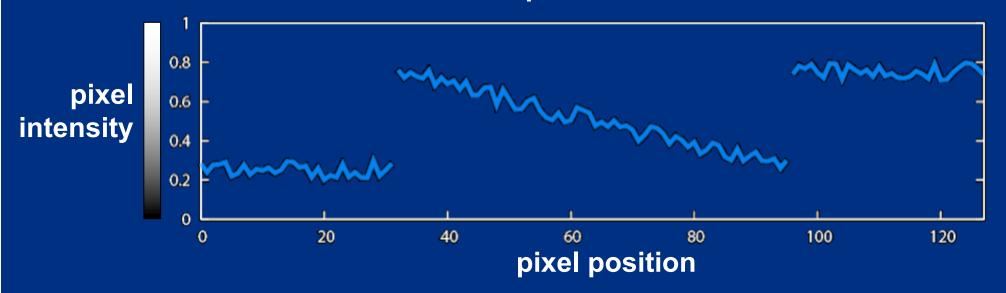


Illustration a 1D Image

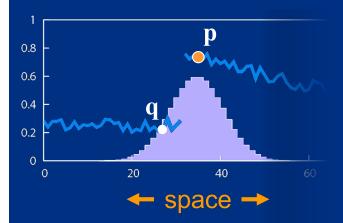
1D image = line of pixels

Better visualized as a plot



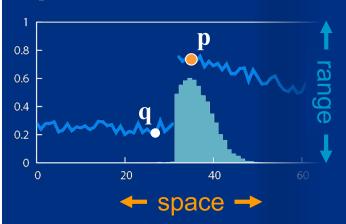
Gaussian Blur and Bilateral Filter

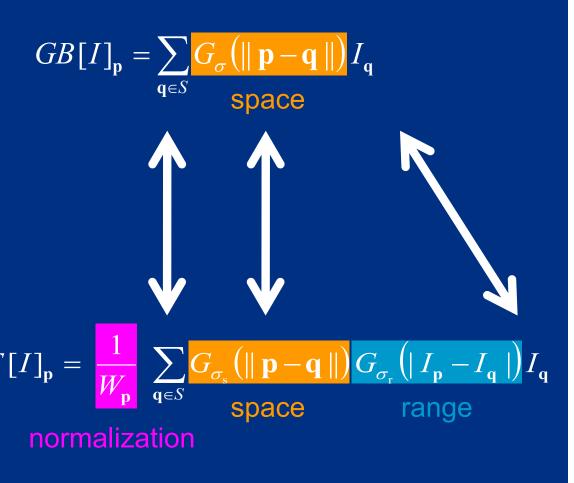
Gaussian blur



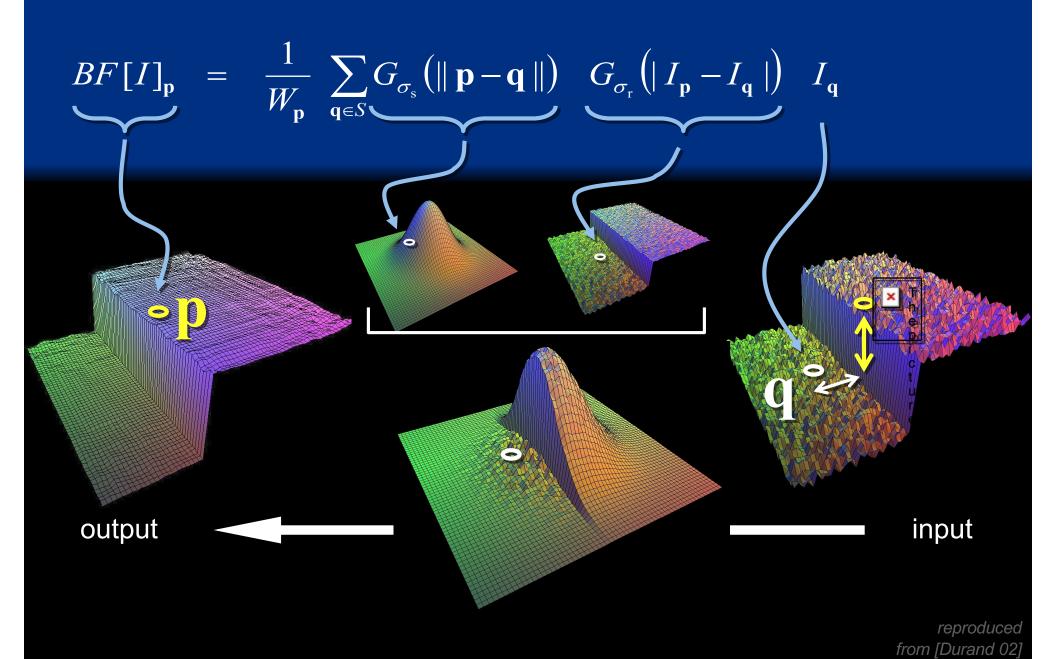
Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]





