
Chapter 25: The Danger of Software Patents 143

25 The Danger of Software Patents

This is an unedited transcript of the talk presented by Richard Stallman
on 8 October 2009 at Victoria University of Wellington, in Wellington, New
Zealand.

I’m most known for starting the free software movement and leading development
of the GNU operating system—although most of the people who use the system
mistakenly believe it’s Linux and think it was started by somebody else a decade
later. But I’m not going to be speaking about any of that today. I’m here to
talk about a legal danger to all software developers, distributors, and users: the
danger of patents—on computational ideas, computational techniques, an idea
for something you can do on a computer.

Now, to understand this issue, the first thing you need to realize is that patent
law has nothing to do with copyright law—they’re totally different. Whatever
you learn about one of them, you can be sure it doesn’t apply to the other.

So, for example, any time a person makes a statement about “intellectual
property,” that’s spreading confusion, because it’s lumping together not only
these two laws but also at least a dozen others. They’re all different, and the
result is any statement which purports to be about “intellectual property” is pure
confusion—either the person making the statement is confused, or the person is
trying to confuse others. But either way, whether it’s accidental or malicious,
it’s confusion.

Protect yourself from this confusion by rejecting any statement which makes
use of that term. The only way to make thoughtful comments and think clear
thoughts about any one of these laws is to distinguish it first from all the others,
and talk or think about one particular law, so that we can understand what
it actually does and then form conclusions about it. So I’ll be talking about
patent law, and what happens in those countries which have allowed patent law
to restrict software.

So, what does a patent do? A patent is an explicit, government-issued
monopoly on using a certain idea. In the patent there’s a part called the claims,
which describe exactly what you’re not allowed to do (although they’re written
in a way you probably can’t understand). It’s a struggle to figure out what those
prohibitions actually mean, and they may go on for many pages of fine print.

So the patent typically lasts for 20 years, which is a fairly long time in our
field. Twenty years ago there was no World Wide Web—a tremendous amount
of the use of computers goes on in an area which wasn’t even possible to propose

Copyright c� 2009 Richard Stallman
This transcript was originally published on http://gnu.org, in 2009. This

version is part of Free Software, Free Society: Selected Essays of Richard M.

Stallman, 2nd ed. (Boston: GNU Press, 2010).

This chapter is licensed under the Creative Commons Attribution-NoDerivs 3.0 United
States License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California 94105, USA.

http://gnu.org
http://creativecommons.org/licenses/by-nd/3.0/us/
http://creativecommons.org/licenses/by-nd/3.0/us/

144 Free Software, Free Society, 2nd ed.

20 years ago. So of course everything that people do on it is something that’s
new since 20 years ago—at least in some aspect it is new. So if patents had been
applied for we’d be prohibited from doing all of it, and we may be prohibited
from doing all of it in countries that have been foolish enough to have such a
policy.

Most of the time, when people describe the function of the patent system,
they have a vested interest in the system. They may be patent lawyers, or
they may work in the Patent Office, or they may be in the patent office of a
megacorporation, so they want you to like the system.

The Economist once referred to the patent system as “a time-consuming
lottery.” If you’ve ever seen publicity for a lottery, you understand how it works:
they dwell on the very unlikely probability of winning, and they don’t talk
about the overwhelming likelihood of losing. In this way, they intentionally and
systematically present a biased picture of what’s likely to happen to you, without
actually lying about any particular fact.

It’s the same way for the publicity for the patent system: they talk about
what it’s like to walk down the street with a patent in your pocket—or first of
all, what it’s like to get a patent, then what it’s like to have a patent in your
pocket, and every so often you can pull it out and point it at somebody and say,
“Give me your money.”

To compensate for their bias, I’m going to describe it from the other side,
the victim side—what it’s like for people who want to develop or distribute or
run software. You have to worry that any day someone might walk up to you
and point a patent at you and say, “Give me your money.”

If you want to develop software in a country that allows software patents,
and you want to work with patent law, what will you have to do?

You could try to make a list of all the ideas that one might be able to find in
the program that you’re about to write, aside from the fact that you don’t know
that when you start writing the program. [But] even after you finish writing the
program you wouldn’t be able to make such a list.

