
Neural Radiance Fields 2
CS194-26/294-26: Intro to Computer Vision and Computational

Photography
Angjoo Kanazawa

UC Berkeley Fall 2022

Lots of content from ECCV 2022 Tutorial on Neural
Volumetric Rendering for Computer Vision

Project 3 Winner!!

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj3/cs194-26-adm/

Joshua Chen

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj3/cs194-26-adm/

Project 4 Highlight

Class vote is happening now, do vote!

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj4B/cs194-26-afm/

Shinwoo Choi

https://inst.eecs.berkeley.edu/~cs194-26/fa22/upload/files/proj4B/cs194-26-afm/

Project 5 Winner!!
Jules Dedieu

Where we are
1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes

4. Signal Processing Considerations

5. Challenges & Pointers

Simplify

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

6

Summary: volume rendering integral estimate

7

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume
𝑡!

𝑡!

Camera

Ray

colors

weights

𝐜 ≈ ∑
"#$

%
𝑇"𝛼"𝐜"

𝑇" = ∏
&#$

"'$
(1 − 𝛼&)

𝛼" = 1 − exp(−𝜎"𝛿")

𝑡!"#

𝑡# 𝑇$

𝛼$

𝑡$

differentiable w.r.t. 𝐜, 𝜎

Further points on volume
rendering

8

Alpha mattes and compositing

9

Alpha mattes and compositing

10

Alpha mattes and compositing

11

Alpha mattes and compositing

12

Mildenhall*, Srinivasan*, Tancik* et al 2020, NeRF
Poole et al 2022, DreamFusion
Tang et al 2022, Compressible-composable NeRF via Rank-residual Decomposition

Rendering weight PDF is important

13

Remember, expected color is equal to

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!
𝑇!𝛼!𝐜!

𝑇(𝑡)𝜎(𝑡) and 𝑇!𝛼! are “rendering weights” — probability
distribution along the ray

(continuous and discrete, respectively)

𝑤!

3D volume

𝑡!

Camera

Ray

Visual intuition — rendering weights depend on the ray!

Rendering weights are not a 3D function
— depends on the ray, because of

transmittance!

15

3D volume

𝑡!

Camera

Ray

15

Rendering weights are not a 3D function
— depends on the ray, because of

transmittance!

Visual intuition — rendering weights depend on the ray!

Use the rendering weight (PDF) to
render depth

17

We can use this distribution to compute expectations for other
quantities, e.g. “expected depth”:

𝑡 = ∑
!
𝑇!𝛼!𝑡!

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like mode or median can be used.

Rendering depth value with the PDF

18

Mean depth Median depth

Rendering depth value with the PDF

19

Mean depth Median depth

Volume rendering other quantities

20

This idea can be used for any quantity we want to “volume
render” into a 2D image. If 𝐯 lives in 3D space (semantic

features, normal vectors, etc.)

∑
!
𝑇!𝛼!𝐯!

can be taken per-ray to produce 2D output images.

Kobayashi et al 2022, Decomposing NeRF for Editing via Feature Field Distillation, , Tschernezki et al. 2022 , Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image Representation

Various recent works have used this idea to render higher-level semantic feature maps
(e.g., Feature Field Distillation and Neural Feature Fusion Fields).

Volume rendering other quantities

Density as geometry

22

Normal vectors (from analytic gradient of density)

24

Alpha compositing model in ML/computer vision

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction
via Differentiable Ray Consistency

Differentiable ray consistency work used a
forward model with “probabilistic occupancy”
to supervise 3D-from-single-image prediction.
Same rendering model as alpha compositing!

Where we are
1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes

4. Signal Processing Considerations

5. Challenges & Pointers

Three Key Components
Objective: Synthesize

all training views

Differentiable Volumetric
Rendering Function

3D volume

𝑡!

Camera

Ray

Optimization via
Analysis-by-Synthesis

Neural Volumetric 3D
Scene Representation

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

Mesh Representation

Gradient Based Optimization

Initial Geometry Target Geometry

Gradient Based Optimization

Initial Geometry Target Geometry

Gradient Based Optimization

Compute Gradients Target Geometry

Gradient Based Optimization

Compute Gradients Target Geometry

Gradient Based Optimization

Update positions Target Geometry

Gradient Based Optimization

Compute New Error Target Geometry

Gradient Based Optimization

Repeat Target Geometry

Gradient Based Optimization

Repeat Target Geometry

Gradient Based Optimization

Initial Geometry Target Geometry

?

