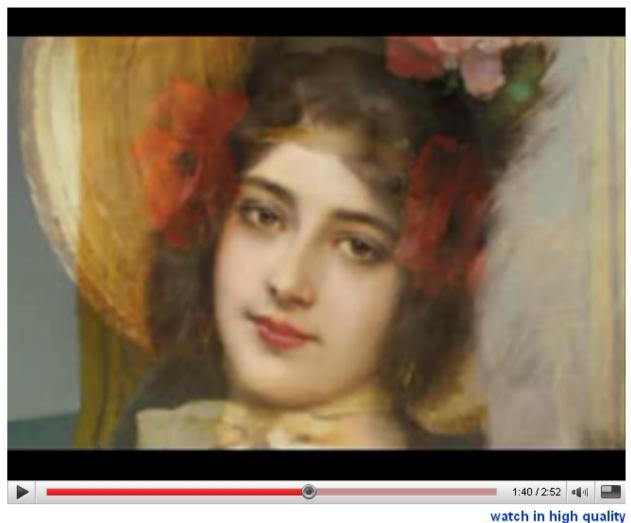
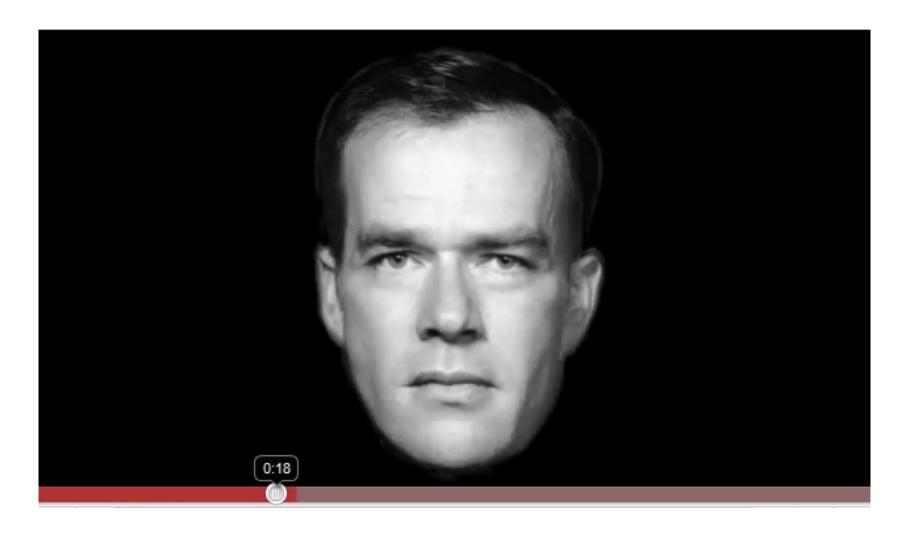
### Amuse-bouche



http://youtube.com/watch?v=nUDIoN- Hxs



http://www.youtube.com/watch?v=L0GKp-uvjO0

## Image Warping and Morphing



© Alexey Tikhonov

CS194: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa & Alexei Efros, UC Berkeley, Fall 2022

## Project 3 out today!!

project 2 how did it go?

project 3 is harder!

### **Image Transformations**

image filtering: change range of image

$$g(x) = T(f(x))$$

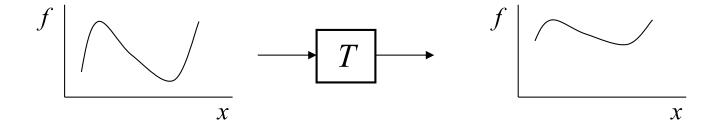


image warping: change domain of image

### **Image Transformations**

image filtering: change range of image

$$g(x) = T(f(x))$$



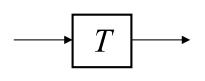
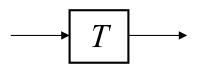




image warping: change domain of image



$$g(x) = f(T(x))$$





### All 2D Linear Transformations

#### Linear transformations are combinations of ...

- Scale,
- Rotation,
- · Shear, and
- Mirror

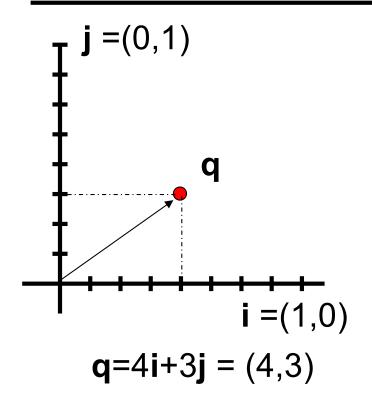
# $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

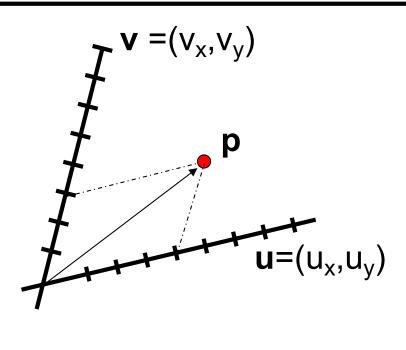
#### Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- · Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