The reason is. . . in the process you conceived of it in one particular way—
you’ve got a mental structure to apply to your design. And because of that, it will
block you from seeing other structures that somebody might use to understand
the same program—because you’re not coming to it fresh; you already designed
it with one structure in mind. Someone else who sees it for the first time might
see a different structure, which involves different ideas, and it would be hard for
you to see what those other ideas are. But nonetheless they’re implemented in
your program, and those patents could prohibit your program, if those ideas are
patented.

For instance, suppose there were graphical-idea patents and you wanted to
draw a square. Well, you would realize that if there was a patent on a bottom
edge, it would prohibit your square. You could put “bottom edge” on the list of
all ideas implemented in your drawing. But you might not realize that somebody
else with a patent on bottom corners could sue you easily also, because he could

Chapter 25: The Danger of Software Patents 145

take your drawing and turn it by 45 degrees. And now your square is like this,
and it has a bottom corner.

So you couldn’t make a list of all the ideas which, if patented, could prohibit
your program.

What you might try to do is find out all the ideas that are patented that
might be in your program. Now you can’t do that actually, because patent
applications are kept secret for at least 18 months; and the result is the Patent
Office could be considering now whether to issue a patent, and they won’t tell
you. And this is not just an academic, theoretical possibility.

For instance, in 1984 the Compress program was written, a program for
compressing files using the data compression algorithm, and at that time there
was no patent on that algorithm for compressing files. The author got the
algorithm from an article in a journal. That was when we thought that the
purpose of computer science journals was to publish algorithms so people could
use them.

He wrote this program, he released it, and in 1985 a patent was issued on that
algorithm. But the patent holder was cunning and didn’t immediately go around
telling people to stop using it. The patent holder figured, “Let’s let everybody
dig their grave deeper.” A few years later they started threatening people; it
became clear we couldn’t use Compress, so I asked for people to suggest other
algorithms we could use for compressing files.

And somebody wrote and said, “I developed another data compression algo-
rithm that works better, I’ve written a program, I’d like to give it to you.” So
we got ready to release it, and a week before it was ready to be released, I read
in the New York Times weekly patent column, which I rarely saw—it’s a couple
of times a year I might see it—but just by luck I saw that someone had gotten
a patent for “inventing a new method of compressing data.” And so I said we
had better look at this, and sure enough it covered the program we were about
to release. But it could have been worse: the patent could have been issued a
year later, or two years later, or three years later, or five years later.

Anyway, someone else came up with another, even better compression al-
gorithm, which was used in the program gzip, and just about everybody who
wanted to compress files switched to gzip, so it sounds like a happy ending. But
you’ll hear more later. It’s not entirely so happy.

So, you can’t find out about the patents that are being considered even
though they may prohibit your work once they come out, but you can find out
about the already issued patents. They’re all published by the Patent Office.
The problem is you can’t read them all, because there are too many of them.

In the US I believe there are hundreds of thousands of software patents;
keeping track of them would be a tremendous job. So you’re going to have to
search for relevant patents. And you’ll find a lot of relevant patents, but you
won’t necessarily find them all.

For instance, in the 80s and 90s, there was a patent on “natural order recal-
culation” in spreadsheets. Somebody once asked me for a copy of it, so I looked
in our computer file which lists the patent numbers. And then I pulled out the

146 Free Software, Free Society, 2nd ed.

drawer to get the paper copy of this patent and xeroxed it and sent it to him.
And when he got it, he said, “I think you sent me the wrong patent. This is
something about compilers.” So I thought maybe our file has the wrong number
in it. I looked in it again, and sure enough it said, “A method for compiling for-
mulas into object code.” So I started to read it to see if it was indeed the wrong
patent. I read the claims, and sure enough it was the natural order recalculation
patent, but it didn’t use those terms. It didn’t use the term “spreadsheet.” In
fact, what the patent prohibited was dozens of different ways of implementing
topological sort—all the ways they could think of. But I don’t think it used the
term “topological sort.”

So if you were writing a spreadsheet and you tried to find relevant patents by
searching, you might have found a lot of patents. But you wouldn’t have found
this one until you told somebody, “Oh, I’m working on a spreadsheet,” and he
said, “Oh, did you know those other companies that are making spreadsheets
are getting sued?” Then you would have found out.

Well, you can’t find all the patents by searching, but you can find a lot of
them. And then you’ve got to figure out what they mean, which is hard, because
patents are written in tortuous legal language which is very hard to understand
the real meaning of. So you’re going to have to spend a lot of time talking with
an expensive lawyer explaining what you want to do in order to find out from
the lawyer whether you’re allowed to do it.

