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Project 3 Winner!!

Original keyframe My face morphed into keyframe shape

Joshua Chen

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj3/cs194-26-adm/



https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj3/cs194-26-adm/

Project 4 Highlight

Shinwoo Choi

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj4B/cs194-26-afm/

Class vote is happening now, do vote!


https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj4B/cs194-26-afm/

Project 5 Winner!!

Jules Dedieu

Team Members Score
Jules *:g\ 5.06767
tha ﬁ\ 5.47330
Val R *a\ 5.59510
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Where we are

1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes
4. Signal Processing Considerations

5. Challenges & Pointers



Absorption
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http://commons.wikimedia.org

Simplify

Scattering

Emission

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering 6

http://wikipedia.org



Summary: volume rendering integral estimate

Rendering model for ray r(t) = o + td:

ik ] differentiable w.r.t. C, o —
.7 C ~ Z Tlalc ofole |, -\\

colors

Ray

weights
How much light is blocked earlier along ray:

1—1
ri=11(1-qa)
]=1

How much light is contributed by ray segment i:

3D volume

‘Iamera

a; = 1—exp(—0;0;)



Further points on volume
rendering



Alpha mattes and compositing

.
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Alpha mattes and compositing




Alpha mattes and compositing




>

lpha mattes and compositing

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion
Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition 12



Rendering weight PDF is important

Remember, expected color is equal to

JT®o)c(t)dt = Y Tia;c;
v

T(t)o(t) and T;a; are “rendering weights” — probability
distribution along the ray
(continuous and discrete, respectively)
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Visual intuition — rendering weights depend on the ray!

Ray
3D volume
‘ Rendering weights are not a 3D function
Camera — depends on the ray, because of

transmittance!



Visual intuition — rendering weights depend on the ray!

Camera

3D volume

Ray

Rendering weights are not a 3D function
— depends on the ray, because of
transmittance!
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Use the rendering weight (PDF) to
render depth

We can use this distribution to compute expectations for other
quantities, e.g. “expected depth”:

t = YT;a;t;
i

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

17



Rendering depth value with the PDF

Mean depth Median depth
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Rendering depth value with the PDF

Mean depth Median depth
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Volume rendering other quantities

This idea can be used for any quantity we want to “volume

render” into a 2D image. It V lives in 3D space (semantic
features, normal vectors, etc.)

2Tia;v;
L

can be taken per-ray to produce 2D output images.

20



Volume rendering other quantities

Various recent works have used this idea to render higher-level semantic feature maps
(e.q., Feature Field Distillation and Neural Feature Fusion Fields).

Kobayashi et al 2022, Decomposing NeRF for Editing via Feature Field Distillation, , Tschernezki et al. 2022 , Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image Representation



Density as geometry

Normal vectors (from analytic gradient of density)

22



Alpha compositing model in ML/computer vision

— .

/ . z=1 752

, B | | I ‘ b *

1—1
Ditferentiable ray consistency work used a (1—zf) || =} ifi<N,
forward model with “probabilistic occupancy” plzr=i)={ . 7
to supervise 3D-from-single-image prediction. 1E2 ifi=N.+1
Same rendering model as alpha compositing! j=1
Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction oY)

via Differentiable Ray Consistency



Where we are

1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes
4. Signal Processing Considerations

5. Challenges & Pointers



Three Key Components

(x,v,2,0,p)> = (r,9,b,0)
Fq

Neural Volumetric 3D
Scene Representation



Mesh Representation




Gradient Based Optimization

Initial Geometry Target Geometry



Gradient Based Optimization

Initial Geometry Target Geometry



Gradient Based Optimization

Compute Gradients Target Geometry



Gradient Based Optimization

Compute Gradients Target Geometry



Gradient Based Optimization

Update positions Target Geometry



Gradient Based Optimization

Compute New Error Target Geometry




Gradient Based Optimization

Repeat Target Geometry



Gradient Based Optimization

Repeat Target Geometry



Gradient Based Optimization

I

Initial Geometry Target Geometry



Gradient Based Optimization

Initial Geometry Target Geometry



Gradient Based Optimization

Initial Geometry Target Geometry



Voxel Representation




Gradient Based Optimization

Initialized Gria Target Geometry



Gradient Based Optimization

Initialized Gria Target Geometry



Gradient Based Optimization

Loss Target Geometry



Gradient Based Optimization

Gradient Step Target Geometry



Gradient Based Optimization

Repeat Target Geometry




Gradient Based Optimization

Repeat Target Geometry




Gradient Based Optimization

Repeat Target Geometry



Gradient Based Optimization

I

Reconstruction Target Geometry




Gradient Based Optimization

Reconstruction Target Geometry




Gradient Based Optimization

Voxel Mesh Target Geometry



Geometry Representations

i/

=

= L
Mesh Representation Voxel Representation
Small memory footprint Easy to optimize

