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Project 3 Winner!!

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj3/cs194-26-adm/

Joshua Chen

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj3/cs194-26-adm/


Project 4 Highlight

Class vote is happening now, do vote!

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj4B/cs194-26-afm/

Shinwoo Choi

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj4B/cs194-26-afm/


Project 5 Winner!!
Jules Dedieu



Where we are
1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Simplify

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission
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Summary: volume rendering integral estimate
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Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
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Ray
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Further points on volume 
rendering 

8



Alpha mattes and compositing
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Alpha mattes and compositing
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Alpha mattes and compositing
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Alpha mattes and compositing

12

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion
Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition



Rendering weight PDF is important
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Remember, expected color is equal to

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!
𝑇!𝛼!𝐜!

𝑇(𝑡)𝜎(𝑡) and 𝑇!𝛼! are “rendering weights” — probability 
distribution along the ray 

(continuous and discrete, respectively)

𝑤!



3D volume

𝑡!

Camera

Ray

Visual intuition — rendering weights depend on the ray!

Rendering weights are not a 3D function 
— depends on the ray, because of 

transmittance!
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3D volume

𝑡!

Camera

Ray

15

Rendering weights are not a 3D function 
— depends on the ray, because of 

transmittance!

Visual intuition — rendering weights depend on the ray!



Use the rendering weight (PDF) to 
render depth
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We can use this distribution to compute expectations for other 
quantities, e.g. “expected depth”:

𝑡 = ∑
!
𝑇!𝛼!𝑡!

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.



Rendering depth value with the PDF
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Mean depth Median depth



Rendering depth value with the PDF
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Mean depth Median depth



Volume rendering other quantities
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This idea can be used for any quantity we want to “volume 
render” into a 2D image. If 𝐯 lives in 3D space (semantic 

features, normal vectors, etc.)

∑
!
𝑇!𝛼!𝐯!

can be taken per-ray to produce 2D output images.



Kobayashi et al 2022, Decomposing NeRF for Editing via Feature Field Distillation, , Tschernezki et al. 2022 , Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image Representation

Various recent works have used this idea to render higher-level semantic feature maps 
(e.g., Feature Field Distillation and Neural Feature Fusion Fields).

Volume rendering other quantities



Density as geometry
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Normal vectors (from analytic gradient of density)
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Alpha compositing model in ML/computer vision

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction 
via Differentiable Ray Consistency

Differentiable ray consistency work used a 
forward model with “probabilistic occupancy” 
to supervise 3D-from-single-image prediction.
Same rendering model as alpha compositing!



Where we are
1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Three Key Components
Objective: Synthesize 

all training views

Differentiable Volumetric 
Rendering Function

3D volume

𝑡!

Camera

Ray

Optimization via 
Analysis-by-Synthesis

Neural Volumetric 3D 
Scene Representation

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!



Mesh Representation



Gradient Based Optimization

Initial Geometry Target Geometry



Gradient Based Optimization

Initial Geometry Target Geometry



Gradient Based Optimization

Compute Gradients Target Geometry



Gradient Based Optimization

Compute Gradients Target Geometry



Gradient Based Optimization

Update positions Target Geometry



Gradient Based Optimization

Compute New Error Target Geometry



Gradient Based Optimization

Repeat Target Geometry



Gradient Based Optimization

Repeat Target Geometry



Gradient Based Optimization

Initial Geometry Target Geometry

?



Gradient Based Optimization

Initial Geometry Target Geometry

?



Gradient Based Optimization

Initial Geometry Target Geometry

?



Voxel Representation



Gradient Based Optimization

Initialized Grid Target Geometry



Gradient Based Optimization

Target GeometryInitialized Grid



Gradient Based Optimization

Loss Target Geometry



Gradient Based Optimization

Gradient Step Target Geometry



Gradient Based Optimization

Target GeometryRepeat



Gradient Based Optimization

Target GeometryRepeat



Gradient Based Optimization

Repeat Target Geometry



Gradient Based Optimization

Reconstruction Target Geometry



Gradient Based Optimization

Target GeometryReconstruction



Gradient Based Optimization

Target GeometryVoxel Mesh



Geometry Representations

Mesh Representation Voxel Representation

Small memory footprint
Hard to optimize

Easy to optimize
Large memory footprint



Implicit Functions

x2 + y2 + z2= 1



Implicit Functions

x2 + y2 + z2= 1



Input 
Coordinate 

Value at 
Coordinate 

MLP

Coordinate Based Neural Network

Multi Layer Perceptron



DeepSDF 
(Park et al. 2019)

Neural networks as a continuous 
shape representation

Differentiable Volumetric Rendering 
(Niemeyer et al. 2020)

Scene Representation Networks 
(Sitzmann et al. 2019)

Occupancy Networks 
(Mescheder et al. 2019)

(𝑥, 𝑦, 𝑧) → distance

(𝑥, 𝑦, 𝑧) → occupancy

(𝑥, 𝑦, 𝑧) → latent vec. (color, dist.)

