
Neural Radiance Fields
CS194-26/294-26: Intro to Computer Vision and Computational 

Photography
Angjoo Kanazawa

UC Berkeley Fall 2022

Lots of content from ECCV 2022 Tutorial on Neural 
Volumetric Rendering for Computer Vision



Capturing Reality

Earliest cave painting (45,500 years old) in Sulawesi, Indonesia



Capturing Reality

Monet’s Cathedral series: study of light 1893-1894



Capturing Reality

First self-portrait Cornelius 1839 First Movie - Muybridge 1878



Capturing Reality – in 3D

Building Rome in a Day, Agarwal et al. ICCV 2009



Capturing Reality – in 3D

Google Earth 2016~



What is next?



2020: Neural Radiance Field (NeRF)

Mildenhall*, Srinivasan*, Tancik*, Barron, Ramamoorthi, Ng, ECCV 2020



It has been two years
• Original NeRF paper: 1598 citations in 2 years



Nerf-W [Martin-Brualla et al. CVPR 2021] 

Handling Appearance Changes



Video from PlenOctrees [Yu et al. CVPR 2021] 

Real-time Rendering



Real-time Inference



@karenxcheng, with 
InstantNGP [Müller et 
al., SIGGRAPH 2022] 





NSFF [Li et al., CVPR 2021]

HyperNeRF [Park et al., SigAsia 2021]
Nerfies [Park et al., ICCV 2021]

[Xian et al., CVPR 2021]

Dynamic NeRFs



EG3D: Efficient Geometry-aware 3D Generative 
Adversarial Networks, Chan et al. CVPR 2022

Generative 3D Faces



Wang et al. SIGGRAPH 2022



BlockNeRF 
[Tancik et al. 
CVPR 2022]

City-Scale 
NeRFs



@Ben raw NeRF results

RawNeRF 
[Mildenhall et al. 

CVPR 2022]



RawNeRF 
[Mildenhall et al. 

CVPR 2022]



Robotics

Dex-NeRF: Using a Neural Radiance field to Grasp 
Transparent Objects, [Ichnowski and Avigal et al. CoRL 2021]

Vision-Only Robot Navigation in a Neural Radiance World
[Adamkiewicz and Chen et al. ICRA 2022]

NeRF-Supervision: Learning Dense Object Descriptors from Neural 
Radiance Fields, [Yen-Chen et al. ICRA 2022]



Generating 
3D scenes 

with 
diffusion 
models

DreamFusion 
[Poole et al. 
arXiv 2022]



Goals of these lectures
• In 2 years, 1840 citations (as of November 28th) will not cover 

all these papers

• Visit the fundamentals in Neural Volumetric Rendering by 
abstracting away recent developments

• Provide first principles + background for you to go and read 
these papers & play around with the tools



Menu
1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Birds Eye View & Background
Capture of UC Berkeley redwoods with



Birds Eye View

• What is NeRF? 

• How is it different or similar to existing approaches?

• What is its historical context? 



Output: 
A 3D scene representation that 

renders novel views

Input: 
A set of calibrated Images

Problem Statement





Three Key Components

Neural Volumetric 3D 
Scene Representation

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

Objective: Synthesize 
all training views

Differentiable Volumetric 
Rendering Function

3D volume

𝑡"

Camera

Ray

Optimization via 
Analysis-by-Synthesis



Representing a 3D scene as a continuous 5D function

MLP
9 layers, 

256 channels

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

{
Spatial 
location

{
Viewing 
direction

Output 
color

{

Output 
density

{

What kind of a 3D representation is this?



It is not a Mesh

Not a point cloud 
either

It is volumetric
It’s continuous voxels

✨🧊✨

made of shiny transparent cubes



What is the problem that is being solved? 



Plenoptic Function

Q: What is the set of all things that we can ever see?