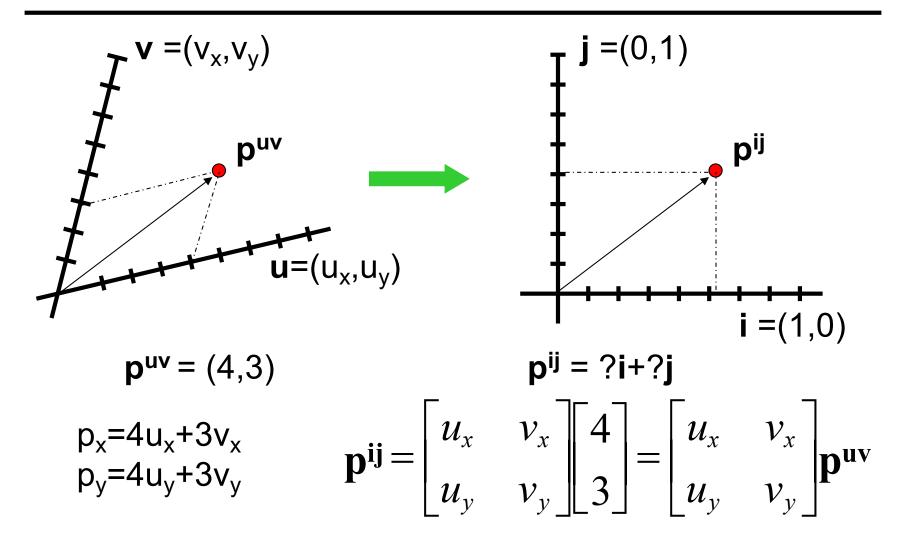
### Consider a different Basis





$$p=4u+3v$$

### Linear Transformations as Change of Basis



Any linear transformation is a basis!!!

### What's the inverse transform?

$$\mathbf{p}^{ij} = (0,1)$$

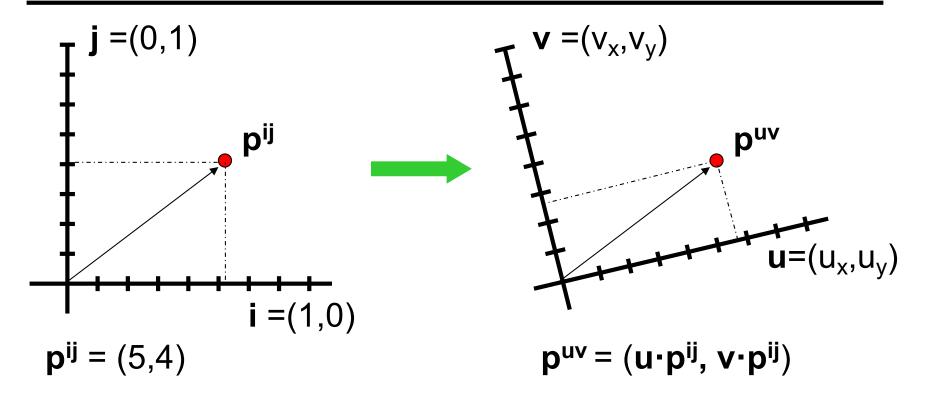
$$\mathbf{p}^{ij} = (1,0)$$

$$\mathbf{p}^{ij} = (5,4) = p_{x}\mathbf{u} + p_{y}\mathbf{v}$$

$$\mathbf{p}^{uv} = \begin{bmatrix} u_{x} & v_{x} \\ u_{y} & v_{y} \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} u_{x} & v_{x} \\ u_{y} & v_{y} \end{bmatrix}^{-1} \mathbf{p}^{ij}$$

- How can we change from any basis to any basis?
- What if the basis are orthogonal?

### Projection onto orthogonal basis



$$\mathbf{p^{uv}} = \begin{bmatrix} u_x & u_x \\ v_y & v_y \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} \mathbf{p^{ij}}$$

## Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

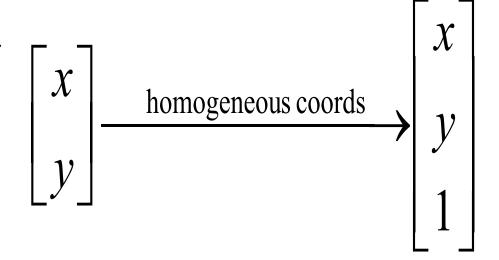
$$x' = x + t_x$$

$$y' = y + t_y$$

## Homogeneous Coordinates

### Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector



### Homogeneous Coordinates

## Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

### **Matrix Composition**

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{x}, \mathbf{t}_{y}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}) \qquad \mathbf{p}$$

Does the order of multiplication matter?

### Affine Transformations

- **Translations**

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis

Will the last coordinate w always be 1?