Even the patent holders often can’t recognize just what their patents mean.
For instance, there’s somebody named Paul Heckel who released a program for
displaying a lot of data on a small screen, and based on a couple of the ideas in
that program he got a couple of patents.

I once tried to find a simple way to describe what claim 1 of one of those
patents covered. I found that I couldn’t find any simpler way of saying it than
what was in the patent itself; and that sentence, I couldn’t manage to keep it
all in my mind at once, no matter how hard I tried.

And Heckel couldn’t follow it either, because when he saw HyperCard, all he
noticed was it was nothing like his program. It didn’t occur to him that the way
his patent was written it might prohibit HyperCard; but his lawyer had that
idea, so he threatened Apple. And then he threatened Apple’s customers, and
eventually Apple made a settlement with him which is secret, so we don’t know
who really won. And this is just an illustration of how hard it is for anybody to
understand what a patent does or doesn’t prohibit.

In fact, I once gave this speech and Heckel was in the audience. And at this
point he jumped up and said, “That’s not true, I just didn’t know the scope of
my protection.” And I said, “Yeah, that’s what I said,” at which point he sat
down and that was the end of my experience being heckled by Heckel. If I had
said no, he probably would have found a way to argue with me.

Anyway, after a long, expensive conversation with a lawyer, the lawyer will
give you an answer like this:

Chapter 25: The Danger of Software Patents 147

If you do something in this area, you’re almost certain to lose a lawsuit;
if you do something in this area, there’s a considerable chance of losing a
lawsuit; and if you really want to be safe you’ve got to stay out of this area.
But there’s a sizeable element of chance in the outcome of any lawsuit.

So now that you have clear, predictable rules for doing business, what are
you actually going to do? Well, there are three things that you could do to deal
with the issue of any particular patent. One is to avoid it, another is to get a
license for it, and the third is to invalidate it. So I’ll talk about these one by
one.

First, there’s the possibility of avoiding the patent, which means, don’t im-
plement what it prohibits. Of course, if it’s hard to tell what it prohibits, it
might be hard to tell what would suffice to avoid it.

A couple of years ago Kodak sued Sun [for] using a patent for something
having to do with object-oriented programming, and Sun didn’t think it was
infringing that patent. But the court decided it was; and when other people
look at that patent they haven’t the faintest idea whether that decision was
right or not. No one can tell what that patent does or doesn’t cover, but Sun
had to pay hundreds of millions of dollars because of violating a completely
incomprehensible law.

Sometimes you can tell what you need to avoid, and sometimes what you
need to avoid is an algorithm.

For instance, I saw a patent for something like the fast Fourier transform, but
it ran twice as fast. Well, if the ordinary FFT is fast enough for your application
then that’s an easy way to avoid this other one. And most of the time that would
work. Once in a while you might be trying to do something where it runs doing
FFT all the time, and it’s just barely fast enough using the faster algorithm.
And then you can’t avoid it, although maybe you could wait a couple of years
for a faster computer. But that’s going to be rare. Most of the time that patent
will to be easy to avoid.

On the other hand, a patent on an algorithm may be impossible to avoid.
Consider the LZW data compression algorithm. Well, as I explained, we found
a better data compression algorithm, and everybody who wanted to compress
files switched to the program gzip which used the better algorithm. And the
reason is, if you just want to compress the file and uncompress it later, you can
tell people to use this program to uncompress it; then you can use any program
with any algorithm, and you only care how well it works.

But LZW is used for other things, too; for instance the PostScript language
specifies operators for LZW compression and LZW uncompression. It’s no use
having another, better algorithm because it makes a different format of data.
They’re not interoperable. If you compress it with the gzip algorithm, you
won’t be able to uncompress it using LZW. So no matter how good your other
algorithm is, and no matter what it is, it just doesn’t enable you to implement
PostScript according to the specs.

But I noticed that users rarely ask their printers to compress things. Gener-
ally the only thing they want their printers to do is to uncompress; and I also

148 Free Software, Free Society, 2nd ed.

noticed that both of the patents on the LZW algorithm were written in such a
way that if your system can only uncompress, it’s not forbidden. These patents
were written so that they covered compression, and they had other claims cover-
ing both compression and uncompression; but there was no claim covering only
uncompression. So I realized that if we implement only the uncompression for
LZW, we would be safe. And although it would not satisfy the specification, it
would please the users sufficiently; it would do what they actually needed. So
that’s how we barely squeaked by avoiding the two patents.

