Derivative and Template Filters

CS194: Image Manipulation, Comp. Vision, and Comp. Photo
Alexei Efros, UC Berkeley, Spring 2020
Taking derivative by convolution
For 2D function \(f(x,y) \), the partial derivative is:

\[
\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}
\]

For discrete data, we can approximate using finite differences:

\[
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x + 1, y) - f(x, y)}{1}
\]

To implement above as convolution, what would be the associated filter?

Source: K. Grauman
Partial derivatives of an image

\[\frac{\partial f(x, y)}{\partial x} \]

\[\frac{\partial f(x, y)}{\partial y} \]

Which shows changes with respect to x?
Finite difference filters

Other approximations of derivative filters exist:

Prewitt: \[
M_x = \begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix} \quad ; \quad M_y = \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

Sobel: \[
M_x = \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1 \\
\end{bmatrix} \quad ; \quad M_y = \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{bmatrix}
\]

Roberts: \[
M_x = \begin{bmatrix}
0 & 1 \\
-1 & 0 \\
\end{bmatrix} \quad ; \quad M_y = \begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\]

Source: K. Grauman
The gradient points in the direction of most rapid increase in intensity.

- How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz
Image Gradient

\[\nabla f = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

![Graph of f(x)](image1)

![Graph of d/dx f(x)](image2)

Where is the edge?

Source: S. Seitz
Solution: smooth first

- To find edges, look for peaks in $\frac{d}{dx}(f \ast g)$

Source: S. Seitz
Derivative theorem of convolution

\[\frac{\partial}{\partial x} (h \ast f) = \left(\frac{\partial}{\partial x} h \right) \ast f \]

This saves us one operation:

\[\frac{\partial}{\partial x} h \]

\[\left(\frac{\partial}{\partial x} h \right) \ast f \]
Derivative of Gaussian filter

\[
* [1 \ -1] =
\]
Derivative of Gaussian filter

Which one finds horizontal/vertical edges?

x-direction

y-direction

Which one finds horizontal/vertical edges?
Example

input image ("Lena")
Compute Gradients (DoG)

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude
Get Orientation at Each Pixel

Threshold at minimum level
Get orientation

\[\theta = \text{atan2}(-g_y, g_x) \]
Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove “high-frequency” components; “low-pass” filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - **One**: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero**: no response in constant regions
- High absolute value at points of high contrast
Template matching

Goal: find in image

Main challenge: What is a good similarity or distance measure between two patches?

• Correlation
• Zero-mean correlation
• Sum Square Difference
• Normalized Cross Correlation
Matching with filters

Goal: find 🌟 in image

Method 0: filter the image with eye patch

\[h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l] \]

What went wrong?

Input

Filtered Image

f = image
g = filter

Side by Derek Hoiem
Matching with filters

Goal: find ⚫ in image

Method 1: filter the image with zero-mean eye

\[
h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) \cdot g[m+k,n+l]
\]

True detections

False detections

Input

Filtered Image (scaled)

Thresholded Image
Matching with filters

Goal: find in image

Method 2: SSD

\[h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \]
Matching with filters

Can SSD be implemented with linear filters?

\[h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \]
Matching with filters

Goal: find [.eye] in image

Method 2: SSD

\[h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2 \]

What’s the potential downside of SSD?

Side by Derek Hoiem
Matching with filters

Goal: find in image

Method 3: Normalized cross-correlation

\[
h[m,n] = \frac{\sum_{k,l} (g[k,l] - \bar{g})(f[m+k,n+l] - \bar{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \bar{g})^2 \sum_{k,l} (f[m+k,n+l] - \bar{f}_{m,n})^2\right)^{0.5}}
\]
Matching with filters

Goal: find 🎤 in image

Method 3: Normalized cross-correlation
Matching with filters

Goal: find 🎥 in image

Method 3: Normalized cross-correlation
Q: What is the best method to use?

A: Depends
Zero-mean filter: fastest but not a great matcher
SSD: next fastest, sensitive to overall intensity
Normalized cross-correlation: slowest, invariant to local average intensity and contrast
Practical matters

What is the size of the output?

MATLAB: filter2(g, f, shape) or conv2(g,f,shape)

- `shape` = ‘full’: output size is sum of sizes of f and g
- `shape` = ‘same’: output size is same as f
- `shape` = ‘valid’: output size is difference of sizes of f and g

Source: S. Lazebnik
Practical matters

What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:
 – clip filter (black)
 – wrap around
 – copy edge
 – reflect across edge

Source: S. Marschner
Practical matters

• methods (MATLAB):
 – clip filter (black): \texttt{imfilter(f, g, 0)}
 – wrap around: \texttt{imfilter(f, g, 'circular')}
 – copy edge: \texttt{imfilter(f, g, 'replicate')}
 – reflect across edge: \texttt{imfilter(f, g, 'symmetric')}

Source: S. Marschner