A: The Plenoptic Function (Adelson & Bergen ‘91)

Slide credit: 
Alyosha Efros

Figure by Leonard McMillan

Let’s start with a stationary person and try to 
parameterize everything that they can see…



Grayscale Snapshot

• is intensity of light 
• Seen from a single position (viewpoint)
• At a single time
• Averaged over the wavelengths of the visible spectrum

P(q,f)

Slides from Alyosha Efros



Color snapshot

• is intensity of light 
• Seen from a single position (viewpoint)
• At a single time
• As a function of wavelength

P(q,f,l)

Slides from Alyosha Efros



A movie 

• is intensity of light 
• Seen from a single position (viewpoint)
• Over time
• As a function of wavelength

Slides from Alyosha Efros

P(q,f,l,t)



A holographic movie 

• is intensity of light 
• Seen from ANY position and direction
• Over time
• As a function of wavelength

Slides from Alyosha Efros

P(q,f,l,t,VX,VY,VZ)



The plenoptic function

7D function, that can reconstruct every position & direction, 
at every moment, at every wavelength

= it recreates the entirety of our visual reality! 

Slides from Alyosha Efros

P(q,f,l,t,VX,VY,VZ)



Goal: Plenoptic Function from a set of images

• Objective: Recreate the visual reality
• All about recovering photorealistic pixels, not about 

recording 3D point or surfaces
—Image Based Rendering aka Novel View Synthesis



Goal: Plenoptic Function from a set of images

It is a conceptual device

Adelson & Bergen do not discuss how to solve this



Plenoptic Function

Let’s simplify: 
1. Remove the time
2. Remove the wavelength & let the function output RGB colors

P(q,f,l,t,VX,VY,VZ)

7D function:
2 – direction
1 – wavelength
1 – time 
3 – location

P(q,f,VX,VY,VZ)

Look familiar 
🙂?



An example of a sparse plenoptic function

If street view was super dense 
(360 view from any view point)

then it is the Plenoptic Function



Lightfield / Lumigraph
• An approach for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Levoy and Hanrahan, SIGGRAPH 1996
Gortler et al. SIGGRAPH 1996

Stanford Gantry 
128 cameras Lytro camera



Lightfield / Lumigraph
• An approach for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Levoy and Hanrahan, SIGGRAPH 1996
Gortler et al. SIGGRAPH 1996

Stanford Gantry 
128 cameras Lytro camera Figure from Marc Levoy



Lightfield / Lumigraph
Levoy and Hanrahan, SIGGRAPH 1996

Gortler et al. SIGGRAPH 1996

Figure from Marc Levoy

• An approach for modeling the Plenoptic Function

• Take a lot of pictures from many views

• Interpolate the rays to render a novel view

Stanford Gantry 
128 cameras Lytro camera



Lightfield / Lumigraph
Levoy and Hanrahan, SIGGRAPH 1996

Gortler et al. SIGGRAPH 1996

Lightfields assume that the ray 
shooting out from a pixel is never 

occluded.
Surface Camera

No Change in 
Radiance

Lighting

Because of this it only models the 
plenoptic surface:



Plenoptic Function

How NeRF models the Plenoptic Function

NeRF takes the same input as the Plenoptic Function!

Look familiar 
🙂?

P(q,f,VX,VY,VZ)

A subtle difference:

So NeRF requires the integration along the viewing ray to compute the Plenoptic Function
Bottom line: it models the full plenoptic function! 

NeRF



5D function

• For every location (3D), all possible views (2D)
• NeRF models this space with a continuous view-dependent 

volume with opacity
• The color emitted by every point is composited to render a pixel
• Unlike a light field, the entire 5D plenoptic function can be 

modeled (you can fly through the world)

✨🧊✨



Visualizing the 2D function on the sphere

Mildenhall et al. 2020, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Outgoing radiance distribution 
for point on side of ship

Outgoing radiance distribution 
for point on water’s surface



Baking in Light

• NeRF can capture non-Lambertian (specular, shiny surfaces) because 
it models the color in a view-dependent manner

• This is hard to do with meshes unless you model the physical materials 
& lighting interactions

• But, with Image Based Rendering — All lighting effects are baked in



NeRF in a Slide

Volumetric 3D Scene 
Representation

Optimization via 
Analysis-by-Synthesis

Differentiable Volumetric 
Rendering Function

Objective: Reconstruct 
all training views

3D volume

𝑡"

Camera

Ray



Unmentioned caveat so far

• Training a NeRF requires a calibrated
camera!!!!

