3D Vision: Calibration, Stereo

A lot of slides from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

CS194: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa, UC Berkeley, Fall 2022

Midterm

11/16 Wednesday!!

 Content: up to 11/9 lecture (the previous Wed)

• 11/9: Project 5 is due

Final Project

Easy path: Pre-canned

- Group of 1 : 2 projects

- Group of 2:3 projects

Grad students: Your own project

- 1 page Proposal with pictures due 11/11

Breaking out of 2D

...now we are ready to break out of 2D

And enter the real world!

on to 3D...

Enough of images!

We want more of the plenoptic function

We want real 3D scene walk-throughs:

Camera rotation
Camera translation

3D is super cool!

https://rd.nytimes.com/projects/reconstructing-journalistic-scenes-in-3d

3D is super cool!

@capturingreality

@organiccomputer

NeRF in the wild (will get to in few more lectures)

NeRF in the Wild, Martin-Brualla, Radwan et al. CVPR 2021

Not just about 3D reconstruction

[The Chemical Brothers - Wide Open ft. Beck, MV]

3D for video editing

My Research

Single-View 3D Human Mesh Recovery

[Bogo*, Kanazawa*, Lassner, Gehler, Romero, Black ECCV '16]

In everyday photos

Or from Video

Kanazawa, Zhang, and Felsen et al. CVPR 2019

In more detail

Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization, Saito, Huang, Natsume, Morishima, **Kanazawa**, Li, ICCV 2019

Teaching robots how to dance from watching YouTube

Video Policy

Peng, Kanazawa, Malik, Abbeel, Levine "SFV: Reinforcement Learning of Physical Skills from Videos", SIGGRAPH Asia 2018

Reconstructing Animals with Human Input

Zuffi, Kanazawa, Black, "Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images", CVPR 2018

Flying into an image

Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image, ICCV 2021

nerfstudio

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, Angjoo Kanazawa

+10 additional Github contributors

Matt

Ethan

Evonne

so on to 3D...

Enough of images!

We want more of the plenoptic function

We want real 3D scene walk-throughs:

Camera rotation
Camera translation

Can we do it from a single photograph?

Why multiple views?

Structure and depth are inherently ambiguous from single views.

Why multiple views?

Structure and depth are inherently ambiguous from single views.

Fundamental Scale Ambiguity of 2D → 3D

Original Image

Same 2D Projection

Infinite Possible 3D Interpretations

Need to different camera center

• **Structure:** What is the 3D coordinate of a point that can be seen in multiple images?

• Correspondence: Given a point in one of the images, where are the corresponding points in the other images?

 Motion: Given a set of corresponding points in two or more images, what is the relative camera parameters between the images?

• Structure, Motion

Today

• **Two** camera system = Stereo

Calibrating the cameras

Estimating depth from correspondences

Estimating depth with stereo

- Stereo: shape from "motion" between two views
- We'll need to consider:
 - 1. Camera pose ("calibration")
 - 2. Image point correspondences

Stereo vision

Two cameras, simultaneous views

Single moving camera and static scene

Cameras in world coordinate frame

We only have images and pixels

To go from pixels to 3D location in the world, we need to know two things about the camera:

- 1. Position of the camera with respect to the world (extrinsics)
- 2. How the camera maps a point in the world to image (intrinsics)

Problem setup

There is a world coordinate frame and camera looking at the world

How can we model the geometry of a camera?

Three important coordinate systems:

- 1. World coordinates
- 2. Camera coordinates
- 3. Image coordinates

Coordinate frames + Transforms

Figure credit: Peter Hedman

Camera: Specifics

Image Coordinates

Camera Coordinates

World Coordinates

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

$$\mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

$$\mathbf{X}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$

Perspective Projection

 $x_i = f \frac{x_c}{z_c}$

Image Plane to Image Sensor Mapping

- 1. Account for pixel density (pixel/mm) & aspect ratio by scalars: $[m_x, m_y]$ $m_x x_i, m_y y_i$
- 2. Usually the top left corner is the origin. But in the image plane, the origin is where the optical axis pierces the plane! Need to shift by:

$$(o_x,o_y)$$

$$u_i=\alpha_x x_i+o_x=\alpha_x f\frac{x_c}{z_c}+o_x$$

$$\text{where } [f_x,f_y]=[m_x f,m_y f]$$

Pixel Coordinates:

$$u_i = f_x \frac{x_c}{z_c} + o_x$$
 $v_i = f_y \frac{y_c}{z_c} + o_y$

With homogeneous coordinates

Perspective projection + Transformation to Pixel Coordinates:

$$u_i = f_x \frac{x_c}{z_c} + o_x \quad v_i = f_y \frac{y_c}{z_c} + o_y$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

Intrinsic Matrix

Camera Transformation (3D-to-3D)

Camera Coordinates

World Coordinates

$$\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix}$$
 \quad \text{Coordinate} \\ \text{Transformation} \\

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$
Extrinsic
Matrix

Putting it all together

Image Coordinates

Camera Coordinates

World Coordinates

$$\mathbf{x}_i = egin{bmatrix} x_i \ y_i \end{bmatrix}$$
 Perspective Projection $\begin{bmatrix} f_x & 0 & o_x & 0 \ 0 & f_y & o_y & 0 \ 0 & 0 & 1 & 0 \end{bmatrix}$

$$\mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

$$\mathbf{X}_w = egin{bmatrix} x_w \ y_w \ z_w \end{bmatrix}$$

Coordinate Transformation

$$\begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

Projection Matrix

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R_{3 \times 3} & \mathbf{t} \\ \mathbf{0}_{1 \times 3} & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

For completeness, we need to add **skew** (this is 0 unless pixels are shaped like rhombi/parallelograms)

$$K = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

3 x 4 Projection matrix Count the Degrees of Freedom:

Intrinsics: 4 + 1 (skew)

Extrinsic: 3 + 3 = 6

11 unknowns (up to scale)

Fundamental Scale Ambiguity

How to calibrate the camera?

