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3D Vision: Epipolar Geometry
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We covered: Reca P

 How to estimate the camera parameters
— “Calibration”

— Solve for intrinsics & extrinsics

* With a simple stereo, correspondences lie on
horizontal lines

* depth is inversely proportional to disparity
(how much the pixel moves)
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What Depth Map provides

warping the pixel based on its depth as you
change the views

Monocular Depth Prediction [Ranftl et al. PAMI'20]



Next: General case

* The two cameras need not have parallel optic
 Assume cameras are calibrated
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Same hammer:
Find the correspondences, then solve for stru

cture



Option 1: Rectify via homography

* reproject image planes
onto a common plane

— plane parallel to the line between
optical centers

* pixel motion is horizontal
after this transformation

 Two homographies, one
for each input image
reprojection

— C. Loop and Z. Zhang. Computing
Rectifying Homographies for
Stereo Vision. CVPR 1999.

Slide courtesy of Noah Snavely


http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

T

Then find
correspondences
on the horizontal
scan line

After rectification

Slide courtesy of Noah Snavely



General case, known camera, find depth:
Option 2

1. Find correspondences
2. Triangulate



General case, known camera, find depth:
Option 2

1. Find correspondences
2. Triangulate

Can we restrict the search space again to 1D?

What is the relationship between the camera +
the corresponding points?



Where do epipolar lines come from?
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Stereo correspondence constraints

P

e Given pin left image, where can corresponding point
p’ be?



Stereo correspondence constraints

p

X

e Given p in left image, where can corresponding point
p’ be?




Where do we need to search?

Slide by James Hays



Epipolar Geometry

Figures by Carlos Hernandez



Stereo correspondence constraints




Epipolar constraint

0 | / o’
e Potential matches for p have to lie on the corresponding
epipolar line I".

e Potential matches for p” have to lie on the corresponding
epipolar line /.

Source: M. Pollefeys



Epipolar geometry
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» Baseline — line connecting the two camera centers

« Epipolar Plane — plane containing baseline (1D family)

» Epipoles
= intersections of baseline with image planes
= projections of the other camera center

Slide credit: David Fouhey



The Epipole

Photo by Frank Dellaert



Example: Converging Cameras
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Epipoles finite, maybe in image; epipolar lines converge

Slide credit: David Fouhey



Example: Converging Cameras
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Epipolar lines come in pairs:
given a point p, we can construct the epipolar line for p’.

Slide credit: David Fouhey



Example 1:
Converging Cameras
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Image Credit: Hartley & Zisserman



Example: Parallel to Image Plane

Where is the epipole?

Epipoles infinitely far away, epipolar lines parallel

Slide credit: David Fouhey



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Epipole is focus of

expansion / P
principal point of @

the camera.

Epipolar lines go

O
@
out from principal .‘
point




Example: forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e: “Focus of expansion”

Figure from Hartley & Zisserman



Motion perpendicular to image plane

http://vimeo.com/48425421

Slide credit: David Fouhey


http://vimeo.com/48425421

Where were we?

 Why is this relevant?
e Assume camera is calibrated

* Goal: 3D reconstruction of corresponding
points in the image
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Epipolar Geometry

* If | want to do stereo, | want to find a
corresponding pixel for each pixel in the image:

* Naive search:
— For each pixel, search every other pixel

* With epipolar geometry:
— For each pixel, search along each line (1D search)!

Slide credit: David Fouhey



Epipolar constraint example

Slide Credit: S. Lazebnik



How do we compute the Epipolar line?



Step 0: Normalized image coordinates

K[R #]X
R #]X

» Let’s factor out the effect of K
« Since we know the intrinsics K, apply its inverse to x

* This is called the normalized image coordinates. It may be
thought of as a set of points with K = Identity

Xpom =K X0 =[1 01X, x, .. =K"x , =[Rt]X

norm pixel norm

« Assume that the points are normalized from here on



Epipolar constraint: Calibrated case

on AT e

The vectors x, 7, and x’ are coplanar
What can you say about their relationships, given n =t x x* ?

x’ - (t x x’) = 0 x’-(tx (Rx+1t)) =0
x’.(thxMy{%)):o

x’-(t Xx Rx) =0




Epipolar constraint: Calibrated case

X

x'[tx(Rx)]=0 ‘ x'T[tx]Rx =0

Recall: axb=| a, 0 —a.|b, |=[a]b

The vectors Rx, 7, and x’ are coplanar



Epipolar constraint: Calibrated case

X

/

/ 0’

=
- g
X' [tx(Rx)]=0 mm) x"[¢t]Rx=0 mE) x"Ex=0

0 —a. a, ||b
Recall:axb=| a. 0 -a | b, |=[a]b
—-a, a, 0 | b,

. !