• Need to know the camera parameters: 
extrinsic (viewpoint) & intrinsics (focal 
length, distortion, etc)

How do we get this from images?



Structure from Motion
Or Photogrammetry (1850~) 

Long history in Computer Vision



NeRF is AFTER Structure from Motion
• In order to train NeRF you need to run SfM/SLAM on the images to 

estimate the camera parameters

• In this sense, the problem category is same as that of Multi-view Stereo

Colmap: Schönberger et al. 2016



Multi-view Stereo
• Problem: Given calibrated cameras, recover highly detailed 3D surface model
• Dense photogrammetry, often the output is textured meshes

Figures by Carlos Hernandez, Yasutaka Furukawa



Multi-View Stereo
Solutions to MVS is what you see for any existing 3D scanning system, ie 
sketchfab, or what’s in your video game



Multi-View Stereo
Because they often model surfaces, struggles on Thin / Amorphus / Shiny objects 





Conventional 
Graphics Pipeline

NeRFs 

Where NeRF stands

Appearance Based 
Reconstruction
(Image Based 

Rendering)

Physics based 
Reconstruction

(3D Surface 
Modeling)

Lightfield/Lumigraph
(No 3D representation)

One 3D Surface, 
Single Albedo 

Texture
One 3D Surface, 
View-Dependent 
Texture Mapping

Layered Depth 
Images (LDIs)

Multi-Plane 
Images (MPIs)

• can do Image Based Rendering well, while 
also being a 3D representation

• Does not suffer from limitations of surface 
models

• Easy to optimize from images 





Analysis-by-Synthesis

• History goes way back to the first Computer Vision paper! 
Roberts: Machine Perception of Three-Dimensional Solids, MIT, 1963



Power of Analysis-by-Synthesis
● Space Carving: A MVS method that used Colored voxels
● But the optimization method was bottom up then.
● Key is optimization via Analysis-by-Synthesis [Plenoxels, Yu et al. 2022]

Kultulakos and Seitz, A Theory of Shape by Space Carving IJCV 2000



Analysis-by-Synthesis

• With custom differentiable renders
Blanz & Vetter 1999



Analysis by Synthesis Requires 
Differentiable Renderers

Next: Deep dive into Volumetric Rendering Function



Where we are
1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Volume Rendering

84





Neural Volumetric Rendering

86



Neural Volumetric Rendering

87

computing color along rays 
through 3D space

What color is this pixel?



Cameras and rays

90



Cameras and rays

• We need the mathematical mapping 
from (camera, pixel) → ray

• Then can abstract underlying problem 
as learning the function ray→ color
(the “plenoptic function”)

91

Camera

RayPixel



Recap Coordinate frames: World-to-Camera Transforms

Figure credit: Peter Hedman

World coordinates Camera coordinates Image coordinates

Extrinsics (R, T)

Orientation + Location of the 
camera in the World

Intrinsics (K)

How the camera maps a point in 
3D to image



Recap Coordinate frames: Camera-to-World Transforms

Figure credit: Peter Hedman

World coordinates Camera coordinates Image coordinates

Extrinsics (R, T)

Orientation + Location of the 
camera in the World

Intrinsics (K)

How the camera maps a point in 
3D to image



Camera pose - pixel to camera

• Mapping from (camera, pixel) to ray in camera 
coordinate frame 

• This coordinate system has camera situated at 
origin, with right/up/backwards aligned to x/y/z axes

• Axis convention varies in different codebases :(

• “Inverse intrinsic matrix” in a computer vision sense

94

Y

X

Z



95

Y

X

Z
3D view Top view 

(looking along Y)
Side view 

(looking along X)

