3D Vision: Epipolar Geometry

A lot of slides borrowed from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

CS194: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa, UC Berkeley, Fall 2021

More cool things with 3D

3D photo AR

Recap: Camera Model

Image Coordinates

Camera Coordinates

World Coordinates

$$\mathbf{x}_i = egin{bmatrix} x_i \ y_i \end{bmatrix}$$
 Perspective Projection $egin{bmatrix} f_x & 0 & o_x & 0 \ 0 & f_y & o_y & 0 \ 0 & 0 & 1 & 0 \end{bmatrix}$ Intrinsics

Coordinate Transformation
$$\mathbf{X}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$

Extrinsics

LXUIIISICS

Slide inspired by Shree Nayar

3D Points (Structure) Camera Correspondences (Motion)

Recap

We covered:

- How to estimate the camera parameters
 - "Calibration"
 - Solve for intrinsics & extrinsics
- With a simple stereo, correspondences lie on horizontal lines
- depth is inversely proportional to disparity (how much the pixel moves)

What Depth Map provides

Monocular Depth Prediction [Ranftl et al. PAMI'20]

Next: General case

- The two cameras need not have parallel optical axes.
- Assume cameras are calibrated

Same hammer:

Find the correspondences, then solve for structure

Option 1: Rectify via homography

- reproject image planes onto a common plane
 - plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- Two homographies, one for each input image reprojection
 - C. Loop and Z. Zhang. <u>Computing</u>
 <u>Rectifying Homographies for</u>
 <u>Stereo Vision</u>. CVPR 1999.

Option 1: Rectify via homography

Original stereo pair

Then find correspondences on the horizontal scan line

General case, known camera, find depth: Option 2

- 1. Find correspondences
- 2. Triangulate

General case, known camera, find depth: Option 2

1. Find correspondences

2. Triangulate

Can we restrict the search space again to 1D?

What is the relationship between the camera + the corresponding points?

Where do epipolar lines come from?

Stereo correspondence constraints

 Given p in left image, where can corresponding point p' be?

Stereo correspondence constraints

 Given p in left image, where can corresponding point p' be?

Where do we need to search?

Epipolar Geometry

Figures by Carlos Hernandez

Stereo correspondence constraints

Epipolar constraint

- Potential matches for *p* have to lie on the corresponding epipolar line *l*′.
- Potential matches for p' have to lie on the corresponding epipolar line l.

Source: M. Pollefeys

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center

The Epipole

Example: Converging Cameras

Epipoles finite, maybe in image; epipolar lines converge

Example: Converging Cameras

Epipolar lines come in pairs: given a point p, we can construct the epipolar line for p'.

Slide credit: David Fouhey

Example 1: Converging Cameras

Example: Parallel to Image Plane

Epipoles infinitely far away, epipolar lines parallel

Example: Forward Motion

Image Credit: Hartley & Zisserman

Example: Forward Motion

Image Credit: Hartley & Zisserman

Example: Forward Motion

Epipole is focus of expansion / principal point of the camera.

Epipolar lines go out from principal point

Example: forward motion

Epipole has same coordinates in both images.

Points move along lines radiating from e: "Focus of expansion"

Motion perpendicular to image plane

http://vimeo.com/48425421

Where were we?

- Why is this relevant?
- Assume camera is calibrated
- Goal: 3D reconstruction of corresponding points in the image

Epipolar Geometry

- If I want to do stereo, I want to find a corresponding pixel for each pixel in the image:
- Naïve search:
 - For each pixel, search every other pixel
- With epipolar geometry:
 - For each pixel, search along each line (1D search)!

Epipolar constraint example

Slide Credit: S. Lazebnik

How do we compute the Epipolar line?

Step 0: Normalized image coordinates

- Let's factor out the effect of K
- Since we know the intrinsics K, apply its inverse to x
- This is called the normalized image coordinates. It may be thought of as a set of points with K = Identity

$$x_{\text{norm}} = K^{-1}x_{\text{pixel}} = [I \ 0]X, \qquad x'_{\text{norm}} = K'^{-1}x'_{\text{pixel}} = [R \ t]X$$

Assume that the points are normalized from here on

The vectors x, t, and x' are coplanar

What can you say about their relationships, given $n = t \times x$?