Affine transformations are combinations of ... 
$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

### **Projective Transformations**

### Projective transformations ...

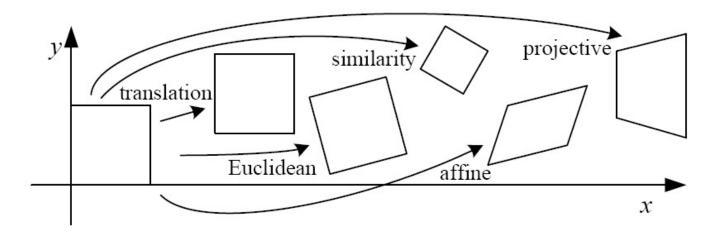
- Affine transformations, and
- Projective warps

### Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

### 2D image transformations



| Name              | Matrix                                                                                      | # D.O.F. | Preserves: | Icon       |
|-------------------|---------------------------------------------------------------------------------------------|----------|------------|------------|
| translation       | $egin{bmatrix} ig[ m{I}  m{m{b}}  m{t}  m{bm{bmatrix}}_{2	imes 3} \end{bmatrix}_{2	imes 3}$ |          |            |            |
| rigid (Euclidean) | $egin{bmatrix} ig[ m{R}  m{\mid} m{t} \ ig]_{2	imes 3} \end{split}$                         |          |            | $\bigcirc$ |
| similarity        | $\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$                             |          |            | $\Diamond$ |
| affine            | $\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2	imes 3}$                            |          |            |            |
| projective        | $\left[egin{array}{c} 	ilde{m{H}} \end{array} ight]_{3	imes 3}$                             |          |            |            |



Closed under composition and inverse is a member

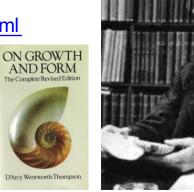
## Image Warping in Biology

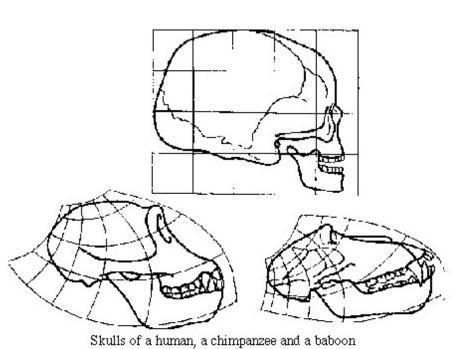
### D'Arcy Thompson

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

http://en.wikipedia.org/wiki/D'Arcy Thompson

## Importance of shape and structure in evolution





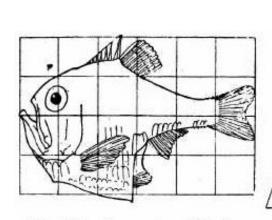
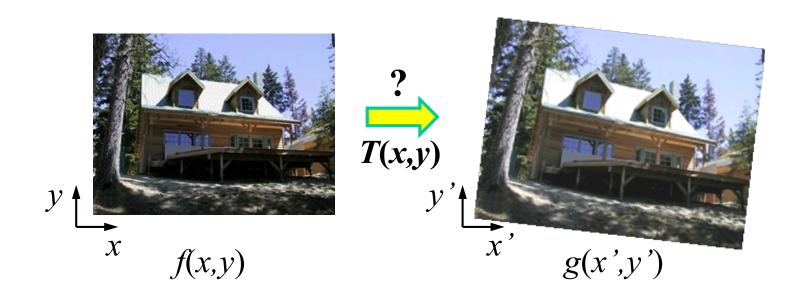


Fig. 517. Argyropelecus Olfersi.

Fig. 518. Sternoptyx diaphana.

and transformations between them

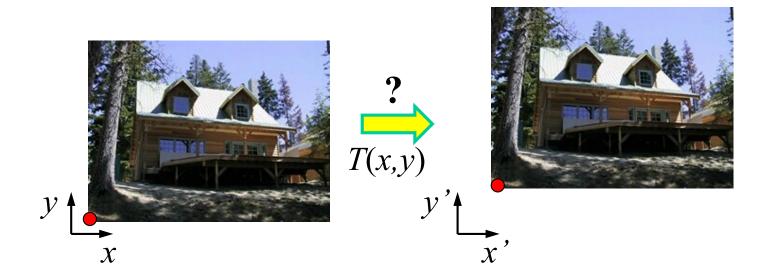
## Recovering Transformations



## What if we know f and g and want to recover the transform T?

- e.g. better align images from Project 1
- willing to let user provide correspondences
  - How many do we need?

## Translation: # correspondences?

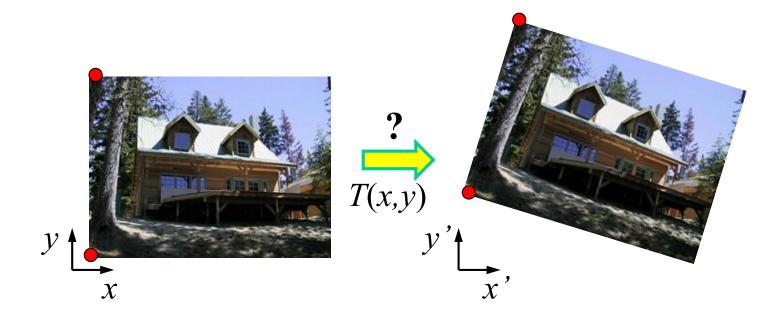


How many correspondences needed for translation?
How many Degrees of Freedom?

