Automatic Image Alignment

with a lot of slides stolen CSIM 194: Intro to Comp. Vision and Comp. Photo Steve Seitz and Rick Szeliski Alexei Efros, UC Berkeley, Fall 2022

Project Proposals due in a month (11/11)

for cs294-26 and others interested to do more

Alpha blending for Panorama Stitching

Alpha $=.5$ in overlap region

Setting alpha: center seam

Alpha = logical(dtrans1>dtrans2)

Simplification: Two-band Blending

Brown \& Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda>2$ pixels)

High frequency ($\lambda<2$ pixels)

Linear Blending

h

AnP息
6 a
$+$

a.14

1 -

2-band Blending

Live Homography...

Image Alignment

How do we align two images automatically?
Two broad approaches:

- Feature-based alignment
- Find a few matching features in both images
- compute alignment
- Direct (pixel-based) alignment
- Search for alignment where most pixels agree

Direct Alignment

The simplest approach is a brute force search (hw1)

- Need to define image matching function
- SSD, Normalized Correlation, edge matching, etc.
- Search over all parameters within a reasonable range:
e.g. for translation:

```
for tx=x0:step:x1,
    for ty=y0:step:y1,
        compare image1(x,y) to image2(x+tx,y+ty)
    end;
end;
```

Need to pick correct $\mathrm{x} 0, \mathrm{x} 1$ and step

- What happens if step is too large?

Direct Alignment (brute force)

What if we want to search for more complicated transformation, e.g. homography?

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

for $a=a 0: a s t e p: a 1$,
for $\mathrm{b}=\mathrm{b} 0: \mathrm{bstep}: \mathrm{b} 1$,
for $c=c 0: c s t e p: c 1$,
for $d=d 0: d s t e p: d 1$,
for e=e0:estep:e1,
for f=f0:fstep:f1,
for $\mathrm{g}=\mathrm{g} 0: \mathrm{gstep}: \mathrm{g1}$,
for h=h0:hstep:h1,
compare image1 to H(image2)
end; end; end; end; end; end; end; end;

Problems with brute force

Not realistic

- Search in $\mathrm{O}\left(\mathrm{N}^{8}\right)$ is problematic
- Not clear how to set starting/stopping value and step

What can we do?

- Use pyramid search to limit starting/stopping/step values

Alternative: gradient decent on the error function

- i.e. how do I tweak my current estimate to make the SSD error go down?
- Can do sub-pixel accuracy
- BIG assumption?
- Images are already almost aligned (<2 pixels difference!)
- Can improve with pyramid
- Same tool as in motion estimation

Image alignment

Feature-based alignment

1. Feature Detection: find a few important features (aka Interest Points) in each image separately
2. Feature Matching: match them across two images
3. Compute image transformation: as per Project 5, Part I

How do we choose good features automatically?

- They must be prominent in both images
- Easy to localize
- Think how you did that by hand in Project \#6 Part I
- Corners!

A hard feature matching problem

NASA Mars Rover images

Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely

Feature Detection

Feature Matching

How do we match the features between the images?

- Need a way to describe a region around each feature
- e.g. image patch around each feature
- Use successful matches to estimate homography
- Need to do something to get rid of outliers

Issues:

- What if the image patches for several interest points look similar?
- Make patch size bigger
- What if the image patches for the same feature look different due to scale, rotation, etc.
- Need an invariant descriptor

Invariant Feature Descriptors

Schmid \& Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars \& Van Gool 2000, Mikolajczyk \& Schmid 2001, Brown \& Lowe 2002, Matas et. al. 2002, Schaffalitzky \& Zisserman 2002

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Applications

Feature points are used for:

- Image alignment (homography, fundamental matrix)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Today's lecture

- 1 Feature detector
- scale invariant Harris corners
- 1 Feature descriptor
- patches, oriented patches

Reading:
Multi-image Matching using Multi-scale image patches, CVPR 2005

Feature Detector - Harris Corner

Harris corner detector

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

The Basic Idea

We should easily recognize the point by looking through a small window
Shifting a window in any direction should give a large change in intensity

Harris Detector: Basic Idea

"flat" region:
no change in
all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Corner Detection: Mathematics

Change in appearance of window W for the shift $[u, v]$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window W for the shift $[u, v]$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window W for the shift $[u, v]$:

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

$$
E(u, v)
$$

Corner Detection: Mathematics

- First-order Taylor approximation for small motions [u, v]:
$I(x+u, y+v)=I(x, y)+I_{x} u+I_{y} v+$ higher order terms

$$
\begin{aligned}
& \approx I(x, y)+I_{x} u+I_{y} v \\
& =I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

- Let's plug this into

$$
E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}
$$

Corner Detection: Mathematics

$$
\begin{aligned}
E(u, v) & =\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]-I(x, y)\right]^{2} \\
& =\sum_{(x, y) \in W}\left(\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]\right)^{2} \\
& =\sum_{(x, y) \in W}\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\end{aligned}
$$

Corner Detection: Mathematics

The quadratic approximation simplifies to

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a second moment matrix computed from image derivatives:

$$
M=\sum_{(x, y) \in W}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Interpreting the second moment matrix

- The surface $E(u, v)$ is locally approximated by a quadratic form. Let's try to understand its shape.
- Specifically, in which directions does it have the smallest/greatest

$$
E(u, v)
$$ change?

$$
\begin{aligned}
& E(u, v) \approx\left[\begin{array}{lll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& M=\sum_{(x, y) \in W}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Interpreting the second moment matrix

First, consider the axis-aligned case
(gradients are either horizontal or vertical)

$$
M=\sum_{(x, y) \in W}\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

If either a or b is close to 0 , then this is not a corner, so look for locations where both are large.

Interpreting the second moment matrix

This is the equation of an ellipse.

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v)$: $\quad\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const
This is the equation of an ellipse.
Diagonalization of M :

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Interpreting the eigenvalues

Classification of image points using eigenvalues of M :

Harris Detector: Mathematics

Measure of corner response:

$$
R=\frac{\operatorname{det} M}{\text { Trace } M}
$$

$$
\begin{aligned}
\operatorname{det} M & =\lambda_{1} \lambda_{2} \\
\operatorname{trace} M & =\lambda_{1}+\lambda_{2}
\end{aligned}
$$

Harris detector: Steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function (nonmaximum suppression)
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Harris Detector: Workflow

Harris Detector: Workflow

Compute corner response R

Harris Detector: Workflow

Find points with large corner response: $R>$ threshold

Harris Detector: Workflow

Take only the points of local maxima of R

Harris Detector: Workflow

Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties

Partial invariance to affine intensity change
\checkmark Only derivatives are used => invariance
to intensity shift $I \rightarrow I+b$
\checkmark Intensity scale: $I \rightarrow a I$

Harris Detector: Some Properties

But: non-invariant to image scale!

All points will be

Scale Invariant Detection

Consider regions (e.g. circles) of different sizes around a point Regions of corresponding sizes will look the same in both images

Scale Invariant Detection

The problem: how do we choose corresponding circles independently in each image?

Choose the scale of the "best" corner

Feature selection

Distribute points evenly over the image

Adaptive Non-maximal Suppression

Desired: Fixed \# of features per image

- Want evenly distributed spatially...
- Sort points by non-maximal suppression radius [Brown, Szeliski, Winder, CVPR’051