Now there is gif format, for images. That uses the LZW algorithm also. It
didn’t take long for people to define another image format, called png, which
stands for “Png’s Not Gif.” I think it uses the gzip algorithm. And we started
saying to people, “Don’t use gif format, it’s dangerous. Switch to png.” And the
users said, “Well, maybe some day, but the browsers don’t implement it yet,”
and the browser developers said, “We may implement it someday, but there’s
not much demand from users.”

Well, it’s pretty obvious what’s going on—gif was a de facto standard. In
effect, asking people to switch to a different format, instead of their de facto
standard, is like asking everyone in New Zealand to speak Hungarian. People
will say, “Well, yeah, I’ll learn to speak it after everyone else does.” And so
we never succeeded in asking people to stop using gif, even though one of those
patent holders was going around to operators of web sites, threatening to sue
them unless they could prove that all of the gifs on the site were made with
authorized, licensed software.

So gif was a dangerous trap for a large part of our community. We thought
we had an alternative to gif format, namely jpeg, but then somebody said, “I
was just looking through my portfolio of patents”—I think it was somebody
that just bought patents and used them to threaten people—and he said, “and
I found that one of them covers jpeg format.”

Well, jpeg was not a de facto standard, it’s an official standard, issued by a
standards committee; and the committee had a lawyer too. Their lawyer said
he didn’t think that this patent actually covered jpeg format.

So who’s right? Well, this patent holder sued a bunch of companies, and
if there was a decision, it would have said who was right. But I haven’t heard
about a decision; I’m not sure if there ever was one. I think they settled, and the
settlement is almost certainly secret, which means that it didn’t tell us anything
about who’s right.

These are fairly lightweight cases: one patent on jpeg, two patents on the
LZW algorithm used in gif. Now you might wonder how come there are two
patents on the same algorithm? It’s not supposed to happen, but it did. And
the reason is that the patent examiners can’t possibly take the time to study
every pair of things they might need to study and compare, because they’re not
allowed to take that much time. And because algorithms are just mathematics,
there’s no way you can narrow down which applications and patents you need
to compare.

Chapter 25: The Danger of Software Patents 149

You see, in physical engineering fields, they can use the physical nature of
what’s going on to narrow things down. For instance, in chemical engineering,
they can say, “What are the substances going in? What are the substances
coming out?” If two different [patent] applications are different in that way,
then they’re not the same process so you don’t need to worry. But the same
math can be represented in ways that can look very different, and until you study
them both together, you don’t realize they’re talking about the same thing. And,
because of this, it’s quite common to see the same thing get patented multiple
times [in software].

Remember that program that was killed by a patent before we released it?
Well, that algorithm got patented twice also. In one little field we’ve seen it
happen in two cases that we ran into—the same algorithm being patented twice.
Well, I think my explanation tells you why that happens.

But one or two patents is a lightweight case. What about mpeg2, the video
format? I saw a list of over 70 patents covering that, and the negotiations
to arrange a way for somebody to license all those patents took longer than
developing the standard itself. The jpeg committee wanted to develop a follow-
on standard, and they gave up. They said there were too many patents; there
was no way to do it.

Sometimes it’s a feature that’s patented, and the only way to avoid that
patent is not to implement that feature. For instance, the users of the word
processor Xywrite once got a downgrade in the mail, which removed a feature.
The feature was that you could define a list of abbreviations. For instance, if you
define “exp” as an abbreviation for “experiment,” then if you type “exp-space”
or “exp-comma,” the “exp” would change automatically to “experiment.”

Then somebody who had a patent on this feature threatened them, and they
concluded that the only thing they could do was to take the feature out. And
so they sent all the users a downgrade.

But they also contacted me, because my Emacs editor had a feature like that
starting from the late 70s. And it was described in the Emacs manual, so they
thought I might be able to help them invalidate that patent. Well, I’m happy
to know I’ve had at least one patentable idea in my life, but I’m unhappy that
someone else patented it.

Fortunately, in fact, that patent was eventually invalidated, and partly on the
strength of the fact that I had published using it earlier. But in the meantime
they had had to remove this feature.