What is the transformation matrix?

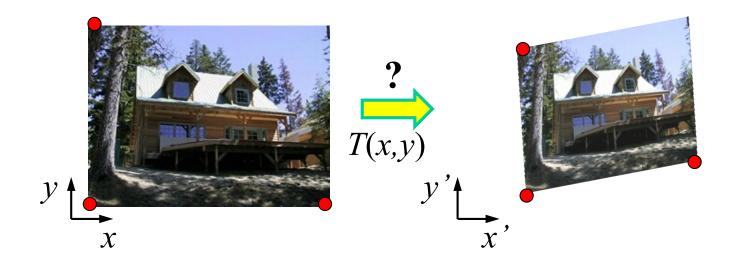
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & p'_x - p_x \\ 0 & 1 & p'_y - p_y \\ 0 & 0 & 1 \end{bmatrix}$$

## Euclidian: # correspondences?



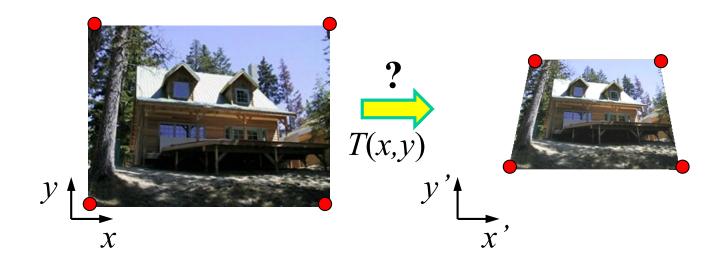
How many correspondences needed for translation+rotation? How many DOF?

## Affine: # correspondences?



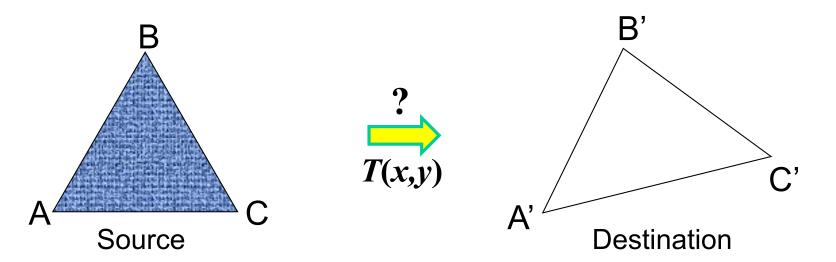
How many correspondences needed for affine? How many DOF?

## Projective: # correspondences?



How many correspondences needed for projective? How many DOF?

## Example: warping triangles



Given two triangles: ABC and A'B'C' in 2D (12 numbers)

Need to find transform T to transfer all pixels from one to the other.

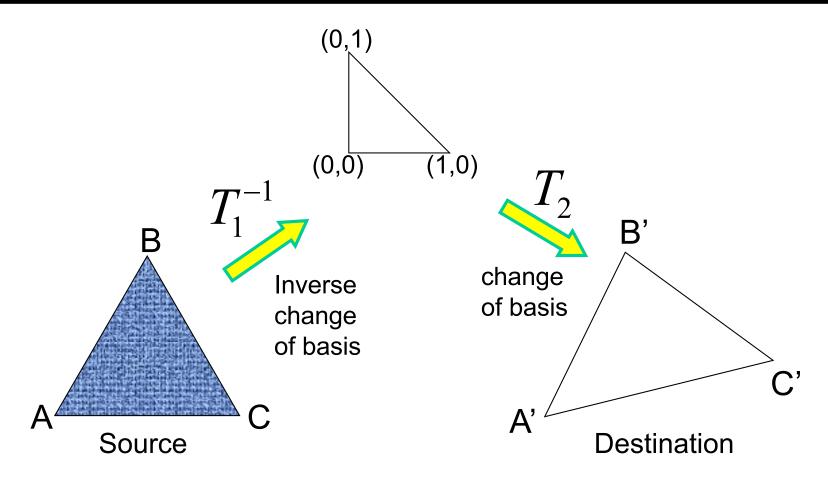
What kind of transformation is T?

How can we compute the transformation matrix:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Two ways:
Algebraic and
geometric

### warping triangles (Barycentric Coordinaes)

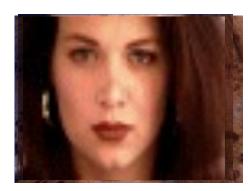


Don't forget to move the origin too!

Very useful for Project 3... (hint,hint,nudge,nudge)

## Morphing = Object Averaging







### The aim is to find "an average" between two objects

- Not an average of two <u>images of objects</u>...
- ...but an image of the average object!
- How can we make a smooth transition in time?
  - Do a "weighted average" over time t

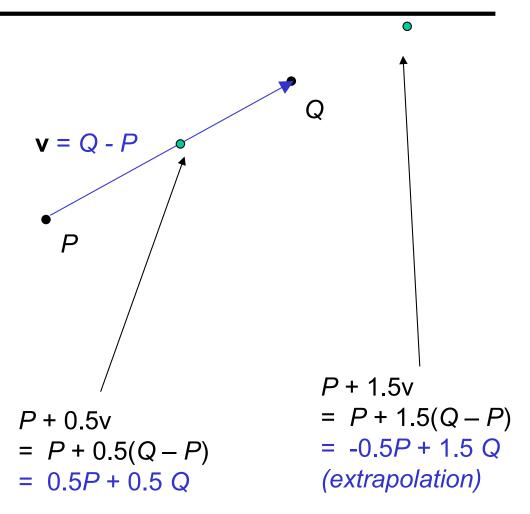
### How do we know what the average object looks like?