If we know the points in 3D we can estimate the camera!!

Step 1: With a known 3D object

1. Take a picture of an object with known 3D geometry

2. Identify correspondences

How do we calibrate a camera?

Method: Set up a linear system

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Solve for m's entries using linear least squares

Similar to how you solved for homography!

Can we factorize M back to K [R | T]?

- Yes.
- Why? because K and R have a very special form:

$$egin{bmatrix} f_x & s & o_x \ 0 & f_y & o_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- QR decomposition
- Practically, use camera calibration packages (there is a good one in OpenCV)

Now that our cameras are calibrated, can we find the 3D scene point of a pixel?

You know we can't, but we know it'll be... on the ray!

$$x = \frac{z}{f_x}(u - o_x)$$
$$y = \frac{z}{f_y}(v - o_y)$$
$$z > 0$$

Simple Stereo Setup

- Assume parallel optical axes
- Two cameras are calibrated
- Find relative depth

Key Idea: difference in corresponding points to understand shape

Slide credit: Noah Snavely

Triangulation using two cameras

Triangulation using two cameras

Triangulation using two cameras

We are equipped with binocular vision. Let's try!

Right retinal image

Left retinal image

Solving for Depth in Simple Stereo

Do we have enough to know what is Z?

Yes, similar triangles!

$$z = \frac{fB}{u_l - u_r}$$

disparity (how much corrsp. pixels move)

Base of : $B - (d1 + d_2)$

 $\frac{\text{in image}}{\text{coordinates:}} = B - (u_l - u_r)$

Try with your hands!

(b)

Right retinal image

Left retinal image

Depth is inversely proportional to disparity

what is the disparity of the closer point? what is the disparity of the far away point? Disparity gives you the depth information!

Try again

- 1. Setup so your fingers are on the same line of sight from one eye
- 2. Now look in the other eye They move!

Relative displacement is higher as the relative distance grows

== Parallax

Parallax

Parallax = from ancient Greek parállaxis

= Para (side by side) + allássō, (to alter)

= Change in position from different view point

Two eyes give you parallax, you can also move to see more parallax = "Motion Parallax"

Stereo Matching: Finding Disparities

Goal: Find the disparity between left and right stereo pairs.

Left/Right Camera Images

Disparity Map (Ground Truth)

Where is the corresponding point going to be?

Hint

Epipolar Line

HON. ABRAHAM LINCOLN, President of United States.

epipolar lines

Two images captured by a purely horizontal translating camera (rectified stereo pair)

 x_1-x_2 = the *disparity* of pixel (x_1, y_1)

Your basic stereo algorithm

For every epipolar line:

For each pixel in the left image

- · compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match *windows*, + clearly lots of matching strategies

Your basic stereo algorithm

Determine Disparity using Template Matching

Template Window T

Left Camera Image E_l

Search Scan Line L

Right Camera Image E_r

Correspondence problem

Parallel camera example - epipolar lines are corresponding rasters

Source: Andrew Zisserman

Intensity profiles

Clear correspondence between intensities, but also noise and ambiguity

Correspondence problem

Neighborhood of corresponding points are similar in intensity patterns.

Source: Andrew Zisserman

Normalized cross correlation

subtract mean: $A \leftarrow A - < A >, B \leftarrow B - < B >$

$$NCC = \frac{\sum_{i} \sum_{j} A(i,j)B(i,j)}{\sqrt{\sum_{i} \sum_{j} A(i,j)^{2}} \sqrt{\sum_{i} \sum_{j} B(i,j)^{2}}}$$

Write regions as vectors

$$A \rightarrow a, B \rightarrow b$$

$$NCC = \frac{a.b}{|a||b|}$$
$$-1 \le NCC \le 1$$

Source: Andrew Zisserman

Correlation-based window matching

Source: Andrew Zisserman

Dense correspondence search

For each epipolar line

For each pixel / window in the left image

- compare with every pixel / window on same epipolar line in right image
- pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang Grauman

Textureless regions

Source: Andrew Zisserman

Effect of window size

Source: Andrew Zisserman Grauman

Effect of window size

W = 3

W = 20

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Issues with Stereo

Surface must have non-repetitive texture

Foreshortening effect makes matching a challenge

Stereo Results

Data from University of Tsukuba

Scene Ground truth

Results with Window Search

Ground truth

Better methods exist...

Energy Minimization

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Ground truth

Summary

- With a simple stereo system, how much pixels move, or "disparity" give information about the depth
- Correspondences to measure the pixel disparity

Next: Uncalibrated Stereo

From two arbitrary views

Assume intrinsics are known (fx, fy, ox, oy)