X

Z

Z

Y

Camera pose - pixel to camera



96

Y

X

Z
3D view Top view 

(looking along Y)
Side view 

(looking along X)

distance = 𝑓

distance =
 𝑓

Camera pose - pixel to camera



97

Y

X

Z
3D view Top view 

(looking along Y)
Side view 

(looking along X)

Pixel (i, j)

Camera pose - pixel to camera

distance = 𝑓

distance =
 𝑓

𝑖

𝑗

Coordinates are (𝑖, 𝑗) in pixel space



99

Y

X

Z
3D view Top view 

(looking along Y)
Side view 

(looking along X)

Pixel (i, j)

𝑖 − 𝑤/2

𝑗 − ℎ/2

distance = 𝑓

distance =
 𝑓

Recenter using pixel coordinates of image center

Camera pose - pixel to camera



100

Y

X

Z
3D view Top view 

(looking along Y)
Side view 

(looking along X)

Pixel (i, j)
𝑖 − 𝑤/2

𝑓

𝑗 − ℎ/2
𝑓

Rescale frustum by focal length 𝑓 so that 
image plane is at distance 1

distance = 1

distance =
 1

Camera pose - pixel to camera



102

Full mapping is (𝑖, 𝑗) → !"#/%
&

, '"(/%
&

, −1 to get 3D 
coordinates for a point on the image plane.

Camera space ray points from origin toward this point.

Y

X

Z

Camera pose - pixel to camera



• Omitted details

• Half-pixel offset — add 0.5 to i and j so ray precisely hits pixel center

• This is a perfect pinhole model — typically need to add a distortion 
model to correct for error found in real cameras

103

Camera pose - pixel to camera



Camera pose - camera to world

• Simply apply rigid rotation and translation to 
origin and image plane points (six degrees of 
freedom).

• This positions the camera in “world space”.

104

Apply rigid (𝐑, 𝐭)

transformation

𝐱

𝐑𝐱 + 𝐭



Calculating points along a ray

105

𝐨
𝐝

𝐨 + 𝑡𝐝

Scalar 𝑡 controls distance 
along the ray

In the world coordinate frame:



Neural Volumetric Rendering

106



Neural Volumetric Rendering

107

continuous, differentiable 
rendering model without 

concrete ray/surface intersections



Surface vs. volume rendering

108

Ray

Camera Scene 
representation

Want to know how ray interacts with scene



Surface vs. volume rendering

109

Ray

Camera Scene 
representation

?
?

?

?

?
? ?

?
?

?
????

?

Surface rendering — loop over geometry, check for ray hits



Surface vs. volume rendering

110

Ray

Camera Scene 
representation

Volume rendering — loop over ray points, query geometry

? ?
? ? ?



History of volume rendering

111



Early computer graphics

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

‣ Theory of volume rendering co-opted from physics in the 
1980s: absorption, emission, out-scattering/in-scattering

‣ Adapted for visualising medical data and linked with 
alpha compositing

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects

Ray tracing simulated cumulus cloud [Kajiya]

112



Alpha compositing

113

Porter and Duff 1984, Compositing Digital Images

Alpha compositing [Porter and Duff]

‣ Theory of volume rendering co-opted from physics in the 
1980s: absorption, emission, out-scattering/in-scattering

‣ Alpha rendering developed for digital compositing in 
VFX movie production

‣ Modern path tracers use sophisticated Monte Carlo 
methods to render volumetric effects



Volume rendering for visualization

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering

Kajiya 1984, Ray Tracing Volume Densities
Chandrasekhar 1950, Radiative Transfer

Porter and Duff 1984, Compositing Digital Images

‣ Theory of volume rendering co-opted from physics in the 
1980s: absorption, emission, out-scattering/in-scattering

‣ Alpha rendering developed for digital compositing in 
VFX movie production

‣ Volume rendering applied to visualise 3D medical scan 
data in 1990s 

Medical data visualisation [Levoy]

114



Geometry and materials can be 
stored per-voxel and used with 
standard surface rendering methods

• Sparse voxel octrees

• Voxel hashing 

• Anisotropic radiative transfer

115

Volume rendering for surfaces



Volume rendering derivations

118



Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

120



Simplify

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

121



Volumetric formulation for NeRF

129

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

130

If a ray traveling through the scene hits 
a particle at distance 𝑡 along the ray, 
we return its color 𝐜(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜(𝑡)



What does it mean for a ray to “hit” the volume?