- We haven't a clue!
- But we can often fake something reasonable
  - Usually required user/artist input

## **Averaging Points**

What's the average of P and Q?

Linear Interpolation (Affine Combination): New point aP + bQ, defined only when a+b = 1So aP+bQ = aP+(1-a)Q



### P and Q can be anything:

- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images (m-by-n D)... etc.

### Idea #1: Cross-Dissolve







Interpolate whole images:

 $Image_{halfway} = (1-t)*Image_1 + t*image_2$ 

This is called **cross-dissolve** in film industry

But what is the images are not aligned?

## Idea #2: Align, then cross-disolve



### Align first, then cross-dissolve

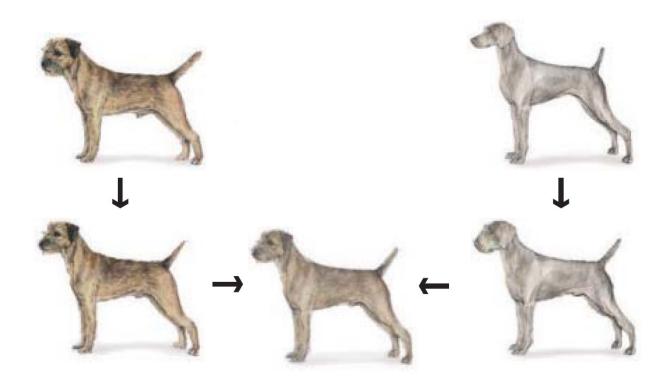
Alignment using global warp – picture still valid

## Image Morphing

Morphing = warping + cross-dissolving

shape color (geometric) (photometric)

## Two-stage Morphing Procedure



Morphing procedure:

### for every t,

- 1. Find the average shape (the "mean dog" ©)
  - warping
- 2. Find the average color
  - Cross-dissolve the warped images

## BUT: global warp not always enough!



#### What to do?

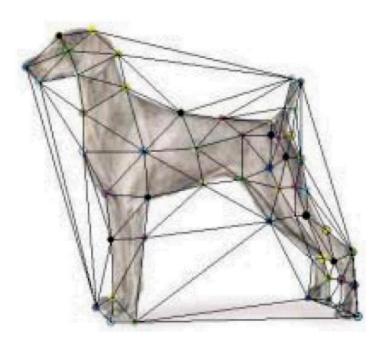
- Cross-dissolve doesn't work
- Global alignment doesn't work
  - Cannot be done with a global transformation (e.g. affine)
- Any ideas?

### Feature matching!

- Nose to nose, tail to tail, etc.
- But what to do with all the intermediate pixels?

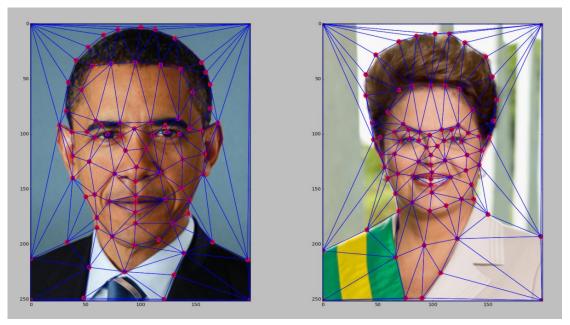
## Triangular Mesh





- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences
- 3. Warp each triangle separately from source to destination
  - How do we warp a triangle?

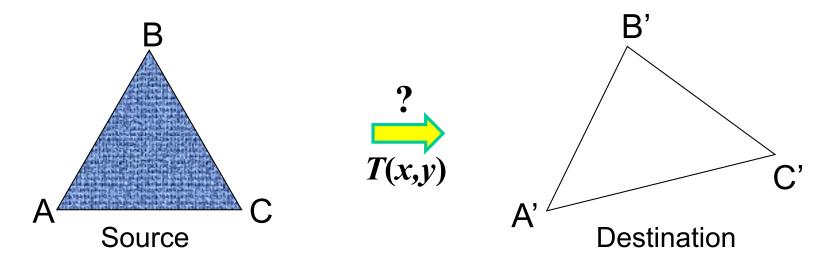
## Full morphing result





(c) Ian Albuquerque Raymundo da Silva

## Warping triangles



Given two triangles: ABC and A'B'C' in 2D (12 numbers)

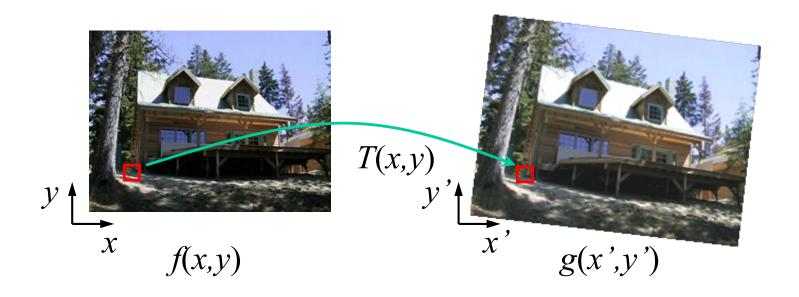
Need to find transform T to transfer all pixels from one to the other.

