University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 194

D. E. Culler
Spring 2008

 J. Hui & P. Dutta
Name:__________________________
Name:____________________________
Name:__________________________
Name:____________________________

Name:__________________________
Name:____________________________

Fill in the answers to the following as you work through the lab.

Section 1: Embedded Network Programming

Exploring UDP Sockets

· What does the client do?
· What does the server do?
· What is the equivalent of '::1' in IPv4?

· What does 1234 correspond to?
UDP Client
· What does AF_INET6 specify?

· What does the port specify?

· What does htons() do?

· What does inet_pton() do?

UDP Server
· What is the IPv6 address set to? What does it mean? (hint: in.h may be useful to you again)
· Why is specifying a port important?

· What does bind do?
TinyOS Configurations
· Why don’t we need to create a socket as we did with the socket call in Linux?

· Why does static binding and allocation make the system more predictable?

· What capabilities do you lose if you do not dynamic allocation/binding?

TinyOS Sensor and Actuator Drivers

· What does CountEvents do?
· How can you view, in real-time, the number of messages being sent?

· How do you change the state of the blue LED?
General-Purpose I/O
· What do the registers P5DIR, P5OUT, and P5IN do?
· How would you control the green LED? (hint: see the telosb schematic at: http://webs.cs.berkeley.edu/tos/hardware/telos/telos-revb-2004-09-27.pdf)

· What if you want to make the pin an input, what do you do?

Interrupts

· What are the advantages of waiting for an interrupt?
· How would you poll an input and still allow the MCU to sleep most of the time?

· In what cases can an async event preempting an application event be problematic?
· Are all pins capable of generating interrupts? See the MSP430 datasheet to find out.
Writing Your Own Driver
· Count the number of times the sensor triggers.
· Signal an event to the application that indicates when the button was pressed and how many times it has been pressed since the boot. (hint: you will want to modify the Button interface)

· In the application, report this information to the Linux VM in ASCII form so that you can actually see how many times the button was pressed.
Processing Sensor Input
· Measure the time difference between button pushes.

· Periodically, report the min, mean, and max time between button pushes to the Linux VM.

· Why is it so easy to hang TinyOS and the application?

· Give one or two examples that will hang a TinyOS

Section 2: Simple circuits for binary inputs and outputs.
Binary Devices

· Find the energy capacity of the batteries in mAh (milliamp-hours)

· Assuming the switch is essentially always closed, determine the allowable current for the switch.
· Since you know the voltage of the battery and Ohm’s law, determine the size resistor that should be used for the pullup.

· Wire up an example in the lab using parts provided, including a magnetic reed sensor for the switch. Capture the behavior on an oscilloscope in the lab.
Trip Sensors

Study the telosb schematic and determine how you would connect your debounced magnetic reed sensor to this platform…
· to use interrupts to detect transitions?
· to use polling to detect the state of the switch?
Relays and Set Points - Binary outputs

· Assuming that the resistance of the LED is negligible, calculate the size of resistor that will keep the current under 5 mA.
· The larger the current the brighter the LED. In fact, your eye will perceive a rapidly blinking (20 Hz) bright LED as much brighter than one solidly on at the same overall energy consumption.
· If the LED is to consume no more than 10% of the 2 year budget, what is the total time per day that it can be on?

Section 3 – Building a embedded network sensor application

Now that we have binary sensors and actuators, lets have some fun.

· Connect your debounced reed switch to an interrupting IO pin on telos using patch wires.
· Modify your TinyOS count example to light one of the LEDs when the reed switch is closed. (Obviously, this only makes sense for a normally open application.)
· Further modify your program so that it will determine the number of times the switch has closed and opened and the duration between closures.
· Attach the free magnet to a bicycle wheel and the wired side with the mote to the frame.
· Build a speedometer.
· How about determining travel distance?
· How about estimating acceleration and deceleration?
Take home exercise for presentation next week

Notice that almost all “everyday things” use little more than what you have put together here. Consider the oven, fridge, air conditioner or thermostat. It has a thermal sensor, a set-point, and a gap. When the temperature falls more than a gap below the set point, it kicks the heater on (or turns the cooling off for the AC or fridge). When it reaches a gap above the set point it turns the heater off (or kicks on the cooling). An HVAC system uses a combination to heat and cool.

Using the circuit and techniques that you have learned in class, put together a interesting little application and demonstrate it in class next week.

Section 4 – PCB-level design flow.

We will present a basic introduction to the PCB design and manufacturing process. If there is time in lab, you can start on the eagle schematic capture and board design tutorial. Otherwise, you can download your own copy and work on it on your own.

Work through the following tutorial to learn how to operate Eagle.

http://hobby_elec.piclist.com/e_eagle.htm

This tutorial is good at explaining how to use Eagle. There is another good tutorial at Sparkfun that provides some valuable pragmatic tid bits.

http://www.sparkfun.com/commerce/present.php?p=BEE-8-EagleSchematic
http://www.sparkfun.com/commerce/present.php?p=BEE-9-EaglePCB
http://www.sparkfun.com/commerce/present.php?p=BEE-10-EagleLibrary

In particular, some important points in the Sparkfun tutorial are:
1. always vector fonts
2. define an alternate grid size for tighter spacing
3. autoroute 8mil rather than 50 mil
4. highlight tplace layer so you know what the silkscreen looks like.
5. define holes with keepouts for mounting.