131

This notion is probabilistic: chance that ray hits 
a particle in a small interval around 𝑡 is 𝜎(𝑡)𝑑𝑡.
𝜎 is called the “volume density”

𝑃[ℎ𝑖𝑡 𝑎𝑡 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡



Probabilistic interpretation

132

To determine if 𝑡 is the first hit along the ray, 
need to know 𝑇(𝑡): the probability that the 
ray makes it through the volume up to 𝑡.

𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)
𝑡



Probabilistic interpretation

133

The product of these probabilities tells us how much you see 
the particles at 𝑡:
𝑃[3irst hit at 𝑡] = 𝑃[no hit before 𝑡]×𝑃[ℎ𝑖𝑡 𝑎𝑡 𝑡] = 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



135

𝑃[no hits before 𝑡] = 𝑇(𝑡)
𝑡

Let’s write T as a function of 𝜎 ! How? 

Calculating 𝑇 given 𝜎



Calculating 𝑇 given 𝜎

136

𝜎 and 𝑇 are related by the probabilistic fact that
𝑃[no hit before 𝑡 + 𝑑𝑡] = 𝑃[no hit before 𝑡]×𝑃[no hit at 𝑡]

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

𝑇(𝑡) (1 − 𝜎(𝑡)𝑑𝑡)𝑇(𝑡 + 𝑑𝑡)



Calculating transmittance 𝑇

138

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

𝜎 and 𝑇 are related by the probabilistic fact that
𝑃[no hit before𝑡 + 𝑑𝑡] = 𝑃[no hit before𝑡]×𝑃[no hit at𝑡]𝑇(𝑡 + 𝑑𝑡) 𝑇(𝑡) (1 − 𝜎(𝑡)𝑑𝑡)



Solve for 𝑇

139

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Split up differential⇒ 𝑇(𝑡) + 𝑇)(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Rearrange⇒ *!(,)
*(,)

𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫,"
, 𝜎(𝑠)𝑑𝑠

Exponentiate⇒ 𝑇(𝑡) = exp −∫,"
, 𝜎(𝑠)𝑑𝑠



140

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒ *!(,)
*(,)

𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫,"
, 𝜎(𝑠)𝑑𝑠

Exponentiate⇒ 𝑇(𝑡) = exp −∫,"
, 𝜎(𝑠)𝑑𝑠

Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇)(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Solve for 𝑇



141

Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇)(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒ *!(,)
*(,)

𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫,"
, 𝜎(𝑠)𝑑𝑠

Exponentiate⇒ 𝑇(𝑡) = exp −∫,"
, 𝜎(𝑠)𝑑𝑠

Solve for 𝑇



142

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒ *!(,)
*(,)

𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇)(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫,"
, 𝜎(𝑠)𝑑𝑠

Exponentiate⇒ 𝑇(𝑡) = exp −∫,"
, 𝜎(𝑠)𝑑𝑠

Solve for 𝑇



143

Taylor expansion for T⇒ 𝑇(𝑡) + 𝑇)(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange⇒ *!(,)
*(,)

𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫,"
, 𝜎(𝑠)𝑑𝑠

Exponentiate⇒ 𝑇(𝑡) = exp −∫,"
, 𝜎(𝑠)𝑑𝑠

Solve for 𝑇



PDF for ray termination

152

Finally, we can write the probability that a ray terminates at 𝑡 as a function of only sigma
𝑃[3irst hit at 𝑡] = 𝑃[no hit before 𝑡]×𝑃[hit at 𝑡]

𝑃[ℎ𝑖𝑡 𝑎𝑡 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

= exp −∫,"
, 𝜎(𝑠)𝑑𝑠 𝜎(𝑡)𝑑𝑡

= 𝑇(𝑡)𝜎(𝑡)𝑑𝑡



Expected value of color along ray

154

This means the expected color returned by the ray will be 

∫,"
,#𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡

Note the nested integral!