What kind of transformation is T?

How can we compute the transformation matrix:

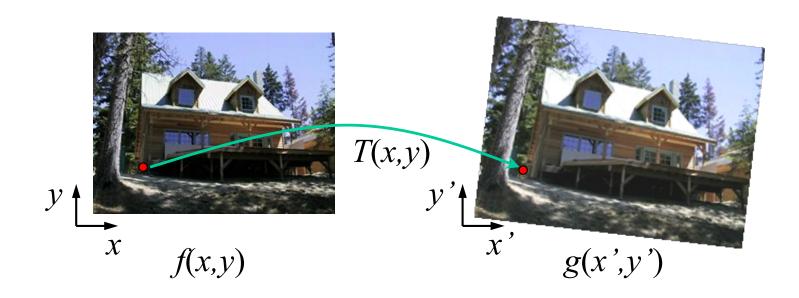
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

## Warping Pixels



Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

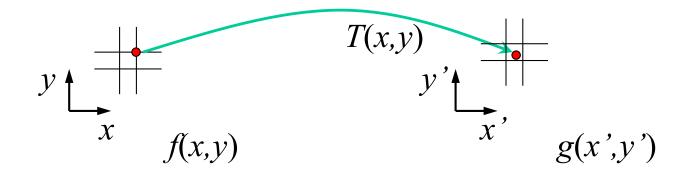
#### Forward warping



Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

#### Forward warping



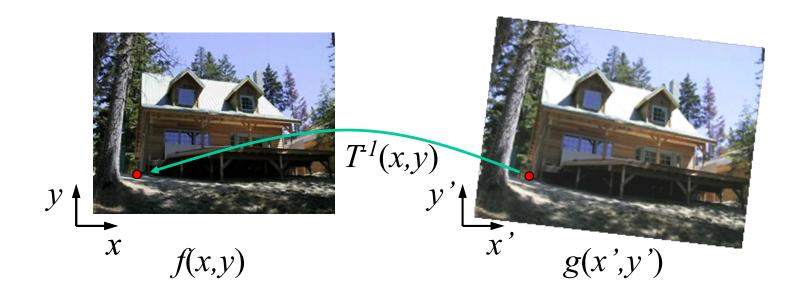
Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

- Known as "splatting"
- Check out griddata in Matlab

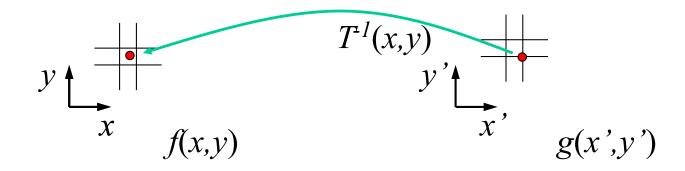
#### Inverse warping



Get each pixel g(x',y') from its corresponding location  $(x,y) = T^{-1}(x',y')$  in the first image

Q: what if pixel comes from "between" two pixels?

#### Inverse warping



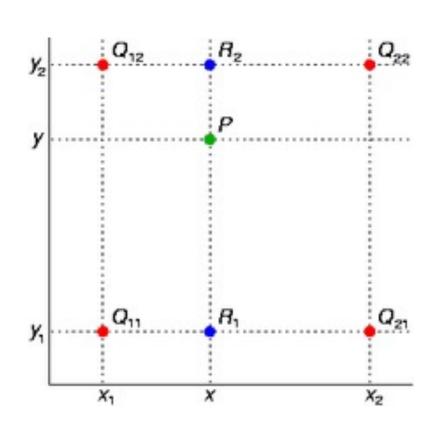
Get each pixel g(x',y') from its corresponding location  $(x,y) = T^{-1}(x',y')$  in the first image

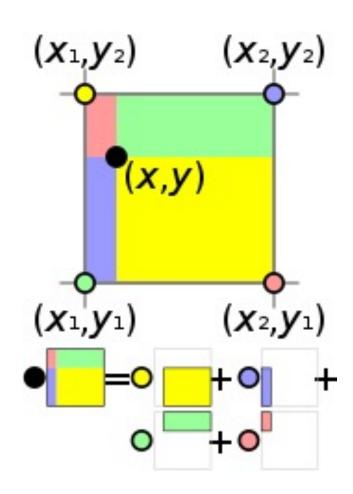
Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

- nearest neighbor, bilinear, Gaussian, bicubic
- Check out interp2 in Matlab / Python

#### Bilinear Interpolation





http://en.wikipedia.org/wiki/Bilinear\_interpolation
Help interp2

### Forward vs. inverse warping

Q: which is better?