Essential Matrix
(Longuet-Higgins, 1981)

The vectors x, 7, and x’ are coplanar




Epipolar constraint: Calibrated case

x"Ex=0

« E x is the epipolar line associated with x (I’ = E x)
 Recall: alineis given by ax + by + c=0or

a X

1'x=0 where 1=|b| x=|y

C 1




Epipolar constraint: Calibrated case

x"Ex=0

E x is the epipolar line associated with x (I' = E x)
E'x'is the epipolar line associated with x' (I = E"x")
Ee=0 and E’e'=0

E is singular (rank two)

E has five degrees of freedom




Epipolar constraint: Uncalibrated case

 Recall that we normalized the coordinates U
r=K ' 2 =K1 T=|v
where Z is the image coordinates T

 But in the uncalibrated case, K and K’ are
unknown!

* We can write the epipolar constraint in terms
of unknown normalized coordinates:

v Ex =0
(K,_lﬁ/l\f/),TE(K_lj)

F=K TpK-1

0
AN 7 -1—T —1 4
i K'TE(K ') =0

e Fundamental Matrix
j\;./T Fi — 0 (Faugeras and Luong, 1992)




Essential vs Fundamental matrix

What is the difference??



Epipolar constraint: Uncalibrated case
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?TEx=0 mm) 31 F3z=0 wth F=K TEK™!

- F=x is the epipolar line associated with  (I' = F X)

« FTx' is the epipolar line associated with ' (I = FT X")
- Fe=0 and F'e'=0

« Fis singular (rank two)

* F has seven degrees of freedom



Where are we?

Recall we’re trying to get the 3D points of
corresponding images, with calibrated cameras
(known Kand R, T)

1. Solve for correspondences using epipolar
constraints from known camera (1D search)

2. Triangulate to get depth!



Finally: computing depth by triangulation

We know about the camera, K,, K, and [R t]:
X =X"=RX+T

and that these are corresponding points: I <= '

r=KX 2 =KX

How many unknowns onIy unknowns!
+ how many equations Solve by least squares
do we have?



Triangulation Disclaimer: Noise

“Find 3D point
Ray’s don't always intersect
because of noise!!!

€r
\C, Least squares get you to a
- -~ reasonable solution but it's not
the actual geometric error (it's
how far away the solution is from
X s.t. Ax =0)

In practice with noise, you do
= I D/ )
x=PX, x =P X non-linear least squares, or
“bundle adjustment” (more than

2 image case, next lecture..)
Slide credit: Shubham Tulsiani



Summary: Two-view, known camera

0. Calibrate the camera.

1. Find correspondences:

- Reduce this to 1D search with Epipolar
Geometry!

2. Get depth:

- If simple stereo, disparity (difference of
corresponding points) is inversely
proportional to depth

- In the general case, triangulate.



What if we don’t know the camera?
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What if we don’t know the camera®?

Assume we know the correspondences:
x'and X in the image

T 1 A .
" Fxr =20 !
_fll S f13__u_
[u' 4 1] Ja Ju Jfu||v|=0
S Sw Sl

How many correspondences do we need?




Estimating the fundamental matrix




The eight-point algorithm

x=w,v)", x'=@w,V,]0) _j:u_

_ _ Ji3
fu o S S| o
[u' V' 1] for S fullVv]=0 ‘ l'u u'v o Vu vv v ou v 1] £y

S S S Ll Solve homogeneous ’;23

linear system using P
' eight or more matches | ;.

Enforce rank-2 -y | /
constraint (take SVD | I § | X I §
of F and throw out the | .\
smallest singular value) | /8% W B /A Wi
<~ ‘_ Y & :




The Bible by Hartley & Zisserman

Multiple View
Geometry

in computer vision

Richard Hartley and Andrew Zisserman




The Fundamental Matrix Song

Inkithejoth

http://danielwedge.com/fmatrix/
https://www.youtube.com/watch?time continue=8&v=DgGV3I82NTk&feature=emb title



http://danielwedge.com/fmatrix/
https://www.youtube.com/watch?time_continue=8&v=DgGV3l82NTk&feature=emb_title

What about more than two views?

The geometry of three views is described by a 3
X 3 X 3 tensor called the trifocal tensor

The geometry of four views is described by a 3
X 3 X 3 x 3 tensor called the quadrifocal
tensor

After this it starts to get complicated...

Slide courtesy of Noah Snavely



Next: Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours Building Rome in a Day, Agarwal et al. ICCV 2009

Number of cores: 352 Slide courtesy of Noah Snavely



Large-scale structure from motion

Result using COLMAP: Schonberger et al. CVPR ’16