Now, to remove one or two features may not be a disaster. But when you
have to remove 50 features, you could do it, but people are likely to say, “This
program’s no good; it’s missing all the features I want.” So it may not be a
solution. And sometimes a patent is so broad that it wipes out an entire field,
like the patent on public-key encryption, which in fact put public-key encryption
basically off limits for about ten years.

So that’s the option of avoiding the patent—often possible, but sometimes
not, and there’s a limit to how many patents you can avoid.

What about the next possibility, of getting a license for the patent?

150 Free Software, Free Society, 2nd ed.

Well, the patent holder may not offer you a license. It’s entirely up to
him. He could say, “I just want to shut you down.” I once got a letter from
somebody whose family business was making casino games, which were of course
computerized, and he had been threatened by a patent holder who wanted to
make his business shut down. He sent me the patent. Claim 1 was something like
“a network with a multiplicity of computers, in which each computer supports
a multiplicity of games, and allows a multiplicity of game sessions at the same
time.”

Now, I’m sure in the 1980s there was a university that set up a room with
a network of workstations, and each workstation had some kind of windowing
facility. All they had to do was to install multiple games and it would be possible
to display multiple game sessions at once. This is so trivial and uninteresting
that nobody would have bothered to publish an article about doing it. No one
would have been interested in publishing an article about doing it, but it was
worth patenting it. If it had occurred to you that you could get a monopoly on
this trivial thing, then you could shut down your competitors with it.

But why does the Patent Office issue so many patents that seem absurd and
trivial to us?

It’s not because the patent examiners are stupid, it’s because they’re follow-
ing a system, and the system has rules, and the rules lead to this result.

You see, if somebody has made a machine that does something once, and
somebody else designs a machine that will do the same thing, but N times, for
us that’s a for-loop, but for the Patent Office that’s an invention. If there are
machines that can do A, and there are machines that can do B, and somebody
designs a machine that can do A or B, for us that’s an if-then-else statement,
but for the Patent Office that’s an invention. So they have very low standards,
and they follow those standards; and the result is patents that look absurd and
trivial to us. Whether they’re legally valid I can’t say. But every programmer
who sees them laughs.

In any case, I was unable to suggest anything he could do to help himself,
and he had to shut down his business. But most patent holders will offer you a
license. It’s likely to be rather expensive.

But there are some software developers that find it particularly easy to get
licenses, most of the time. Those are the megacorporations. In any field the
megacorporations generally own about half the patents, and they cross-license
each other, and they can make anybody else cross-license if he’s really producing
anything. The result is that they end up painlessly with licenses for almost all
the patents.

IBM wrote an article in its house magazine, Think magazine—I think it’s
issue 5, 1990—about the benefit IBM got from its almost 9,000 US patents at
the time (now it’s up to 45,000 or more). They said that one of the benefits was
that they collected money, but the main benefit, which they said was perhaps
an order of magnitude greater, was “getting access to the patents of others,”
namely cross-licensing.

Chapter 25: The Danger of Software Patents 151

What this means is since IBM, with so many patents, can make almost
everybody give them a cross-license, IBM avoids almost all the grief that the
patent system would have inflicted on anybody else. So that’s why IBM wants
software patents. That’s why the megacorporations in general want software
patents, because they know that by cross-licensing, they will have a sort of
exclusive club on top of a mountain peak. And all the rest of us will be down
here, and there’s no way we can get up there. You know, if you’re a genius, you
might start up a small company and get some patents, but you’ll never get into
IBM’s league, no matter what you do.

Now a lot of companies tell their employees, “Get us patents so we can defend
ourselves” and they mean, “use them to try to get cross-licensing,” but it just
doesn’t work well. It’s not an effective strategy if you’ve got a small number of
patents.

Suppose you’ve got three patents. One points there, one points there, and
one points there, and somebody over there points a patent at you. Well, your
three patents don’t help you at all, because none of them points at him. On
the other hand, sooner or later, somebody in the company is going to notice
that this patent is actually pointing at some people, and [the company] could
threaten them and squeeze money out of them—never mind that those people
didn’t attack this company.

So if your employer says to you, “We need some patents to defend ourselves,
so help us get patents,” I recommend this response:

Boss, I trust you and I’m sure you would only use those patents to defend
the company if it’s attacked. But I don’t know who’s going to be the CEO
of this company in five years. For all I know, it might get acquired by
Microsoft. So I really can’t trust the company’s word to only use these
patents for defense unless I get it in writing. Please put it in writing that
any patents I provide for the company will only be used for self-defense and
collective security, and not for repression, and then I’ll be able to get patents
for the company with a clean conscience.