Approximating the nested integral

155

We use quadrature to approximate the nested integral, 



Approximating the nested integral

156

We use quadrature to approximate the nested integral, 
splitting the ray up into 𝑛 segments with endpoints 
{𝑡), 𝑡*, … , 𝑡+,)}

𝑡!

𝑡'

𝑡$%&

𝑡(



Approximating the nested integral

157

We use quadrature to approximate the nested integral, 
splitting the ray up into 𝑛 segments with endpoints 
{𝑡), 𝑡*, … , 𝑡+,)}
with lengths 𝛿! = 𝑡!./ − 𝑡!

𝑡!
𝛿'

𝑡'

𝑡$%&

𝑡(



Approximating the nested integral

158

We assume volume density and 
color are roughly constant within 
each interval

𝑡!

𝐜! , 𝜎!

𝑡(



Deriving quadrature estimate

159

This allows us to break the outer integral 
into a sum of analytically tractable integrals

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡



Deriving quadrature estimate

160

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

This allows us to break the outer integral 
into a sum of analytically tractable integrals



Deriving quadrature estimate

161

Caveat: piecewise constant density and color 
do not imply constant transmittance!

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡



Deriving quadrature estimate

162

Caveat: piecewise constant density and color 
do not imply constant transmittance!

Important to account for how early part of a 
segment blocks later part when 𝜎- is high

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡



Evaluating 𝑇 for piecewise 
constant density

163

For 𝑡 ∈ [𝑡! , 𝑡!./], 𝑇(𝑡) = exp −∫,#
,(𝜎!𝑑𝑠 exp −∫,(

,𝜎!𝑑𝑠

We need to evaluate at continuous 𝑡 values 
that can lie partway through an interval

𝑡



164

exp − ∑
)*'

(+'
𝜎)𝛿) = 𝑇(

For 𝑡 ∈ [𝑡! , 𝑡!./], 𝑇(𝑡) = exp −∫,#
,(𝜎!𝑑𝑠 exp −∫,(

,𝜎!𝑑𝑠

“How much light is blocked by 
all previous segments?”

Evaluating 𝑇 for piecewise 
constant density

𝑡



exp −𝜎$(𝑡 − 𝑡$)
“How much light is blocked partway 

through the current segment?”

Evaluating 𝑇 for piecewise 
constant density

For 𝑡 ∈ [𝑡! , 𝑡!./], 𝑇(𝑡) = exp −∫,#
,(𝜎!𝑑𝑠 exp −∫,(

,𝜎!𝑑𝑠

𝑡



166

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

Deriving quadrature estimate



167

Substitute

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

= ∑
!0/

1
𝑇!𝜎!𝐜!∫,(

,()#exp −𝜎!(𝑡 − 𝑡!) 𝑑𝑡

Deriving quadrature estimate



168

Integrate

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

= ∑
!0/

1
𝑇!𝜎!𝐜!∫,(

,()#exp −𝜎!(𝑡 − 𝑡!) 𝑑𝑡

= ∑
!0/

1
𝑇!𝜎!𝐜!

exp −𝜎!(𝑡!./ − 𝑡!) − 1
−𝜎!

Deriving quadrature estimate



169

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!0/

1
∫,(
,()#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

= ∑
!0/

1
𝑇!𝜎!𝐜!∫,(

,()#exp −𝜎!(𝑡 − 𝑡!) 𝑑𝑡

= ∑
!0/

1
𝑇!𝜎!𝐜!

exp −𝜎!(𝑡!./ − 𝑡!) − 1
−𝜎!