Hard to optimize Large memory footprint




Implicit Functions
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Implicit Functions
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Coordinate Based Neural Network

Input = Value at
Coordinate . Coordinate

Multi Layer Perceptron
MLP



Neural networks as a continuous
shape representation

Occupancy Networks

(Mescheder et al. 2019) (x,y,z) = occupancy
DeepSDF |
(Park et al. 2019) (x,y,z) — distance

Scene Representation Networks
(Sitzmann et al. 2019) (x,¥,2) — latent vec. (color; dist.)

Differentiable Volumetric Rendering
(Niemeyer et al. 2020) (x,v,2z) = color, occ.



Challenge:

* How to get MLPs to represent higher frequency functions?

Rahaman et al. 2019. Basri et al. 2020



Image Representation
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MLP output Supervision image



Standard input
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Standard input

XL

Positionally Encoded input
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Standard MLP MLP with Fourier features



Why does positional encoding help?

Target Image



Why does positional encoding help?

Input Target 0
X )

A 36 5 B

Target Image



Why does positional encoding help?

Input Target 0
X )
A 36 5 B
B 38 5 D g AR

Target Image



Why does positional encoding help?

Input Target
X )
A L] ||
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Target Image



Why does positional encoding help?

Input Target
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With Positional Encoding
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Performance depends on max encoding frequency
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Fourier feature scale o
Network output Performance vs. scale value

Tancik*, Srinivasan*, Mildenhall* et al. 2020, Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains



Without Encoding

With Encoding

Coordinate-based MLPs can replace any low-dimensional array



NeRF with and without posmona\ encoding
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NeRF (Naive) NeRF (with positional encoding)



Other Encoding Considerations

X
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Other Encoding Considerations
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Other Encoding Considerations

Can lead to “grid” artitacts




Other Encoding Considerations
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Other Encodings
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Spherical Harmonics
fourier basis on the sphere




Approximate a function on the sphere with
Spherical Harmonics coefficients



NeRF with Spherical Functions

NeRF

—» 0 Density
(X, ), 2) =—p
[] —> 000

NeRF with Spherical Harmonics (NeRF-SH)

—3 ¢ Density
(X, ), 2) =—p




PlenOctree =
Sparse Voxels with density + SH coefficients

k0 @
k@K @k @

COL@HKSHSE®

Skips empty regions
- much faster rendering time!

Yu et al. PlenOctrees for Real-time Rendering of Neural Radiance Fields, ICCV 2021



PlenOctree NeRF
54.00 FPS 0.073 FPS




Trade-off

\ L3OOOX faster than OG NeRF!

321 X Ours-1.9G —
NeRF NSVF >4
Ours-1.4G
30 - /
Ours-0.4G L
Ours-0.3G
. 285
7
26+ /\’
AutoInt-24 / Neural Volumes
Autolnt-16 ‘
4 - Autolnt-8
SRN
0.1 1 10 100

Frames per Second



Can we learn the encoding?



L earnable Encodings

Lets try optimizing phase and frequency s.t. @) goes to |l

| L




L earnable Encodings

Lets try optimizing phase and frequency s.t. @) goes to |l
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L earnable Encodings

Lets try optimizing phase and frequency s.t. @) goes to |l

L

also changes which makes optimization difficult




Desired: Learnable encoding
with local extent



Desired: Learnable encoding
with local extent



Desired: Learnable encoding
with local extent



Make continuous via interpolation

'\ ‘ B

a ﬁ‘ﬁ ‘=,6’(aA+(1—aB))
1-8 +(1—-p0)(aC + (1 —aD))
.C.D




Feature grids can be effective

Toy task for a 2D grid cell

Tunable grid values

Target ‘ H
Post-activation r -

_al
_al

V4 (

Sun et al. 2021, Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction

Surface
(Decision boundary)