It would be most interesting to raise this not just in private with your boss,
but also on the company’s discussion list.

The other thing that could happen is that the company could fail and its
assets could be auctioned off, including the patents; and the patents will be
bought by someone who means to use them to do something nasty.

This cross-licensing practice is very important to understand, because this
is what punctures the argument of the software patent advocates who say that
software patents are needed to protect the starving genius. They give you a
scenario which is a series of unlikelihoods.

So let’s look at it. According to this scenario, there’s a brilliant designer of
whatever, who’s been working for years by himself in his attic coming up with
a better way to do whatever it is. And now that it’s ready, he wants to start
a business and mass-produce this thing; and because his idea is so good his
company will inevitably succeed— except for one thing: the big companies will
compete with him and take all his market the away. And because of this, his
business will almost certainly fail, and then he will starve.

152 Free Software, Free Society, 2nd ed.

Well, let’s look at all the unlikely assumptions here.
First of all, that he comes up with this idea working by himself. That’s not

very likely. In a high-tech field, most progress is made by people working in a
field, doing things and talking with people in the field. But I wouldn’t say it’s
impossible, not that one thing by itself.

But anyway the next supposition is that he’s going to start a business and
that it’s going to succeed. Well, just because he’s a brilliant engineer doesn’t
mean that he’s any good at running a business. Most new businesses fail; more
than 95 percent of them, I think, fail within a few years. So that’s probably
what’s going to happen to him, no matter what.

Ok, let’s assume that in addition to being a brilliant engineer who came up
with something great by himself, he’s also talented at running businesses. If he
has a knack for running businesses, then maybe his business won’t fail. After
all, not all new businesses fail, there are a certain few that succeed. Well, if
he understands business, then instead of trying to go head to head with large
companies, he might try to do things that small companies are better at and
have a better chance of succeeding. He might succeed. But let’s suppose it fails
anyway. If he’s so brilliant and has a knack for running businesses, I’m sure he
won’t starve, because somebody will want to give him a job.

So a series of unlikelihoods—it’s not a very plausible scenario. But let’s look
at it anyway.

Because where they go from there is to say the patent system will “protect”
our starving genius, because he can get a patent on this technique. And then
when IBM wants to compete with him, he says, “IBM, you can’t compete with
me, because I’ve got this patent,” and IBM says, “Oh, no, not again!”

Well, here’s what really happens.
IBM says, “Oh, how nice, you have a patent. Well, we have this patent,

and this patent, and this patent, and this patent, and this patent, all of which
cover other ideas implemented in your product, and if you think you can fight
us on all those, we’ll pull out some more. So let’s sign a cross-license agreement,
and that way nobody will get hurt.” Now since we’ve assumed that our genius
understands business, he’s going to realize that he has no choice. He’s going
to sign the cross-license agreement, as just about everybody does when IBM
demands it. And then this means that IBM will get “access” to his patent,
meaning IBM would be free to compete with him just as if there were no patents,
which means that the supposed benefit that they claim he would get by having
this patent is not real. He won’t get this benefit.

The patent might “protect” him from competition from you or me, but not
from IBM—not from the very megacorporations which the scenario says are
the threat to him. You know in advance that there’s got to be a flaw in this
reasoning when people who are lobbyists for megacorporations recommend a
policy supposedly because it’s going to protect their small competitors from
them. If it really were going to do that, they wouldn’t be in favor of it. But this
explains why [software patents] won’t do it.

Chapter 25: The Danger of Software Patents 153

Even IBM can’t always do this, because there are companies that we refer
to as patent trolls or patent parasites, and their only business is using patents
to squeeze money out of people who really make something.

Patent lawyers tell us that it’s really wonderful to have patents in your field,
but they don’t have patents in their field. There are no patents on how to send
or write a threatening letter, no patents on how to file a lawsuit, and no patents
on how to persuade a judge or jury, so even IBM can’t make the patent trolls
cross-license. But IBM figures, “Our competition will have to pay them too; this
is just part of the cost of doing business, and we can live with it.” IBM and the
other megacorporations figure that the general dominion over all activity that
they get from their patents is good for them, and paying off the trolls they can
live with. So that’s why they want software patents.

