Sequence Models for words and pixels

© A.A. Efros

Many slides from Steve Seitz's wonderful 5 min Lectures

CS194: Intro to Computer Vision \& Comp. Photography Alexei Efros, UC Berkeley, Fall 2022

Michel Gondry train video

http://www.youtube.com/watch?v=0S43lwBF0uM

"Amateur" by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhfxRo
similar idea:
http://www.youtube.com/watch?v=MsBMGp1HDM\&feature=share\&list=PLFFD733D0FF425290

Weather Forecasting for Dummies ${ }^{\text {TM }}$

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be \{Sunny, Cloudy, Raining\}

The "Weather Channel" algorithm:

- Over a long period of time, record:
- How often S followed by R
- How often S followed by S
- Etc.
- Compute percentages for each state:
- $P(R \mid S), P(S \mid S)$, etc.
- Predict the state with highest probability!
- It's a Markov Chain

Markov Chain

What if we know today and yestarday's weather?

Text Synthesis

[Shannon,'48] proposed a way to generate Englishlooking text using N -grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N -1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Bob Dylan, Tangled up in Blue

Earty one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Language Model

Early

Early one

Early one morning

Early one morning the

Early one morning the sun

Early one morning the sun was

Early one morning the sun was shining

Early one morning the sun was shining I

Early one morning the sun was shining I was

Early one morning the sun was shining I was laying

Early one morning the sun was shining I was laying in

Early one morning the sun was shining I was laying in bed

Early one morning the sun was shining I was laying in bed Wondering

Early one morning the sun was shining I was laying in bed Wondering if

Early one morning the sun was shining I was laying in bed Wondering if she

Early one morning the sun was shining I was laying in bed Wondering if she had

Early one morning the sun was shining I was laying in bed Wondering if she had changed

Early one morning the sun was shining I was laying in bed Wondering if she had changed at

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

the sun was

the sun was still

the sun was still red

the sun was still red
her

the sun was still red
her hair

the sun was still red
her hair was

the sun was still red
her hair was shining

the sun was laying

the sun was laying in

the sun was laying in bed

I was shining

I was shining I

I was shining I was

I was shining I was shining

I was shining I was shining I

I was shining I was shining I was

I was shining I was shining I was still

I was shining I was shining I was still red

she was standing on the side of my mind side of my shoes heading out of my face one of my chair said our lives together

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the morning the sun

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the morning the sun the sun was

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the morning the sun the sun was

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the morning the sun
the sun was
sun was shining
was shining I
shining I was
I was laying
trigrams

$P\left(x_{n} \mid x_{n-1}, x_{n-2}\right)$

Early one \longrightarrow morning one morning \longrightarrow the
morning the \longrightarrow sun
the sun \longrightarrow was
sun was \longrightarrow shining
was shining \longrightarrow I
shining $1 \longrightarrow$ was
I was $\longrightarrow \ldots$

Video Textures

Arno Schödl
Richard Szeliski
David Salesin
Irfan Essa
Microsoft Research, Georgia Tech
SIGGRAPH 2000

Still photos

Video clips

Video textures

Problem statement

video clip

video texture

Our approach

- How do we find good transitions?

Finding good transitions

- Compute L_{2} distance $D_{i, j}$ between all frames

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

- Transition from i to j if successor of i is similar to j
- Cost function: $C_{i \rightarrow j}=D_{i+1, j}$

Transition probabilities

-Probability for transition $P_{i \rightarrow j}$ inversely related to cost:

$$
\text { - } P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

Preserving dynamics

Preserving dynamics

Preserving dynamics

Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-N}^{N-1} w_{k} D_{i+k+1, j+k}
$$

Preserving dynamics - effect

- Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-N}^{N-1} w_{k} D_{i+k+1, j+k}
$$

Dead ends

- No good transition at the end of sequence

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

- Q-learning

Final result

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Video portrait

- c.f. Harry Potter

Region-based analysis

- Divide video up into regions

- Generate a video texture for each region

User-controlled video textures

slow

variable

fast

User selects target frame range

Video-based animation

- Like sprites computer games

Video sprite extraction

blue screen matting and velocity estimation

Video sprite control

- Augmented transition cost:

Similarity term Control term

Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [GIT-GVU-00-11]

Interactive fish

Summary / Discussion

- Some things are relatively easy

Discussion

- Some are hard

Texture

- Texture depicts spatially repeating patterns
- Many natural phenomena are textures

radishes

rocks

yogurt

Texture Synthesis

- Goal of Texture Synthesis: create new samples of a given texture
- Many applications: virtual environments, holefilling, texturing surfaces

The Challenge

- Need to model the whole spectrum: from repeated to stochastic texture

Both?