Gradient Based Optimization

Initial Geometry Target Geometry

?

Gradient Based Optimization

Initial Geometry Target Geometry

?

Voxel Representation

Gradient Based Optimization

Initialized Grid Target Geometry

Gradient Based Optimization

Target GeometryInitialized Grid

Gradient Based Optimization

Loss Target Geometry

Gradient Based Optimization

Gradient Step Target Geometry

Gradient Based Optimization

Target GeometryRepeat

Gradient Based Optimization

Target GeometryRepeat

Gradient Based Optimization

Repeat Target Geometry

Gradient Based Optimization

Reconstruction Target Geometry

Gradient Based Optimization

Target GeometryReconstruction

Gradient Based Optimization

Target GeometryVoxel Mesh

Geometry Representations

Mesh Representation Voxel Representation

Small memory footprint
Hard to optimize

Easy to optimize
Large memory footprint

Implicit Functions

x2 + y2 + z2= 1

Implicit Functions

x2 + y2 + z2= 1

Input
Coordinate

Value at
Coordinate

MLP

Coordinate Based Neural Network

Multi Layer Perceptron

DeepSDF
(Park et al. 2019)

Neural networks as a continuous
shape representation

Differentiable Volumetric Rendering
(Niemeyer et al. 2020)

Scene Representation Networks
(Sitzmann et al. 2019)

Occupancy Networks
(Mescheder et al. 2019)

(𝑥, 𝑦, 𝑧) → distance

(𝑥, 𝑦, 𝑧) → occupancy

(𝑥, 𝑦, 𝑧) → latent vec. (color, dist.)

(𝑥, 𝑦, 𝑧) → color, occ.

Challenge:

• How to get MLPs to represent higher frequency functions?

Rahaman et al. 2019, Basri et al. 2020

G

R

B

X

Y

Image Representation

MLP output Supervision image

Standard input

Standard input Positionally Encoded input

Standard MLP MLP with Fourier features

Target Image

Why does positional encoding help?

x

y

Input Target

A

.36 .5

Target Image

x y

A

1

100

Why does positional encoding help?

x

y

Input Target

A

.36 .5

.38 .5

Target Image

x y

A

B B

1

100

Why does positional encoding help?

x y
Input Target

A

B

x

y

Target Image

A B

Why does positional encoding help?

x

y

x y
Input Target

A

B

Target Image

With Positional Encoding
x y

A

B

A B

Why does positional encoding help?

Performance depends on max encoding frequency

Network output Performance vs. scale value
Tancik*, Srinivasan*, Mildenhall* et al. 2020, Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

Coordinate-based MLPs can replace any low-dimensional array

3D Shape 3D MRI 3D NeRF

W
ith

ou
t E

nc
od

in
g

W
ith

 E
nc

od
in

g

NeRF (Naive) NeRF (with positional encoding)

NeRF with and without positional encoding

x

y

Target Image

A B

Other Encoding Considerations

x

y
A B

Other Encoding Considerations

Other Encoding Considerations

Can lead to “grid” artifacts

Other Encoding Considerations

Random Fourier Features

Other Encodings

Spherical Harmonics
fourier basis on the sphere

Approximate a function on the sphere with
Spherical Harmonics coefficients

NeRF with Spherical Functions

PlenOctree =
Sparse Voxels with density + SH coefficients

Yu et al. PlenOctrees for Real-time Rendering of Neural Radiance Fields, ICCV 2021

Skips empty regions
à much faster rendering time!

Trade-off 3000x faster than OG NeRF!

Can we learn the encoding?