There are also certain software developers who find it particularly difficult to
get a patent license, and those are the developers of free software. The reason
is that the usual patent license has conditions we can’t possibly fulfill, because
usual patent licenses demand a payment per copy. But when software gives users
the freedom to distribute and make more copies, we have no way to count the
copies that exist.

If someone offered me a patent license for a payment of one-millionth of a
dollar per copy, the total amount of money I’d have to pay maybe is in my pocket
now. Maybe it’s $50, but I don’t know if it’s $50, or $49, or what, because there’s
no way I can count the copies that people have made.

A patent holder doesn’t have to demand a payment per copy; a patent holder
could offer you a license for a single lump sum, but those lump sums tend to be
big, like US$100,000.

And the reason that we’ve been able to develop so much freedom-respecting
software is [that] we can develop software without money, but we can’t pay a
lot of money without money. If we’re forced to pay for the privilege of writing
software for the public, we won’t be able to do it very much.

That’s the possibility of getting a license for the patent. The other possibility
is to invalidate the patent. If the country considers software patents to be
basically valid, and allowed, the only question is whether that particular patent
meets the criteria. It’s only useful to go to court if you’ve got an argument to
make that might prevail.

What would that argument be? You have to find evidence that, years ago,
before the patent was applied for, people knew about the same idea. And you’d
have to find things today that demonstrate that they knew about it publicly at
that time. So the dice were cast years ago, and if they came up favorably for
you, and if you can prove that fact today, then you have an argument to use to
try to invalidate the patent. And it might work.

It might cost you a lot of money to go through this case, and as a result,
a probably invalid patent is a very frightening weapon to be threatened with if
you don’t have a lot of money. There are people who can’t afford to defend their
rights—lots of them. The ones who can afford it are the exception.

154 Free Software, Free Society, 2nd ed.

These are the three things that you might be able to do about each patent
that prohibits something in your program. The thing is, whether each one is
possible depends on different details of the circumstances, so some of the time,
none of them is possible; and when that happens, your project is dead.

But lawyers in most countries tell us, “Don’t try to find the patents in ad-
vance,” and the reason is that the penalty for infringement is bigger if you knew
about the patent. So what they tell you is “Keep your eyes shut. Don’t try
to find out about the patents, just go blindly taking your design decisions, and
hope.”

And of course, with each single design decision, you probably don’t step on
a patent. Probably nothing happens to you. But there are so many steps you
have to take to get across the minefield, it’s very unlikely you will get through
safely. And of course, the patent holders don’t all show up at the same time, so
you don’t know how many there are going to be.

The patent holder of the natural order recalculation patent was demanding
5 percent of the gross sales of every spreadsheet. You could imagine paying for
a few such licenses, but what happens when patent holder number 20 comes
along, and wants you to pay out the last remaining 5 percent? And then what
happens when patent holder number 21 comes along?

People in business say that this scenario is amusing but absurd, because your
business would fail long before you got there. They told me that two or three
such licenses would make your business fail. So you’d never get to 20. They
show up one by one, so you never know how many more there are going to be.

Software patents are a mess. They’re a mess for software developers, but in
addition they’re a restriction on every computer user because software patents
restrict what you can do on your computer.

This is very different from patents, for instance, on automobile engines.
These only restrict companies that make cars; they don’t restrict you and me.
But software patents do restrict you and me, and everybody who uses comput-
ers. So we can’t think of them in purely economic terms; we can’t judge this
issue purely in economic terms. There’s something more important at stake.

But even in economic terms, the system is self-defeating, because its purpose
is supposed to be to promote progress. Supposedly by creating this artificial
incentive for people to publish ideas, it’s going to help the field progress. But all
it does is the exact opposite, because the big job in software is not coming up
with ideas, it’s implementing thousands of ideas together in one program. And
software patents obstruct that, so they’re economically self-defeating.

And there’s even economic research showing that this is so—showing how in
a field with a lot of incremental innovation, a patent system can actually reduce
investment in R & D. And of course, it also obstructs development in other
ways. So even if we ignore the injustice of software patents, even if we were
to look at it in the narrow economic terms that are usually proposed, it’s still
harmful.

Chapter 25: The Danger of Software Patents 155

People sometimes respond by saying that “People in other fields have been
living with patents for decades, and they’ve gotten used to it, so why should you
be an exception?”

Now, that question has an absurd assumption. It’s like saying, “Other people
get cancer, why shouldn’t you?” I think every time someone doesn’t get cancer,
that’s good, regardless of what happened to the others. That question is absurd
because of its presupposition that somehow we all have a duty to suffer the harm
done by patents.