$$\mathbf{x'} \cdot (\mathbf{t} \times \mathbf{x'}) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times (R\mathbf{x} + \mathbf{t})) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times R\mathbf{x} + \mathbf{t} \times \mathbf{t})) = 0$$

$$\mathbf{x'} \cdot (\mathbf{t} \times R\mathbf{x}) = 0$$

Recall:
$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

The vectors Rx, t, and x' are coplanar

The vectors x, t, and x' are coplanar

- Ex is the epipolar line associated with x (I' = Ex)
 - Recall: a line is given by ax + by + c = 0 or

$$\mathbf{l}^T \mathbf{x} = 0$$
 where $\mathbf{l} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

- E x is the epipolar line associated with x (I' = E x)
- E^Tx' is the epipolar line associated with x' ($I = E^Tx'$)
- E e = 0 and $E^T e' = 0$
- **E** is singular (rank two)
- E has five degrees of freedom

Recall that we normalized the coordinates

$$x=K^{-1}\hat{x}$$
 $x'=K'^{-1}\hat{x}'$ $\hat{x}=\begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

where \hat{x} is the image coordinates

- But in the uncalibrated case, K and K' are unknown!
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$x'^{T}Ex = 0$$

$$(K'^{-1}\hat{x}')'^{T}E(K^{-1}\hat{x}) = 0$$

$$\hat{x}'^{T}K'^{-T}E(K^{-1}\hat{x}) = 0$$

$$\hat{x}'^{T}F\hat{x} = 0$$

$$F = K'^{-T}EK^{-1}$$

Fundamental Matrix

(Faugeras and Luong, 1992)

Essential vs Fundamental matrix

What is the difference??

$$x'^T E x = 0$$

$$\hat{x}^{\prime T} F \hat{x} = 0$$

$$F = K'^{-T}EK^{-1}$$

- $F \hat{x}$ is the epipolar line associated with $\hat{x} (I' = F \hat{x})$
- $\mathbf{F}^T \widehat{\mathbf{x}}'$ is the epipolar line associated with $\widehat{\mathbf{x}}'$ ($\mathbf{I} = \mathbf{F}^T \widehat{\mathbf{x}}'$)
- Fe = 0 and $F^{T}e' = 0$
- **F** is singular (rank two)
- F has seven degrees of freedom

Where are we?

Recall we're trying to get the 3D points of corresponding images, with calibrated cameras (known K and R, T)

- 1. Solve for correspondences using epipolar constraints from known camera (1D search)
- 2. Triangulate to get depth!

Finally: computing depth by triangulation

We know about the camera, K₁, K₂ and [R t]:

and that these are corresponding points: $x \leftrightarrow x'$

$$x = KX \qquad x' = K'X' \\ = K'(RX + T)$$

How many unknowns + how many equations do we have?

only unknowns!

Solve by least squares

Triangulation Disclaimer: Noise

Ray's don't always intersect because of noise!!!

Least squares get you to a reasonable solution but it's not the actual geometric error (it's how far away the solution is from Ax = 0)

In practice with noise, you do non-linear least squares, or "bundle adjustment" (more than 2 image case, next lecture..)

X s.t.

x = PX, x' = P'X

Slide credit: Shubham Tulsiani

Summary: Two-view, known camera

0. Calibrate the camera.

1. Find correspondences:

- Reduce this to 1D search with Epipolar Geometry!

2. Get depth:

- If simple stereo, disparity (difference of corresponding points) is inversely proportional to depth
- In the general case, triangulate.

What if we don't know the camera?

What if we don't know the camera?

Assume we know the correspondences:

 \hat{x}' and \hat{x} in the image

$$\hat{x}'^T F \hat{x} = 0 \qquad \hat{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0$$

How many correspondences do we need?

Estimating the fundamental matrix

The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^{T}, \quad \mathbf{x}' = (u', v', 1)$$

$$\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0 \quad \text{Solve homogeneous} \quad \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{21} \end{bmatrix} = 0$$

Solve homogeneous linear system using eight or more matches

Enforce rank-2 constraint (take SVD of *F* and throw out the smallest singular value)

The Bible by Hartley & Zisserman

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/ https://www.youtube.com/watch?time_continue=8&v=DgGV3I82NTk&feature=emb_title

What about more than two views?

The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*

The geometry of four views is described by a 3 x 3 x 3 x 3 tensor called the *quadrifocal* tensor

After this it starts to get complicated...

Next: Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009

Slide courtesy of Noah Snavely

Large-scale structure from motion