Learnable Encodings

A

Lets try optimizing phase and frequency s.t. goes to A

A

B

Learnable Encodings

A

B

Lets try optimizing phase and frequency s.t. goes to A

A

B

Learnable Encodings

A

B

A

B

also changes which makes optimization difficult

Lets try optimizing phase and frequency s.t. goes to A

B

Desired: Learnable encoding
with local extent

Desired: Learnable encoding
with local extent

Solution: Feature Grids (i.e. voxel)

Desired: Learnable encoding
with local extent

Solution: Feature Grids (i.e. voxel)

Challenge: Resolution

Make continuous via interpolation

A B

C D

α
β

1-α

1-β

= 𝛽(𝛼𝐴 + (1 − 𝛼𝐵))

+(1 − 𝛽)(𝛼𝐶 + (1 − 𝛼𝐷))

Feature grids can be effective

Sun et al. 2021, Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction

Compression Techniques

Sparsity Low Rank Dictionary

Sparsity

Optimize Sparsify Upsample

Repeat

Lui et al. 2020, Neural Sparse Voxel Fields
Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks

Sun et al. 2021, Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction

Low Rank Approximations

𝑣"

𝑣#

𝑣$

𝑣"

𝑀"
𝑣"×𝑣#×𝑣$ 𝑣"×𝑀"

Chen*, Xu* et al. 2022, TensoRF Tensorial Radiance Fields
Chan*, Lin*, Chan*, Nagano* et al. 2022, EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks

Dictionary Methods

Feature Grid

Dictionary

Feature Grid > Dictionary

Mapping with collisions

Müller et al. 2022, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

Feature Grids as MLP Encodings

Feature Grid MLP

Position

Revisiting Geometry
Representations

Mesh Representation Voxel Representation

Small memory footprint
Hard to optimize

Easy to optimize
Large memory footprint? ?

MLPs are not required…

Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks

MLPs are not required…

Yu*, Friedovich-Keil* et al. 2021, Plenoxels: Radiance Fields without Neural Networks

But MLPs are convenient

Feature Grid

MLP

View Direction

Position

Appearance Embedding
Time

Where we are
1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes

4. Signal Processing Considerations

5. Challenges & Pointers

Signal Processing
Considerations in NeRF

mip NeRF

What is happening here?

Naïve (original) NeRF

Review: Aliasing in Image Processing

Sample

SampleFilter

Review: Aliasing in Image Processing

Sampling Along Rays

Where to place samples along rays?

3D volume

𝑡!

Camera

Ray

How to be more efficient than dense sampling?

3D volume

𝑡!

Camera

Ray

How to be more efficient than dense sampling?

3D volume

𝑡!

Camera

Ray

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

Iteratively use samples from NeRF to more
efficiently sample visible scene content

Hierarchical Sampling vs. Acceleration Structures

Hierarchical Sampling

Iteratively use samples from NeRF to more
efficiently sample visible scene content

Acceleration Structures

Distill/cache properties of NeRF into a
structure that helps generate samples

Hierarchical ray sampling

113113

Key Idea: sample points proportionally to
expected effect on final rendering

𝑡!

3D volume

Camera

Ray

114

3D volume

𝑡!

Camera

Ray

114

treat weights as probability
distribution for new samples

Key Idea: sample points proportionally to
expected effect on final rendering

115

3D volume

𝑡!

Camera

Ray

115

treat weights as probability
distribution for new samples

Key Idea: sample points proportionally to
expected effect on final rendering

Coarse samples (stage 1)

Fine samples (stage 2)

What about aliasing during coarse sampling?

Ray

3D volume

𝑡!

Camera

Ray

What about aliasing during coarse sampling?

Ray

3D volume

𝑡!

Camera

Ray

lost!

Solution: train two NeRFs! —> lower resolution for first “coarse” level

What about aliasing during coarse sampling?

“coarse” 3D volume

𝑡!

Camera

Ray

Solution: train two NeRFs! —> higher resolution for second “fine” level

What about aliasing during coarse sampling?

“fine” 3D volume

𝑡!

Camera

Ray

More anti-aliasing
can we avoid training two networks?

Aliasing in NeRF renderings

SampleFilter

Recall that averaging reduces aliasing

SampleFilter

But repeatedly sampling and averaging is inefficient

Standard solution: prefiltering with a mipmap

Pyramidal Parametrics, Lance Williams, SIGGRAPH 1983

Antialiasing requires average ray color within pixel

Supersampling vs. prefiltering

Want NeRF to represent integrals within frustum

Instead of using positional encoding of a point…

Positional Encoding

mip-NeRF uses integrated positional encoding

Integrated Positional Encoding

Positional Encoding Integrated Positional Encoding

Integrated positional encoding can reasonably
approximate prefiltering

Parameterizing 3D Space

Standard coordinates for bounded volumes

Normalized device coordinates for unbounded
“forwards-facing” volumes

Normalized device coordinates for unbounded
“forwards-facing” volumes

How to parameterize fully unbounded volumes?