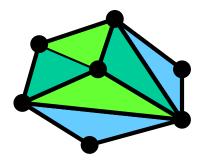
A: usually inverse—eliminates holes

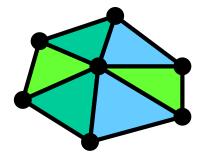
• however, it requires an invertible warp function—not always possible...

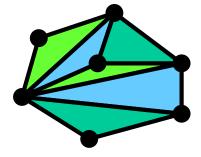
#### Triangulations

A *triangulation* of set of points in the plane is a *partition* of the convex hull to triangles whose vertices are the points, and do not contain other points.

There are an exponential number of triangulations of a point set.



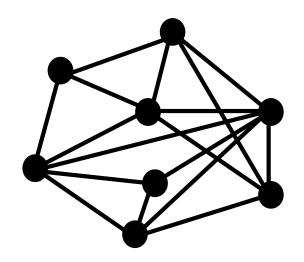




# An $O(n^3)$ Triangulation Algorithm

#### Repeat until impossible:

- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.



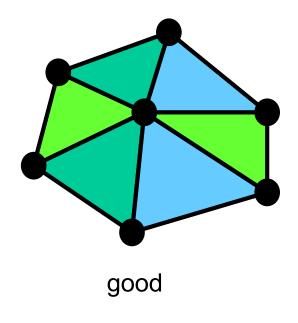
### "Quality" Triangulations

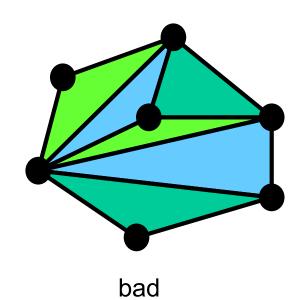
Let  $\alpha(T) = (\alpha_1, \alpha_2, ..., \alpha_{3t})$  be the vector of angles in the triangulation T in increasing order.

A triangulation  $T_1$  will be "better" than  $T_2$  if  $\alpha(T_1) > \alpha(T_2)$  lexicographically.

The Delaunay triangulation is the "best"

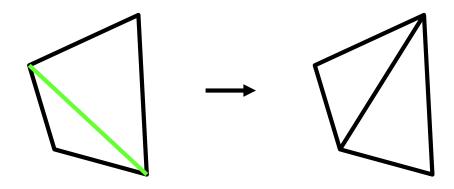
Maximizes smallest angles





### Improving a Triangulation

In any convex quadrangle, an *edge flip* is possible. If this flip *improves* the triangulation locally, it also improves the global triangulation.

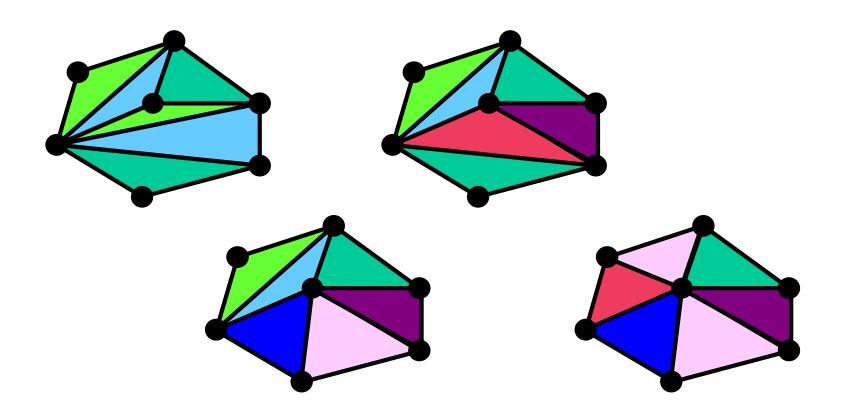


If an edge flip improves the triangulation, the first edge is called *illegal*.

#### Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no more exist.

Could take a long time to terminate.



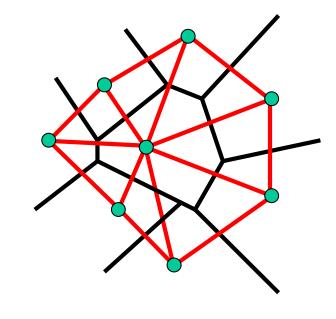
#### Delaunay Triangulation by Duality

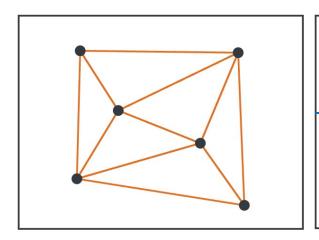
General position assumption: There are no four co-circular points.

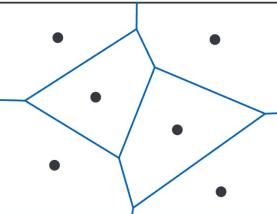
Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram.

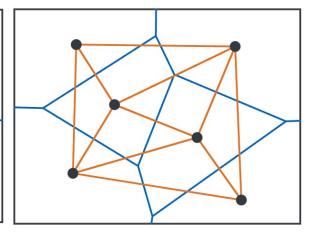
**Corollary:** The DT may be constructed in O(*n*log*n*) time.