Bilateral Filter on a Height Field



Space and Range Parameters

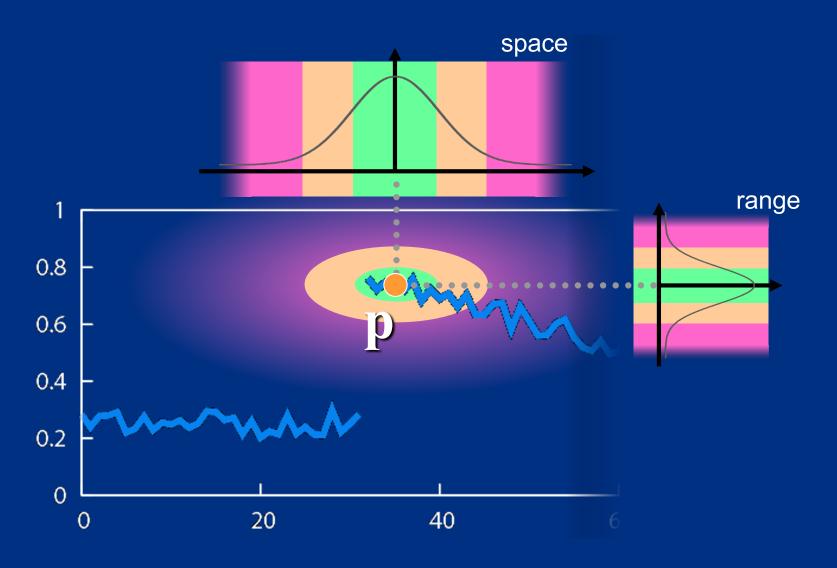
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

• space $\sigma_{\rm s}$: spatial extent of the kernel, size of the considered neighborhood.

• range $\sigma_{\rm r}$: "minimum" amplitude of an edge

Influence of Pixels

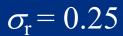
Only pixels close in space and in range are considered.



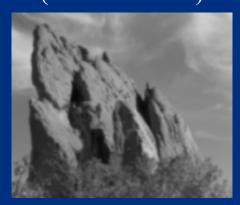
input

Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$



$$\sigma_{\rm r}$$
 = ∞ (Gaussian blur)



 $\sigma_{\rm s} = 2$

Varying the Range Parameter

 $\sigma_{\rm r} = 0.1$

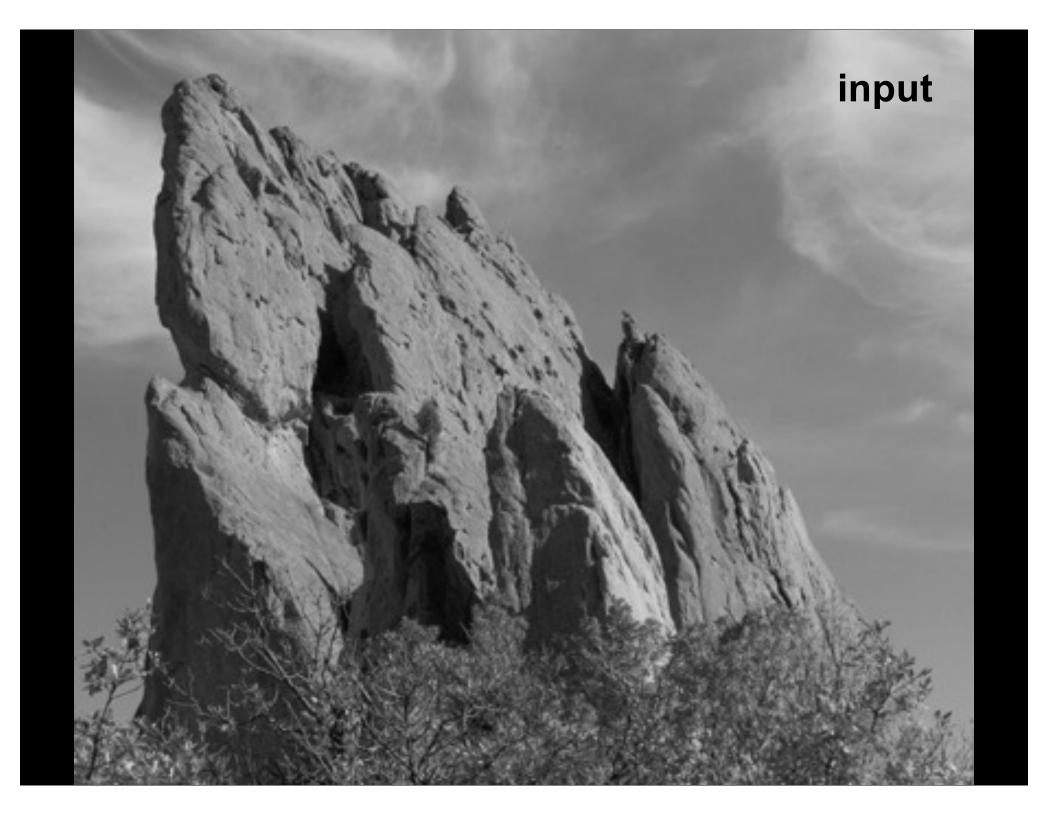
 $\sigma_{\rm r} = 0.25$

 $\sigma_{\rm r} = \infty$ (Gaussian blur)

$$\sigma_{\rm s} = 2$$

$$\sigma_{\rm s} = 6$$

$$\sigma_{\rm s} = 18$$



$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

input

Varying the Space Parameter

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

 $\sigma_{\rm s} = 2$