6. Download http://www.sparkfun.com/tutorial/BeginningEmbedded/9-EaglePCBs/sfe-gerb274x.cam for generating GERBERs.

PCBs have functional aspects, electrical aspects, and physical aspects. We are going to design a small rectangular sensor support board that fits in this box.

Basic Switch

· Start your schematic with the switch circuit that you did in lab.

Your schematic probably looks something link this.

[image: image1.png]GND GND

External Suwitch

Use 0603 surface mount parts in the sparkfun library for the resistor and capacitor. Use the momentary switch (TAC_SWITCH_SND device) in that library for the switch. This would provide the push-button option link on the telos. However, we will typically leave off that switch and connect some external trip sensor. So, bring the four useful points in the circuit out to header pins so we can build lots of things with it. Use the M04PTH for the header pins.

Why did we provide two pins for the SW_IN1?

Rough PCB

Before we go too much further, let’s bring in some of the mechanical constraints. The box we plan to use is the following.

http://www.hammondmfg.com/pdf/1551RFL.pdf
It turns out that prototyping PCB with cutouts is expensive, so we’ll stick to a rectangular board for now.

Determine the dimensions of the board and the placement of the mounting holes. Be sure to leave yourself a little safety margin. Better to make it a tiny bit loose than for it not to fit.

Start a board for your schematic, dimension it properly and put in the mounting holes, as described in the sparkfun tutorial. (You will need to do a little research to figure out how big the holes should be.)

In a real design, you would typically work out the entire requirements and functional capabilities in advance. Then you would do floorplanning to get a good idea of where the major pieces go. Here we are doing it piece by piece, so you may find your self ripping things up and moving them around. That is good practice in learning the tool, even though good design methods try to avoid that kind of stuff. Feel free to look ahead to see what all you are going to try to put on the board. An nice element of Eagle is that it allows you to move between the physical board layout and the logical schematic quite easily.

LEDs

Now let’s add some LEDs and some pins to control them. Use the LED0603 in the Sparkfun library. Notice, you turn on the LED by pulling down the pin. You might end up with something like this.

[image: image2.png]ucc

vee__ 1
1ED1I__2
LED2__3
LEDS 1ED3__4
SL”
LEDL R4
B AL
A\ Y
LED2 RS
B AW—-E02
R\ Y
LED3 R6
B' AN L ED3

R

Notice, here we’ve used names to connect to the header, rather than wires. Sometimes that is easier to read. Here is doesn’t matter much.

External Sensor Device

Our switch was an extremely simple binary sensor. More generally, we might have an external device with a binary output that connects to an MCU input pin. For such a device, actuation and sensing come together in the form of power management. An MCU output pin may provide power to the external device to turn it on. In this case, the controller can determine when to sense of can duty-cycle the sensor to reduce its consumption. This basic arrangement looks something like this.

[image: image3.emf]MCU Device

signal

Vdd

Here’s an example motion sensor: http://www.parallax.com/Portals/0/Downloads/docs/prod/audiovis/PIRSensor-V1.2.pdf
Notice that in this case the power consumption is small enough that it can be provided directly from the microcontroller and it will operate at 3.3-5 volts. It actually runs fine at 3v, but it is a bit out of spec. What do we do if the external device requires more power or a different voltage level than the MCU? We need to introduce a “switch” to control that external power, i.e., a FET. It might look something like this.

[image: image4.emf]MCU Device

signal

Vdev

ctrl

MCU Device

signal

Vdev

MCU Device

signal

Vdev

ctrl

Why do we use a pFET here?

· Add support circuitry and a connector header to your design to support such an external device.

Notice, the header should have 6 pins. This is a good opportunity to learn trick that will reduce how many times you spin a board and allow you to use the same PCB for a variety of things. Add a pullup resistor and a pulldown resistor to the control line. Leaving these unpopulated make the circuit just like we’ve have here. However, you can populate the resistors to get other behaviors.

Let’s throw in one more because between the two we will be able to control all sorts of external devices.

· Add similar support circuitry and a connector header to your design but with an nFET.

Resistive Sensor

Next week we will look an sensors that are not binary. A good example is a thermistor, which changes its resistance as its temperature changes. We’ll talk more about this next week, but for now throw in a circuit like you used for the external switch, but with an external resistor as the lower part of the voltage divider rather than the switch.

Current Sensor

OK, let’s put some chips on your board. How about one to do current sensing? The basic idea is simple. We put the current through a “precision resistor” with a known resistance and measure the voltage drop. The problem is that we don’t want to put much resistance there and we don’t want to couple our ground to that point in the external circuit. Zetex makes a handy device for this. Use the ZXCT1010_SOT23 in the Zetex library. Find the data sheet on line to see how to hook it up and how it works. Provide a header to get at the measurement.

Accelerometer
Now let’s get even fancier. Let’s put a dual axis accelerometer on the board. The ADXL202E from analog devices is a nice part and its not too hard to solder. The part should be in the Analog Devices library, but you may need to find it on line. Track down the datasheet as well. You will need a couple of filter capacitors for this, a pulldown on T2, and a little signal conditioning on the VDD line.

Wow! All that. Give it you best shot. Put together the schematic and a proposed layout. We’ll go over your solution in class next week. Good luck and have fun. Don’t forget to put your name on it and a date code.