(𝑥, 𝑦, 𝑧) → color, occ.



Challenge:

• How to get MLPs to represent higher frequency functions?

Rahaman et al. 2019, Basri et al. 2020
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Image Representation



MLP output Supervision image



Standard input



Standard input Positionally Encoded input



Standard MLP MLP with Fourier features



Target Image

Why does positional encoding help?
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Why does positional encoding help?



Performance depends on max encoding frequency

Network output Performance vs. scale value
Tancik*, Srinivasan*, Mildenhall* et al. 2020, Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains



Coordinate-based MLPs can replace any low-dimensional array

3D Shape 3D MRI 3D NeRF
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NeRF (Naive) NeRF (with positional encoding)

NeRF with and without positional encoding
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Other Encoding Considerations
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Other Encoding Considerations

Can lead to “grid” artifacts



Other Encoding Considerations

Random Fourier Features



Other Encodings

Spherical Harmonics
fourier basis on the sphere



Approximate a function on the sphere with 
Spherical Harmonics coefficients



NeRF with Spherical Functions



PlenOctree = 
Sparse Voxels with density + SH coefficients

Yu et al. PlenOctrees for Real-time Rendering of Neural Radiance Fields, ICCV 2021

Skips empty regions
à much faster rendering time!





Trade-off 3000x faster than OG NeRF!



Can we learn the encoding?



Learnable Encodings 

A

Lets try optimizing phase and frequency s.t.      goes to A

A

B



Learnable Encodings 
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Lets try optimizing phase and frequency s.t.      goes to A
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Learnable Encodings 

A

B

A

B

also changes which makes optimization difficult

Lets try optimizing phase and frequency s.t.      goes to A

B



Desired: Learnable encoding 
with local extent



Desired: Learnable encoding 
with local extent

Solution: Feature Grids (i.e. voxel)



Desired: Learnable encoding 
with local extent

Solution: Feature Grids (i.e. voxel)

Challenge: Resolution



Make continuous via interpolation

A B

C D

α
β

1-α

1-β

= 𝛽(𝛼𝐴 + (1 − 𝛼𝐵))

+(1 − 𝛽)(𝛼𝐶 + (1 − 𝛼𝐷))



Feature grids can be effective

Sun et al. 2021, Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction



Compression Techniques

Sparsity Low Rank Dictionary



Sparsity

Optimize Sparsify Upsample

Repeat

Lui et al. 2020, Neural Sparse Voxel Fields
Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks

Sun et al. 2021, Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction



Low Rank Approximations

𝑣"

𝑣#

𝑣$

𝑣"

𝑀"
𝑣"×𝑣#×𝑣$ 𝑣"×𝑀"

Chen*, Xu* et al. 2022, TensoRF Tensorial Radiance Fields
Chan*, Lin*, Chan*, Nagano* et al. 2022, EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks



Dictionary Methods

Feature Grid

Dictionary

Feature Grid > Dictionary

Mapping with collisions

Müller et al. 2022, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding 



Feature Grids as MLP Encodings

Feature Grid MLP

Position



Revisiting Geometry 
Representations

Mesh Representation Voxel Representation

Small memory footprint
Hard to optimize

Easy to optimize
Large memory footprint? ?



MLPs are not required…

Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks



MLPs are not required…

Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks



But MLPs are convenient

Feature Grid

MLP

View Direction

Position

Appearance Embedding
Time



Where we are
1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Signal Processing 
Considerations in NeRF



mip NeRF

What is happening here?

Naïve (original) NeRF



Review: Aliasing in Image Processing

Sample



SampleFilter

Review: Aliasing in Image Processing



Sampling Along Rays



Where to place samples along rays?

3D volume

𝑡!

Camera

Ray



How to be more efficient than dense sampling?

3D volume

𝑡!

Camera

Ray



How to be more efficient than dense sampling?

3D volume

𝑡!

Camera

Ray



Hierarchical Sampling vs. Acceleration Structures



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

Iteratively use samples from NeRF to more 
efficiently sample visible scene content



Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

Iteratively use samples from NeRF to more 
efficiently sample visible scene content

Acceleration Structures

Distill/cache properties of NeRF into a 
structure that helps generate samples



Hierarchical ray sampling



113113

Key Idea: sample points proportionally to 
expected effect on final rendering

𝑡!