Continuous warping of space

Where we are
1. Birds Eye View & Background

2. Volumetric Rendering Function

3. Encoding and Representing 3D Volumes

4. Signal Processing Considerations

5. Challenges & Pointers

Caught up with the core NeRF pieces!

What are the remaining challenges?

Don’t worry there is a lot!

The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy
●Assumes static lighting
●Not a mesh
●Assumes static scene
●Does not generalize between scenes

The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy
●Assumes static lighting
●Not a mesh
●Assumes static scene
●Does not generalize between scenes

The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy
●Assumes static lighting
●Not a mesh
●Assumes static scene
●Does not generalize between scenes

The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy

Camera Quality
Small noise in the camera can be made robust by also optimizing the
camera

Camera

So far we’ve been
optimizing this

Also do backdrop on the
camera parameters

Camera Optimization

Noisy Camera from IMU/Lidar Result with Camera Optimization

Small noise in the results can be improved
Starting from scratch is still an active area of research [Barf Lin et
al. 2021, NeRF— …]

The neverending list of NeRF limitations (back in 2020)

●Expensive / slow to train
●Expensive / slow to render
●Sensitive to sampling strategy
●Sensitive to pose accuracy
●Assumes static lighting
●Not a mesh
●Assumes static scene
●Does not generalize between scenes

Inverse Graphics

Barrow and Tennenbaum 1978

Inverse Graphics

Barron and Malik, ECCV 2012

Problem with Baked Lighting

• As you now see, NeRF bakes in the lighting effects in the scene

• That’s what allows it to model the non-Lambertian effects, but it’s not
always ideal

Why you want light separated
• Necessary for Relighting & Editing

• Changing light

• Inserting objects into another
scene (with different lighting)

• Changing material properties

• Edit the appearance without
changing light

• …

From Birn, Digital Lighting & Rendering

Recall: we simplified by ignoring scattering

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

157

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering

http://commons.wikimedia.org

Absorption

http://wikipedia.org

Scattering Emission

158

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.
Ben Mildenhall*, Pratul Srinivasan*, Matt Tancik*, Jon Barron, Ravi Ramamoorthi, Ren Ng. ECCV 2020.

NeRF represents a volume of particles that emit light

?
?

?

?
?

But doesn’t let us simulate how light changes with new lighting
conditions

First step: replace emitted light with BRDFs that describe how
particles reflect incoming light

Rendering with direct lighting

Rendering with direct lighting

Rendering with direct lighting

Rendering with direct lighting

Indirect illumination is even more computationally-expensive

Modeling light can recover better surfaces
Ref-NeRFNeRF

Verbin et al. CVPR 2022

Decomposing light helps recover sharper surfaces

𝑡!

This is not what it always looks like!

Better modeling of light helps recover sharper
surfaces

Ref-NeRFNeRF

Verbin et al. CVPR 2022

Modeling light = better specularities

Editing specular and diffuse colors

Related Challenge: Extracting Surfaces

• Needed for adoption into existing gaming engines/VFX lifecycle
• Challenges: What if the density recovered isn’t peaky (surface) and is not

clean? What to do? What about complex scenes, how to group objects?

The Dynamic World
TODO better art

Memories of Australia –Andrew S. Hamilton

Holy grail

• Dynamic Novel View Synthesis from Monocular Camera

• Very difficult! Extremely under constrained problem

Simple baseline for adding time

TODO

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝑡) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

Hard without simultaneous multiple view!

Through a deformation network

(𝑟, 𝑔, 𝑏, 𝜎)(𝑥, 𝑦, 𝑧)
Camera Coordinate

Frame

(𝑥!, 𝑦!, 𝑧!)
Canonical

Coordinate Frame

Deformation Network NeRF

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc..

Still very under constrained

Dynamic View Synthesis: Monocular is hard

D-NeRF [Pumarola et al. CVPR 2021], NSFF [Li et al., CVPR 2021],HyperNeRF[Park et al. SIGASia 2021]…..