Efros \& Leung Algorithm (ICCV 1999)

Synthesizing a pixel

- Assuming Markov property, compute $\mathrm{P}(\mathbf{p} \mid \mathrm{N}(\mathbf{p}))$
- Building explicit probability tables infeasible
- Instead, we search the input image for all similar neighborhoods - that's our pdf for \mathbf{p}
- To sample from this pdf, just pick one match at random

Some Details

- Growing is in "onion skin" order
- Within each "layer", pixels with most neighbors are synthesized first
- If no close match can be found, the pixel is not synthesized until the end
- Using Gaussian-weighted SSD is very important
- to make sure the new pixel agrees with its closest neighbors
- Approximates reduction to a smaller neighborhood window if data is too sparse

Neighborhood Window

Varying Window Size

Increasing window size

Synthesis Results

french canvas

rafia weave

More Results

white bread

brick wall

Homage to Shannon

Dick Gephardt was fa
rful riff on the looming
nly asked, "What's your
tions?" A heartfelt sigh
tory about the emergen
segainst Clinton. "Bo
people about continui
ridt began, patiently obs
, that the legal system
a with this latert tames

tet fritas? tirtaoearjoct ormle \qquad H^{10} ait \qquad

thaim, them " WWephartfe lartifelintomimen el ck Clirtioout omaim thartfelinsof ait s anent the ry onst wartfe lok Gephtoomimeationl sigal Chiooufit Clinut Cll riff on, hat's yordn, parut tly ons yoontonsteht wasked, paim t sahe loo riff on nskoneploourtfeas leil A nst Clit, "Wheontongal k Girtioouirtfepe ong pme abegal fartfenstemem tiensteneltorydt telemephinsuerdt was agemer ff ons artientont Gling peme asurtfe atith, "Boui hal s fartfelt sig pedruldt ske abounutie aboution tfeonewas yous abownthardt thatins fain, ped, ains, them, pabout wasy arfunt countly $d, \ln A$ fle emthringboomeme agas fa bontinsyst Clinut ory about continst Glipeopinst Clowe agatiff out tome ainemen tly ardt beoraboul n, therrly as t cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbaut cout congagal comininge mifmet Gliny abon al coounthaemungairt tf oun Whe looorystan loontieph, intly on, theoplegatick ulul tatieeontly atie Diontiomt wal sf thegae ener mothaheat's enemhingas fan. "intrhthorm ahons

Hole Filling

Extrapolation

Image Analogies

Aaron Hertzmann ${ }^{1,2}$
Chuck Jacobs ${ }^{2}$
Nuria Oliver ${ }^{2}$
Brian Curless ${ }^{3}$
${ }^{1}$ New York University
${ }^{2}$ Microsoft Research
${ }^{3}$ University of Washington

Image Analogies

B

B^{\prime}

Image Analogies

Goal: Process an image by example

Hertzmann et al. SIGGRAPH 2001

Non-parametric sampling

Blur Filter

Edge Filter

Artistic Filters

B

Colorization

Texture-by-numbers

B

A'

B'

Visual Prompting via Image Inpainting

Amir Bar*, Yossi Gandelsman*, Trevor Darrell, Amir Globerson, Alexei A Efros

NeurIPS 2022

[^0]

Hertzmann, Aaron, et al. "Image analogies." SIGGRAPH 2001.

Visual Prompting

Inpainting models to the rescue!

Visual prompt image

Wide range of tasks

Colorization

Inpainting

Segmentation

Edge Detection

Font Style Transfer

Style Transfer

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

$$
P\left(x_{n} \mid x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}, x_{n-5}, x_{n-6}, x_{n-7}, x_{n-8}, x_{n-9}, x_{n-10}, x_{n-11}, x_{n-12}, x_{n-13}\right)
$$

10^{70} combinations

Function Approximation

Fourier Series:

$$
f(x)=\curvearrowright{ }^{2}{ }^{\sim}+\cdots m+{ }^{m m m n}+
$$

Taylor Series:

$$
f(x)=-\quad+\bigvee+\bigvee+
$$

Neural Network:

slide from Steve Seitz's video

slide from Steve Seitz's video

$$
P\left(x_{n} \mid x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}, x_{n-5}, x_{n-6}, x_{n-7}, \ldots\right)
$$

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

red

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still

red

neural network

word2vec

[Collobert \& Weston 2008; Mikolov et al. 2013]
house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often added, without resentmient, for the visitor's information, "It started out to be for me, but it's really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal :niil;, but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Word Embedding (e.g., word2Vec, GloVe)

red

neural network

slide from Steve Seitz's video

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still ?