Free-space  Occupancy

V4 (




Compression Techniques

Sparsity Low Rank Dictionary



Sparsity

Optimize Sparsity Upsample

Repeat

Lui et al. 2020, Neural Sparse Voxel Fields
Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks
Sun et al. 2021, Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction



Low Rank Approximations

v
- . l-; .

levzxv?) 171XM1

V1

Chen*, Xu* et al. 2022, TensoRF Tensorial Radiance Fields
Chan*, Lin*, Chan*, Nagano* et al. 2022, EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks



Dictionary Methods

Feature Grid

Feature Grid > Dictionary

Mapping with collisions

Dictionary

Muller et al. 2022, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding



Feature Grids as MLP Encodings
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Revisiting Geometry
Representations

Mesh Representation Voxel Representation

Small memory footprint Easy to optimize
Hard to optimize ? Large memory footprint ?
- -



Training
Image

MLPs are not required...

a) Sparse Voxel Grid
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Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks



MLPs are not required...
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But MLPs are convenient
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Where we are

1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes
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5. Challenges & Pointers



Signal Processing
Considerations in NeRF



What is happening here?




Review: Aliasing in Image Processing
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Review: Aliasing in Image Processing
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Sampling Along Rays




Where to place samples along rays?

3D volume




How to be more efficient than dense sampling?

Ray

3D volume




How to be more efficient than dense sampling?

Ray

3D volume




Hierarchical Sampling vs. Acceleration Structures



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

lteratively use samples from NeRF to more
efficiently sample visible scene content



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling Acceleration Structures

lteratively use samples from NeRF to more Distill/cache properties of NeRF into a
efficiently sample visible scene content structure that helps generate samples



Hierarchical ray sampling



Key ldea: sample points proportionally to
expected effect on final rendering

Ray

3D volume

‘ Camera

113



Key ldea: sample points proportionally to
expected effect on final rendering

Ray

treat weights as probability 3D volume

distribution for new samples

‘ Camera

114



Key ldea: sample points proportionally to
expected effect on final rendering

Ray O Coarse samples (stage 1)

()
'f
‘ C _©  Fine samples (stage 2)

® 3D volume

treat weights as probabillity
distribution for new samples e

‘ Camera

115



What about aliasing during coarse sampling?

Ray

3D volume

‘ Camera



What about aliasing during coarse sampling?

Ray

3D volume

‘ Camera \ lost!



What about aliasing during coarse sampling?

Solution: train two NeRFs! —> lower resolution for first “coarse” level
Ray

)

“coarse” 3D volume

‘ Camera



What about aliasing during coarse sampling?

Solution: train two NeRFs! —> higher resolution for second “fine” level
Ray

“fine” 3D volume

‘ Camera



More anti-aliasing

can we avoid training two networks?



Aliasing In NeRF renderings




Recall that averaging reduces aliasing

Filter




But repeatedly sampling and averaging iIs inefficient

g% _./ Crpads >

o

s
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r

Filter Sample



Standard solution: prefiltering with a mipmap

Pyramidal Parametrics, Lance Williams, SIGGRAPH 1983




Antialiasing requires average ray color within pixel




Supersampling vs. prefiltering




Want NeRF to represent integrals within frustum




Instead of using positional encoding of a point...

- v(x)

Positional Encoding




mip-NeRF uses integrated positional encoding

® Exr\‘z./\f [W(X)]

Integrated Positional Encoding




Positional Encoding

sin(2“x)



Integrated positional encoding can reasonably
approximate prefiltering

1/16x 1/8x 1/4x 1/2x 1x 2X 4x 8X 16X
Aliased Correctly prefiltered Overblurred



Parameterizing 3D Space



Standard coordinates for bounded volumes
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Normalized device coordinates for unbounded
“forwards-facing” volumes
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How to parameterize fully unbounded volumes?
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Continuous warping of space
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|I€CES

Caught up with the core NeRF p




What are the remaining challenges?

Don’t worry there is a lot!