This is what Matlab's delaunay function uses.





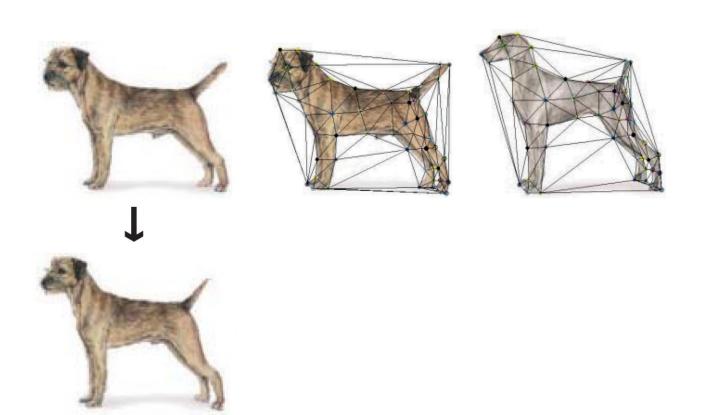


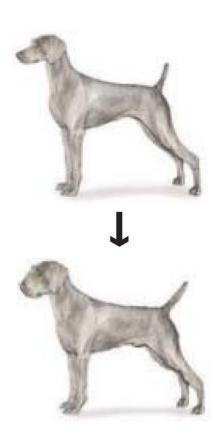


### 1. Create Average Shape

How do we create an intermediate warp at time t?

- Assume t = [0,1]
- Simple linear interpolation of each feature pair
   p=(x,y) -> p'(x,y)
- (1-t)\*p+t\*p' for corresponding features p and p'





## 2. Create Average Color







#### Interpolate whole images:

Image<sub>halfway</sub> = (1-t)\*Image + t\*image'

#### cross-dissolve!



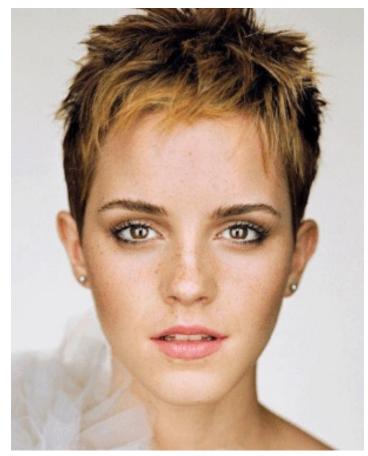
## Project #3: morphing

- 1. Define corresponding points
- 2. Define triangulation on points
  - Use <u>same triangulation</u> for both images
- 3. For each t = 0:step:1
  - Compute the average <u>shape</u> at t (weighted average of points)
  - b. For each triangle in the average shape
    - Get the affine projection to the corresponding triangles in each image
    - For each pixel in the triangle, find the corresponding points in each image and set value to weighted average (crossdissolve each triangle)
- c. Save the image as the next frame of the sequence

  <u>Life-hack</u>: can be done with just two nested loops (for t, and for each triangle). Hint: compute warps for all pixels first, then use interp2

# Examples





© Rachel Albert, CS194-26, Fall 2015

# Examples from last year



@Michael Jayasuriya

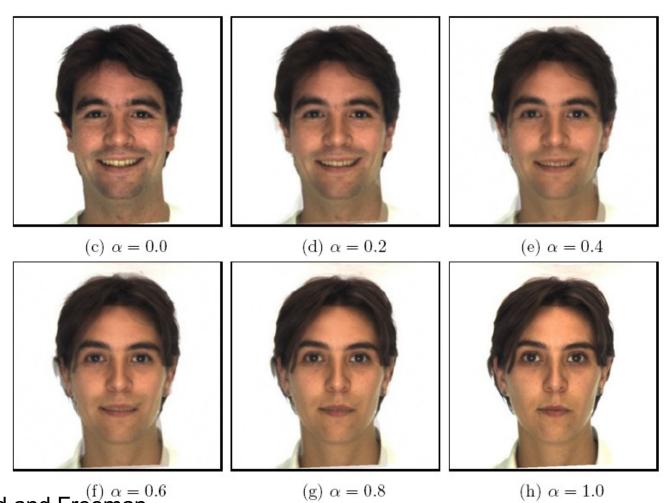


@Varun Saran

What's the difference?

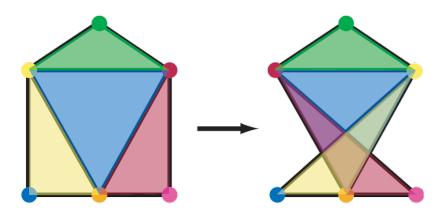
#### Morphing & matting

# Extract foreground first to avoid artifacts in the background



Slide by Durand and Freeman  $^{(f)}$   $\alpha=0.6$ 

#### Other Issues



#### Beware of folding

You are probably trying to do something 3D-ish

Morphing can be generalized into 3D

• If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects

Caricatures

# Dynamic Scene ("Black or White", MJ)



http://www.youtube.com/watch?v=R4kLKv5gtxc