Two roads diverted in a yellow wood And sorry I could not travel both And be one traveler, long I stood And looked down as far as I could To where it bent in the undergrowth;

Train

slide from Steve Seitz's video

Train

slide from Steve Seitz's video

Train

slide from Steve Seitz's video

red

Transformer

in bed Wondering if she had changed at all if her hair was still

slide from Steve Seitz's video

a	the	looking	possible	getting
0.4	0.3	0.1	0.1	0.1

slide from Steve Seitz's video

The 16 th President was?
The capital of Zimbabwe is?
Frank Zappa's middle name is?
Napoleon was born on this date?
The prime factorization of 19456721434 is?
Queen Victoria's maiden name was?
US per-capita income in 1957 was?
The lat long coordinates of Rome are?

Syntax
slide from Steve Seitz's video

Semantics

slide from Steve Seitz's video

How much data to train?

All of it...

355 years

a month

The 16th President was
The capital of Zimbabwe is
Frank Zappa's middle name is
Napoleon was born on this date
The prime factorization of 19456721434 is
Queen Victoria's maiden name was
US per-capita income in 1957 was
The lat long coordinates of Rome are

The 16th President was Abraham Lincoln
The capital of Zimbabwe is Harare
Frank Zappa's middle name is Vincent
Napoleon was born on this date 1769
The prime factorization of 19456721434 is $2 \times 3 \times 3 \times 17$
Queen Victoria's maiden name was Alexandrina Victoria
US per-capita income in 1957 was $\$ 2,974$
The lat long coordinates of Rome are 41.894722, 12.48
a haiku about a turtle and a stop sign
a haiku about a turtle and a stop sign

Turtle at the stop sign
waiting for the perfect moment
to cross the busy road

translate "tangled up in blue" to 5 languages

translate＂tangled up in blue＂to 5 languages

1．Spanish：Enredado en azul
2．French：Emmêlé dans le bleu
3．Italian：Intrecciato nel blu
4．German：Verwickelt in blau
5．Japanese：青い糸に絡まって
the number after the number after 37 is 74

I'm heading north. I turn right. Then I turn left. I'm now heading south

the recipe for chocolate guacamole pancakes

Ingredients:
1 ripe avocado, mashed
1/4 cup cocoa powder
1/4 cup all-purpose flour
1 teaspoon baking powder
1/4 teaspoon salt
1/2 cup milk
1 egg
1 tablespoon vegetable oil
1/4 cup chocolate chips

Directions:

1. In a medium bowl, combine the avocado, cocoa powder, flour, baking powder, and salt.
2. In a separate bowl, whisk together the milk, egg, and vegetable oil.
3. Add the wet ingredients to the dry ingredients and mix until well combined.
4. Fold in the chocolate chips.
5. Heat a large skillet over medium heat.
6. Scoop $1 / 4$ cup batter onto the skillet for each pancake.
7. Cook for 2-3 minutes per side, or until the pancakes are golden brown.
8. Serve with your favorite toppings.

For more details:
https://jalammar.github.io/illustrated-transformer/ https://jalammar.github.io/illustrated-gpt2/
slide from Steve Seitz's video
a pattern of characters that looks like a star

- 0 .
a pattern of characters that looks like a vertical line

a pattern of characters that looks like a triangle

white white white white white white white white white green white white white white white
white white white white white white white white green green green white red red white
white white white white red red red red green greenbrown red red red red
white white white red red red red red browngreen red red red red red
white green brown red
green brown red
white green green brown red white
white white white white red red red black red red red red red white white
white white white white white white white white red red red red white white white
white white white white white white white white white red red white white white white

```
white white white white white white white white white green white white white white white
white white white white white white white white green green green white red red white
```

white white white white red red red red green green brown red red red red white white white red red red red red browngreen red red red red red white green brown red green green brown red white green green brown red white white white white white red red red black red red red red red white red red red red white red red white white white white

Bithonman

raspberry

raspberry

$1,000,000$ s of pixels

slide from Steve Seitz's video

1

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0																			

 $\begin{array}{llllllllllllllllllllllllllllllll}0 & 0 \\ 0\end{array}$ \begin{tabular}{llllllllllllllllllllllllllllllll}
0 \& 0