= ∑
!0/

1
𝑇!𝐜!(1 − exp(−𝜎!𝛿!))Cancel 𝜎-

Deriving quadrature estimate



170

= ∑
!0/

1
𝑇!𝐜!(1 − exp(−𝜎!𝛿!))

Connection to alpha compositing

segment 
opacity 𝛼-



171

= ∑
!0/

1
𝑇!𝐜!(1 − exp(−𝜎!𝛿!))

Connection to alpha compositing

segment 
opacity 𝛼-

𝑇! = ∏
'0/

!"/
(1 − 𝛼')

color = ∑
!0/

1
𝑇!𝛼!𝐜!



Summary: volume rendering integral estimate

175

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
𝑡)

𝑡!

Camera

Ray

colors

weights

𝐜 ≈ ∑
$%&

'
𝑇$𝛼$𝐜$

𝑇$ = ∏
(%&

$)&
(1 − 𝛼()

𝛼$ = 1 − exp(−𝜎$𝛿$)

𝑡"#$

𝑡$ 𝑇%

𝛼%

𝑡%



Volume rendering is trivially 
differentiable

176

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
𝑡)

𝑡!

Camera

Ray

colors

weights

𝐜 ≈ ∑
$%&

'
𝑇$𝛼$𝐜$

𝑇$ = ∏
(%&

$)&
(1 − 𝛼()

𝛼$ = 1 − exp(−𝜎$𝛿$)

𝑡"#$

𝑡$ 𝑇%

𝛼%

𝑡%

differentiable w.r.t. 𝐜, 𝜎



Further points on volume 
rendering 

177



Alpha mattes and compositing

178



Alpha mattes and compositing

179



Alpha mattes and compositing

180



Alpha mattes and compositing

182

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion
Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition



Rendering weight PDF is important

183

Remember, expected color is equal to

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
$
𝑇$𝛼$𝐜$

𝑇(𝑡)𝜎(𝑡) and 𝑇-𝛼- are “rendering weights” — probability distribution along the ray 
(continuous and discrete, respectively)



184

3D volume

𝑡!

Camera

Ray

184

Visual intuition — rendering weights not just 3D 
function

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!



185

3D volume

𝑡!

Camera

Ray

185

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

Visual intuition — rendering weights not just 3D 
function



Rendering weight PDF is important 
— depth

186

We can use this distribution to compute expectations for other quantities, 
e.g. “expected depth”:

𝑡 = ∑
$
𝑇$𝛼$𝑡$

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering weight PDF is important 
— depth

187

Mean depth Median depth



Rendering weight PDF is important 
— depth

188

Mean depth Median depth



Volume rendering other quantities

189

This idea can be used for any quantity we want to “volume render” into a 2D image. 
If 𝐯 lives in 3D space (semantic features, normal vectors, etc.)

∑
$
𝑇$𝛼$𝐯$

can be taken per-ray to produce 2D output images.



190Kobayashi et al 2022, Decomposing NeRF for Editing via Feature Field Distillation

Various recent works have used this idea to render higher-level semantic feature maps 
(e.g., Feature Field Distillation and Neural Feature Fusion Fields).

Volume rendering other quantities



Density as geometry

191

Normal vectors (from analytic gradient of density)



Applications/optimizing 
differentiable volume rendering 

193



194

Alpha compositing model in ML/computer vision

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction 
via Differentiable Ray Consistency

Differentiable ray consistency work used a 
forward model with “probabilistic occupancy” 
to supervise 3D-from-single-image prediction.
Same rendering model as alpha compositing!



Volume rendering for view 
synthesis

196

Neural Volumes 
(Lombardi et al. 2019)
Direct gradient descent to optimize an RGBA 
volume, regularized by a 3D CNN

Multiplane image methods
Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries… (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View… (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 
3D CNN, big RGBA 3D volume comes out