• But performance on in-the-wild monocular capture still far [Gao et al. NeurIPS 2022]

What if we knew how they deform?

HumanNeRF Weng et al. CVPR 2022

HMMR, Kanazawa et al.
CVPR 2019

Other kinds of dynamic changes

Appearance Changes

Exposure differences

Lighting changes (day, night)..

Clouds passing by..

Nerf-W [Martin-Brualla et al. CVPR 2021]

Appearance Embedding: Pretty Robust Solution

TODO

Nerf-W [Martin-Brualla et al. CVPR 2021]

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, v!) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!
N-dim vector

Optimized per image: “Auto-Decoding”
ie GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

Appearance Embedding

https://arxiv.org/search/stat?searchtype=author&query=Bojanowski%2C+P

Appearance Changes
Appearance Encoding is Effective

Transient objects
• Happens all the time! People

moving around, interacting with
the world

• Difficult! Problem of Grouping
• how do you know which part is

connected or
• Can use two NeRFs, one global,

one per-image, but this often
leads to degenerate solutions

• Current solution: Ignore (mask out)

Why is dynamic scenes hard?

• Unless you have a light dome

• Essentially you only have a single-view

Building &
Reusing Prior
Knowledge

Machine Learning

NeRF is per-scene optimization
• We need lots of images to get good view synthesis!!

• Also there’s no knowledge reused from prior scene reconstructions

• How to bring learning in the picture?

Few-shot NeRF
• One-shot (single-view): pixelNeRF [Yu et al.

CVPR’19]

• Few-shot (3~10 views): pixelNeRF,I BRNet
[Wang et al. CVPR’21], MVSNet [Chen et al.
ICCV’21], etc…

• Challenging for predicting completely
unseen real scenes

IBRNet

• How to deal with the multi-modal
nature of the problem??

Data is the bottleneck

• Large-scale Real-World Multi-view Data is hard to collect:
CO3D [Reizenstein ICCV 2021]

• A lot to learn from other single-view 3D prediction models:

Gkioxari et al. CVPR 2022

https://gkioxari.github.io/

Generating NeRFs from 2D Generative Models

DreamFusion
[Poole et al.
arXiv 2022]

Enabling specific edits

https://imagic-editing.github.io/

Kawar and Zada et al. Arxiv 2022

Semantic Editing

ClipNeRF Wang et al. CVPR 2022, Feature Field Distillation - Kobayashi et al. NeurIPS 2022 … Many more papers here!!

Manipulating captured scenes

Artistic Radiance Fields Zhang et al. ECCV 2022

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi,
Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi,

Abhik Ahuja, David McAllister, Angjoo Kanazawa

+14 additional Github collaborators

Workflow

Step 1: Capture Data

Step 1: Capture Data

• Maximize view coverage
• Try to get at least 5 views per point in scene.
• Wide angle / Fisheye lenses work well

• Minimize motion blur
• Noise is an OK tradeoff

• Minimize dynamic objects

Step 2: Recover Camera Poses

COLMAP scripts

Step 2: Recover Camera Poses

COLMAP Alternative
Record3D

Step 3: Optimize NeRF!

Step 4: Render

Goals of nerfstudio

• Modular Framework

• Open, Evolving Framework

• Reference Source

Modularity

Encoders

• Positional Encoding
• Fourier Features
• Hash Encoding
• Spherical Harmonics
• Matrix Decomposition

Samplers

• Uniform
• Occupancy
• PDF
• Proposal
• Spacing Fn

Fields

• Fused MLP
• Voxel Grid

Renderers

• RGB
• RGB-SH
• Depth
• Accumulation

Case study: Nerfacto Model

Lindisp Sampling

Proposal Sampler

Optimized
Cameras

Dict Encoding
+

Fused MLP

Proposal Sampler

Dict Encoding
+

Fused MLP

NeRF Field

Dict Encoding
+

Fused MLP

Appearance Embedding

RGB

Current Model

Scene Contraction

Case study: Nerfacto Model

Since Release:

1.5x Faster training
3x Less Memory
Improved Quality

Before After

Reference

docs.nerf.studio Discord