\hline

\hline 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\hline 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- |

 \begin{tabular}{|l|l|llllllllllllllllllllllllllllll|}
\hline 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 2 \& 5 \& 2 \& 2 \& 5 \& 5 \& 2 \& 0 \& 0 \& 0

\hline 0 \& 0 \& 0 \&

\hline

0 \& 0 \& 0 \& 0 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 2 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 2 \& 5 \& 5 \& 5 \& 5 \& 2 \& 2 \& 5 \& 2 \& 2 \& 0

\hline
\end{tabular}

 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 |
| :--- |
| 0 | 2 | 2 | 2 | 5 | 2 | 5 | 2 | 5 | 5 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | | |

	8				55		5									2										

														21				55										
	82		2	2	,	2	2			,	2	,	5	2		25						5						

8
:---:
2
7

 \begin{tabular}{|lllllllllllllllllllllllllllllll|}
\hline 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 2 \& 2 \& 2 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0

\hline

 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 2 \& 2 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\hline 0 \& 0

\hline
\end{tabular}

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

squirrel reaching for a nut

$\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
squirrel reaching for a nut
$\begin{array}{lllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 \\ 1 & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\ 9 & & 9\end{array}$

squirrel reaching for a nut

$\begin{array}{lllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 \\ 1 & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 9\end{array}$
squirrel reaching for a nut

squirrel reaching for a nut


```
squirrel reaching for a nut
```


squirrel reaching for a nut

$\begin{array}{lllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 \\ 1 & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & & 9\end{array}$
squirrel reaching for a nut
$\begin{array}{llllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6\end{array}$

squirrel reaching for a nut

$\begin{array}{llllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 4 & 1 & 4 & 9 & 9 & 9 & 9 & 9 \\ 9\end{array}$
117111111111111111262662262999999999
$111417 \begin{array}{llllllllllllllllllllllllllll} & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 2 & 5 & 2 & 2 & 4 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
111111122222212666262620999999999
21111221222212666662649999999888
1111111111411152222000000414699999999999
111117222112265502999999999999999
$\begin{array}{lllllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 9 & 8 & 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 5 & 5\end{array} 9$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 7 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 5 & 4 & 3\end{array}$
33333333333333333333834444444939488
$\begin{array}{lllllllllllllllllllllllllllllll}3 & 3 & 8 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 8 & 3 & 8 & 8 & 3 & 3 & 8 & 3 & 8 & 4 & 4 & 8 & 4 & 8 & 3 & 8 & 3 & 3 \\ 3\end{array}$
3383333333888883488833888888888883838
338833338333333348833813338138888838
338333338388333333333333313888888

squirrel reaching for a nut

$\begin{array}{llllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 4 & 1 & 4 & 9 & 9 & 9 & 9 & 9 \\ 9\end{array}$
117111111111111111262662262999999999
$111417 \begin{array}{llllllllllllllllllllllllllll} & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 2 & 5 & 2 & 2 & 4 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
111111122222212666262620999999999
21111221222212666662649999999888
1111111111411152222000000414699999999999
111117222112265502999999999999999
$\begin{array}{lllllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 9 & 8 & 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 5 & 5\end{array} 9$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 7 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 5 & 4 & 3\end{array}$
33333333333333333333834444444939488
$\begin{array}{lllllllllllllllllllllllllllllll}3 & 3 & 8 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 8 & 3 & 8 & 8 & 3 & 3 & 8 & 3 & 8 & 4 & 4 & 8 & 4 & 8 & 3 & 8 & 3 & 3 \\ 3\end{array}$
3383333333888883488833888888888883838
338833338333333348833813338138888838
338333338388333333333333313888888

squirrel reaching for a nut

squirrel reaching for a nut

Up-sampled 4x

squirrel reaching for a nut

Parti, https://parti.research.google/

squirrel reaching for a nut underwater

fossil of a squirrel reaching for a nut
slide from Steve Seitz's video

squirrel made of toothpicks wearing sunglasses reaching for a nut

DLSR photograph of a whimsical fantasy house shaped like a squirrel with windows and a door, in the forest

$$
{ }^{2}
$$

Squirrel reaching for a nut. Van Gogh painting

Intricately carved cathedral door of a squirrel reaching for a nut

Squirrel reaching for a nut. Woodcut tessellation pattern by M.C. Escher
slide from Steve Seitz's video

Squirrel reaching for a nut. Latte art

Imagen

Dall-E 2
next time: diffusion

[^0]: * Equal contribution