3D volume

Camera

Ray
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3D volume

𝑡!

Camera

Ray

114

treat weights as probability 
distribution for new samples

Key Idea: sample points proportionally to 
expected effect on final rendering
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3D volume

𝑡!

Camera

Ray

115

treat weights as probability 
distribution for new samples

Key Idea: sample points proportionally to 
expected effect on final rendering

Coarse samples (stage 1)

Fine samples (stage 2)



What about aliasing during coarse sampling?

Ray

3D volume

𝑡!

Camera

Ray



What about aliasing during coarse sampling?

Ray

3D volume

𝑡!

Camera

Ray

lost!



Solution: train two NeRFs! —> lower resolution for first “coarse” level

What about aliasing during coarse sampling?

“coarse” 3D volume

𝑡!

Camera

Ray



Solution: train two NeRFs! —> higher resolution for second “fine” level

What about aliasing during coarse sampling?

“fine” 3D volume

𝑡!

Camera

Ray



More anti-aliasing
can we avoid training two networks?



Aliasing in NeRF renderings



SampleFilter

Recall that averaging reduces aliasing



SampleFilter

But repeatedly sampling and averaging is inefficient 



Standard solution: prefiltering with a mipmap

Pyramidal Parametrics, Lance Williams, SIGGRAPH 1983



Antialiasing requires average ray color within pixel



Supersampling vs. prefiltering



Want NeRF to represent integrals within frustum



Instead of using positional encoding of a point…

Positional Encoding



mip-NeRF uses integrated positional encoding

Integrated Positional Encoding



Positional Encoding Integrated Positional Encoding



Integrated positional encoding can reasonably 
approximate prefiltering



Parameterizing 3D Space



Standard coordinates for bounded volumes



Normalized device coordinates for unbounded 
“forwards-facing” volumes



Normalized device coordinates for unbounded 
“forwards-facing” volumes



How to parameterize fully unbounded volumes?



Continuous warping of space



Where we are
1. Birds Eye View & Background 

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes 

4. Signal Processing Considerations

5. Challenges & Pointers



Caught up with the core NeRF pieces!



What are the remaining challenges? 

Don’t worry there is a lot!



The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy
●Assumes static lighting
●Not a mesh
●Assumes static scene
●Does not generalize between scenes
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The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy



Camera Quality
Small noise in the camera can be made robust by also optimizing the 
camera

Camera

So far we’ve been 
optimizing this

Also do backdrop on the 
camera parameters





Camera Optimization

Noisy Camera from IMU/Lidar Result with Camera Optimization

Small noise in the results can be improved
Starting from scratch is still an active area of research [Barf Lin et 
al. 2021, NeRF— … ]



The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy
●Assumes static lighting
●Not a mesh
●Assumes static scene
●Does not generalize between scenes



Inverse Graphics

Barrow and Tennenbaum 1978



Inverse Graphics

Barron and Malik, ECCV 2012



Problem with Baked Lighting

• As you now see, NeRF bakes in the lighting effects in the scene

• That’s what allows it to model the non-Lambertian effects, but it’s not 
always ideal



Why you want light separated
• Necessary for Relighting & Editing

• Changing light

• Inserting objects into another 
scene (with different lighting)

• Changing material properties

• Edit the appearance without 
changing light

• …

From Birn, Digital Lighting & Rendering



Recall: we simplified by ignoring scattering

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

157



Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

158



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.
Ben Mildenhall*, Pratul Srinivasan*, Matt Tancik*, Jon Barron, Ravi Ramamoorthi, Ren Ng. ECCV 2020.

NeRF represents a volume of particles that emit light



?
?

?

?
?

But doesn’t let us simulate how light changes with new lighting 
conditions 



First step: replace emitted light with BRDFs that describe how 
particles reflect incoming light



Rendering with direct lighting



Rendering with direct lighting



Rendering with direct lighting



Rendering with direct lighting



Indirect illumination is even more computationally-expensive



Modeling light can recover better surfaces
Ref-NeRFNeRF

Verbin et al. CVPR 2022



Decomposing light helps recover sharper surfaces

𝑡!

This is not what it always looks like!



Better modeling of light helps recover sharper 
surfaces

Ref-NeRFNeRF

Verbin et al. CVPR 2022



Modeling light = better specularities



Editing specular and diffuse colors



Related Challenge: Extracting Surfaces

• Needed for adoption into existing gaming engines/VFX lifecycle
• Challenges: What if the density recovered isn’t peaky (surface) and is not 

clean? What to do? What about complex scenes, how to group objects? 