The neverending list of NeRF limitations (back in 2020)

eExpensive / slow to train
eExpensive / slow to render

e Sensitive to sampling strategy
e Sensitive to pose accuracy

e Assumes static lighting

eNot a mesh

e Assumes static scene

eDoes not generalize between scenes



The neverending list of NeRF limitations (back in 2020)

e Sensitive to sampling strategy
e Sensitive to pose accuracy

e Assumes static lighting

eNot a mesh

e Assumes static scene

eDoes not generalize between scenes



The neverending list of NeRF limitations (back in 2020)

'L -
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e Sensitive to pose accuracy
e Assumes static lighting
eNot a mesh

e Assumes static scene

eDoes not generalize between scenes



The neverending list of NeRF limitations (back in 2020)

- -
W \_/ @ " V

e Sensitive to pose accuracy



Camera Quality

Small noise in the camera can be made robust by also optimizing the
camera

\ So far we’ve been

optimizing this

Also do backdrop on the
camera parameters

Camera



No Pose Optimization . Block-NeRF

v-"‘

-




Camera Optimization

Small noise in the results can be improved

Starting from scratch is still an active area of research [Barf Lin et
al. 2021, NeRF— ... ]

Noisy Camera from IMU/Lidar Result with Camera Optimization




The neverending list of NeRF limitations (back in 2020)
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e Sensitive to pose accuracy
e Assumes static lighting
eNot a mesh

e Assumes static scene

eDoes not generalize between scenes



Figure 3 A set of intrinsic images derived from
a single monochrome intensity image

The 1images are depicted as line

drawings, but, in fact, would contain

values at every point. The solid lines

in the intrinsic images represent dis-

3 continuities in the scene characteris-

. Y tic; the dashed lines represent
discontinuities 1in its derivative.

(a) ORIGINAL SCENE

%ﬁo
"/

(b) DISTANCE (c) REFLECTANCE

(d) ORIENTATION (VECTOR) (e) ILLUMINATION

Barrow and Tennenbaum 1978



Inverse Graphics

Some physical world
created this image.

What was it?

Barron and Malik, ECCV 2012



Problem with Baked Lighting

* As you now see, NeRF bakes in the lighting effects in the scene

* That’s what allows it to model the non-Lambertian effects, but it’s not
always ideal



* Necessary for Relighting & Editing

Why you want Ilght separated

* Changing light

* Inserting objects into another
scene (with different lighting)

* Changing material properties

* Edit the appearance without
changing light




Absorption

Scattering
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Recall: we simplified by ignoring scattering

Emission

http://commons.wikimedia.org

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

157

2e

wfz\ ‘#' |

<

‘_\
“ 4
.

http://wikipedia.org




OQQOO
OOOO

O Oﬂo
A'bso LD")

NTdte

L

8 o/

R

Absorption

\1..-

http://commons.wikimedia. org

° 00 0 ‘0L /O
SOOOOOOoO° OOOOOOOOOC(O)
(@]
Oooooomoo<O OOOOOO(“OC(
Dut—sczt‘benng Ir)"sczt‘benng
o o O\O \o” %o O\o/

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering 158

Scattering

http://wikipedia.org




NeRF represents a volume of particles that emit light

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.
Ben Mildenhall*, Pratul Srinivasan*, Matt Tancik*, Jon Barron, Ravi Ramamoorthi, Ren Ng. ECCV 2020.



But doesn’t let us simulate how light changes with new lighting
conditions



First step: replace emitted light with BRDFs that describe how
particles reflect incoming light




Rendering with direct lighting



Rendering with direct lighting
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Rendering with direct lighting



Rendering with direct lighting




Indirect illumination is even more computationally-expensive




Modeling light can recover better surfaces

NeRF Ref-NeRF

Verbin et al. CVPR 2022



Decomposing light helps recover sharper surfaces

This is not what it always looks like!




Better modeling of light helps recover sharper
surfaces

NeRF Ref-NeRF

Verbin et al. CVPR 2022



Modeling light = better specularities

ip-NeRF




Editing specular and diffuse colors




Related Challenge: Extracting Surfaces

* Needed for adoption into existing gaming engines/VFX lifecycle

* Challenges: What if the density recovered isn’t peaky (surface) and is not
clean? What to do? What about complex scenes, how to group objects?