The Dynamic World
TODO better art

Memories of Australia –Andrew S. Hamilton



Holy grail

• Dynamic Novel View Synthesis from Monocular Camera

• Very difficult! Extremely under constrained problem



Simple baseline for adding time

TODO

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝑡) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

Hard without simultaneous multiple view!



Through a deformation network

(𝑟, 𝑔, 𝑏, 𝜎)(𝑥, 𝑦, 𝑧)
Camera Coordinate 

Frame

(𝑥!, 𝑦!, 𝑧!)
Canonical 

Coordinate Frame

Deformation Network NeRF

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc.. 

Still very under constrained



Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021], NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]…..

• But performance on in-the-wild monocular capture still far [Gao et al. NeurIPS 2022]



What if we knew how they deform? 

HumanNeRF Weng et al. CVPR 2022

HMMR, Kanazawa et al. 
CVPR 2019



Other kinds of dynamic changes



Appearance Changes

Exposure differences

Lighting changes (day, night)..

Clouds passing by.. 

Nerf-W [Martin-Brualla et al. CVPR 2021] 



Appearance Embedding: Pretty Robust Solution

TODO

Nerf-W [Martin-Brualla et al. CVPR 2021] 

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, v!) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!
N-dim vector

Optimized per image: “Auto-Decoding” 
ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018] 

Appearance Embedding

https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P


Appearance Changes
Appearance Encoding is Effective 



Transient objects
• Happens all the time! People 

moving around, interacting with 
the world

• Difficult! Problem of Grouping 
• how do you know which part is 

connected or 
• Can use two NeRFs, one global, 

one per-image, but this often 
leads to degenerate solutions

• Current solution: Ignore (mask out)



Why is dynamic scenes hard?

• Unless you have a light dome

• Essentially you only have a single-view



Building & 
Reusing Prior 
Knowledge

Machine Learning



NeRF is per-scene optimization
• We need lots of images to get good view synthesis!!

• Also there’s no knowledge reused from prior scene reconstructions

• How to bring learning in the picture?



Few-shot NeRF
• One-shot (single-view): pixelNeRF [Yu et al. 

CVPR’19]

• Few-shot (3~10 views): pixelNeRF,I BRNet 
[Wang et al. CVPR’21], MVSNet [Chen et al. 
ICCV’21], etc…

• Challenging for predicting completely 
unseen real scenes

IBRNet

• How to deal with the multi-modal 
nature of the problem??



Data is the bottleneck

• Large-scale Real-World Multi-view Data is hard to collect: 
CO3D [Reizenstein ICCV 2021] 

• A lot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022

https://gkioxari.github.io/


Generating NeRFs from 2D Generative Models

DreamFusion 
[Poole et al. 
arXiv 2022]



Enabling specific edits

https://imagic-editing.github.io/

Kawar and Zada et al. Arxiv 2022



Semantic Editing

ClipNeRF Wang et al. CVPR 2022, Feature Field Distillation - Kobayashi et al. NeurIPS 2022 … Many more papers here!!



Manipulating captured scenes

Artistic Radiance Fields Zhang et al. ECCV 2022



Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, 
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, 

Abhik Ahuja, David McAllister, Angjoo Kanazawa

+14 additional Github collaborators



Workflow



Step 1: Capture Data



Step 1: Capture Data

• Maximize view coverage
• Try to get at least 5 views per point in scene.
• Wide angle / Fisheye lenses work well

• Minimize motion blur
• Noise is an OK tradeoff

• Minimize dynamic objects



Step 2: Recover Camera Poses

COLMAP scripts



Step 2: Recover Camera Poses

COLMAP Alternative
Record3D



Step 3: Optimize NeRF!





Step 4: Render





Goals of nerfstudio

• Modular Framework

• Open, Evolving Framework

• Reference Source



Modularity

Encoders

• Positional Encoding
• Fourier Features
• Hash Encoding
• Spherical Harmonics
• Matrix Decomposition

Samplers

• Uniform
• Occupancy
• PDF
• Proposal
• Spacing Fn

Fields

• Fused MLP
• Voxel Grid

Renderers

• RGB
• RGB-SH
• Depth
• Accumulation



Case study: Nerfacto Model

Lindisp Sampling

Proposal Sampler

Optimized
Cameras

Dict Encoding
+

Fused MLP

Proposal Sampler

Dict Encoding
+

Fused MLP

NeRF Field

Dict Encoding
+

Fused MLP

Appearance Embedding

RGB

Current Model

Scene Contraction



Case study: Nerfacto Model

Since Release:

1.5x Faster training
3x Less Memory
Improved Quality

Before After



Reference





docs.nerf.studio Discord