The Dynamic World
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Memories of Australia —Andrew S. Hamilton



Holy grall

* Dynamic Novel View Synthesis from Monocular Camera

* Very difficult! Extremely under constrained problem



Simple baseline for adding time

(X;Y;Z;Q;Qb; tj_’ _>(7",g,b,0')
Fo

Hard without simultaneous multiple view!



Through a deformation network

Deformation Network NeRF
(x,y,2) (xy',z") (r,9,b,0)

Camera Coordinate Canonical
Frame Coordinate Frame

Still very under constrained

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc..



Dynamic View Synthesis: Monocular is hard
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D-NeRF [Pumarola et al. CVPR 2021].NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021].....
* But performance on in-the-wild monocular capture still far [Gao et al. NeurlPS 2022]

train view Nerfies
train view ° = Nerfies




What if we knew how they deform?

HMMR, Kanazawa et al.
CVPR 2019

HumanNeRF Weng et al. CVPR 2022



Other kinds of dynamic changes



Appearance Changes

' v
N
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\ el

o
Exposure differences

(AR LR Tagmy

Lighting changes (day, night)..

Clouds passing by..

Nerf-W [Martin-Brualla et al. CVPR 2021]



Appearance Embedding: Pretty Robust Solution

(X;Y;Z; 6} ¢11VLT> _>(7",g,b,0')
Faq

Appearance Embedding

N-dim vector
Optimized per image: “Auto-Decoding”
ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

Nerf-W [Martin-Brualla et al. CVPR 2021]


https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P

Appearance Changes

Appearance Encoding is Effective




Transient objects

* Happens all the time! People
moving around, interacting with
the world

* Difficult! Problem of Grouping

* how do you know which part is
connected or

* Can use two NeRFs, one global,
one per-image, but this often
leads to degenerate solutions

* Current solution: Ignore (mask out)



Why Is dynamic scenes hard?

* Unless you have a light dome

* Essentially you only have a single-view



Building &
Reusing Prior
Knowledge

Machine Learning



NeRF Is per-scene optimization

* We need lots of images to get good view synthesis!!

* Also there’s no knowledge reused from prior scene reconstructions

* How to bring learning in the picture?
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Few-shot NeRF

* One-shot (single-view): pixelNeRF [Yu et al. * How to deal with the multi-modal
CVPR’19] nature of the problem??

Input View W \ [

\‘\\% \ (z.d) — — (RGBo)
S— LI
1
s b=
d

\\/ A

CNN Encoder Target View

* Few-shot (3~10 views): pixelNeRF,| BRNet
[Wang et al. CVPR’21], MVSNet [Chen et al.
ICCV’21], etc...

* Challenging for predicting completely
unseen real scenes

IBRNet



Data I1s the bottleneck

* Large-scale Real-World Multi-view Data is hard to collect:
CO3D [Reizenstein ICCV 2021}

* Alot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022



https://gkioxari.github.io/

Generating NeRFs from 2D Generative Models

DreamFusion
[Poole et al.
arXiv 2022]




Enabling specific edits

. .Input Image Edited Image | Input Image Edited I!nage

https://imagic-editing.github.io/

_

o A photo of an ope‘nlbox” Kawar and Zada et al. Arxiv 2022



emantic Editing

ClipNeRF Wang et al. CVPR 2022, Feature Field Distillation - Kobayashi et al. NeurlPS 2022 ... Many more papers here!!



Manipulating captured scenes

U oLlL i
e .\ -\’ < .\ \‘,;/' _ 7
‘ ,.’. \ . ‘,‘ g - .

‘, ; )
A 2 » J

Artistic Radiance Fields Zhang et al. ECCV 2022
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+14 additional Github collaborators



Workflow



Step 1: Capture Data




Step 1: Capture Data

Maximize view coverage

e Tryto getatleast5 views per pointin scene.
e Wide angle / Fisheye lenses work well
Minimize motion blur

e Noise is an OK tradeoft

Minimize dynamic objects



Step 2: Recover Camera Poses

(nerfstudio) :~/nerfstudio$ D

COLMAP scripts



Step 2: Recover Camera Poses

COLMAP Alternative
Record3D




Step 3: Optimize NeRF!

(nerfstudio) :~/nerfstudio$ 11 data/nerfstudio/desolation/
total 93541
drwxr=xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-=xr-x
drwxr-=xr-x
drwxr=xr-x

00:58 ./

- Y

:S8 camera_paths/
:00 colmap/

:58 ’.F‘u’:;‘,r’“‘./

:S8 images_2/
:58 images_4/

evonneng users Oct
evonneng users Oct
evonneng users Oct
evonneng users Oct
evonneng users 209 Oct
evonneng users 209 Oct
drwxr-xr-x 2 evonneng users 209 Oct
~-rw-r--r-- 1 evonneng users 95638275 Oct :58 IMG_8981.M0V

-rw-r--r-- 1 evonneng users 177295 Oct S :58 transforms. json

(nerfstudio) :~/nerfstudio$ ns-train nerfacto --data data/nerfstudio/desolation/ --viewer.websocket-port 7I

SSSISSEES




[GETTING STARTED] [Q GITHUBJ [B DOCUMENTATION QD=-94nerfstudio

VIEWPORT RENDER VIEW » RESUME TRAINING

[ @ Show Scene

[ ‘© Show Images

Refresh Page

Resolution: 640x1024px
Time Allocation: 100% spent on viewer

‘ | |

— ]
3= E l:
CONTROLS RENDER SCENE

[ 2, LOAD PATH J [ &, EXPORT PATH ] [

Height Width FOV
1080 1920 50
Seconds FPS
4 24
[*Q ADDCAMERAH 7% H o ]

Smoothness A commf)e— ()

' CAMERA 0 @& []




Step 4: Render

(nerfstudio) :~/nerfstudio$ l







Goals of nerfstudio

e Modular Framework

e Open, Evolving Framework

e Reference Source



Modularity

Encoders Samplers Fields Renderers
 Positional Encoding e Uniform » Fused MLP  RGB
e Fourier Features e Occupancy » Voxel Grio e RGB-SH
» Hash Encoding « PDF e Depth
e Spherical Harmonics e Proposal » Accumulation

 Matrix Decomposition e Spacing Fn



Optimized
Cameras

Lindisp Sampling —

Proposal Sampler

Case study: Nertacto Model
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Dict Encoding

_I_

Fused MLP

Scene Contraction

Proposal Sampler
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Dict Encoding

_|_

Fused MLP

Current

Model

NERGREE e
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~

Dict Encoding

_I_
Fused MLP

|

— RGB

Appearance Embedding



Case study: Nertacto Model

Since Release:

1.5x Faster training
3x Less Memory

Improved Quality

Before



Q_ Search

GETTING STARTED
Installation

Training your first model
Using custom data
Using the viewer
Google Colab

Contributing

NERFOLOGY

Methods

Model components
Cameras models
Sample representation
Ray samplers
Spatial distortions

Encoders

DEVELOPER GUIDES

&

%nerjstudio

v: latest

Spatial Distortions

If you are trying to reconstruct an object floating in an empty void, you can stop reading. However if
you are trying to reconstruct a scene or object from images, you may wish to consider adding a
spatial distortion.

When rendering a target view of a scene, the camera will emit a camera ray for each pixel and query
the scene at points along this ray. We can choose where to query these points using different
samplers. These samplers have some notion of bounds that define where the ray should start and
terminate. If you know that everything in your scenes exists within some predefined bounds (ie. a
cube that a room fits in) then the sampler will properly sample the entire space. If however the scene
IS unbounded (ie. an outdoor scene) defining where to stop sampling is challenging. One option to
Increase the far sampling distance to a large value (ie. 1km). Alternatively we can warp the space into
a fixed volume. Below are supported distortions.

Scene Contraction

Contract unbounded space into a ball of radius 2. This contraction was proposed in MipNeRF-360.
Samples within the unit ball are not modified, whereas sample outside the unit ball are contracted to
fit within the ball of radius 2.

We use the following contraction equation:

(2 - mr)(Er) =l >1

1|

{33 lz|| <1

Ied

Below we visualize a ray before and after scene contraction. Visualized are 95% confidence intervals
for the multivariate Gaussians for each sample location (this guide explains why the samples are
represented by Gaussians). We are also visualizing both a unit sphere and a radius 2 sphere.

CONTENTS

Scene Contraction
Before Contraction

After Contraction
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