But there is a sensible question buried inside it, and that sensible question
is “What differences are there between various fields that might affect what is
good or bad patent policy in those fields?”

There is an important basic difference between fields in regard to how many
patents are likely to prohibit or cover parts of any one product.

Now we have a naive idea in our minds which I’m trying to get rid of, because
it’s not true. And it’s that on any one product there is one patent, and that
patent covers the overall design of that product. So if you design a new product,
it can’t be patented already, and you will have an opportunity to get “the patent”
on that product.

That’s not how things work. In the 1800s, maybe they did, but not now. In
fact, fields fall on a spectrum of how many patents [there are] per product. The
beginning of the spectrum is one, but no field is like that today; fields are at
various places on this spectrum.

The field that’s closest to that is pharmaceuticals. A few decades ago, there
really was one patent per pharmaceutical, at least at any time, because the
patent covered the entire chemical formula of that one particular substance.
Back then, if you developed a new drug, you could be sure it wasn’t already
patented by somebody else and you could get the one patent on that drug.

But that’s not how it works now. Now there are broader patents, so now you
could develop a new drug, and you’re not allowed to make it because somebody
has a broader patent which covers it already.

And there might even be a few such patents covering your new drug si-
multaneously, but there won’t be hundreds. The reason is, our ability to do
biochemical engineering is so limited that nobody knows how to combine so
many ideas to make something that’s useful in medicine. If you can combine a
couple of them you’re doing pretty well at our level of knowledge. But other
fields involve combining more ideas to make one thing.

At the other end of the spectrum is software, where we can combine more
ideas into one usable design than anybody else, because our field is basically
easier than all other fields. I’m presuming that the intelligence of people in our
field is the same as that of people in physical engineering. It’s not that we’re
fundamentally better than they are; it’s that our field is fundamentally easier,
because we’re working with mathematics.

A program is made out of mathematical components, which have a defini-
tion, whereas physical objects don’t have a definition. The matter does what it
does, so through the perversity of matter, your design may not work the way it

156 Free Software, Free Society, 2nd ed.

“should” have worked. And that’s just tough. You can’t say that the matter
has a bug in it, and the physical universe should get fixed. [Whereas] we [pro-
grammers] can make a castle that rests on a mathematically thin line, and it
stays up because nothing weighs anything.

There’re so many complications you have to cope with in physical engineering
that we don’t have to worry about.

For instance, when I put an if-statement inside of a while-loop,

• I don’t have to worry that if this while-loop repeats at the wrong rate, the
if-statement might start to vibrate and it might resonate and crack;

• I don’t have to worry that if it resonates much faster—you know, millions
of times per second—that it might generate radio frequency signals that
might induce wrong values in other parts of the program;

• I don’t have to worry that corrosive fluids from the environment might seep
in between the if-statement and the while-statement and start eating away
at them until the signals don’t pass anymore;

• I don’t have to worry about how the heat generated by my if-statement is
going to get out through the while-statement so that it doesn’t make the
if-statement burn out; and

• I don’t have to worry about how I would take out the broken if-statement
if it does crack, burn, or corrode, and replace it with another if-statement
to make the program run again.

For that matter, I don’t have to worry about how I’m going to insert the
if-statement inside the while-statement every time I produce a copy of the
program. I don’t have to design a factory to make copies of my program, because
there are various general commands that will make copies of anything.

If I want to make copies on CD, I just have to write a master; and there’s one
program I can [use to] make a master out of anything, write any data I want.
I can make a master CD and write it and send it off to a factory, and they’ll
duplicate whatever I send them. I don’t have to design a different factory for
each thing I want to duplicate.

Very often with physical engineering you have to do that; you have to design
products for manufacturability. Designing the factory may even be a bigger job
than designing the product, and then you may have to spend millions of dollars
to build the factory. So with all of this trouble, you’re not going to be able to
put together so many different ideas in one product and have it work.

A physical design with a million nonrepeating different design elements is
a gigantic project. A program with a million different design elements, that’s
nothing. It’s a few hundred thousand lines of code, and a few people will write
that in a few years, so it’s not a big deal. So the result is that the patent system
weighs proportionately heavier on us than it does on people in any other field
who are being held back by the perversity of matter.

A lawyer did a study of one particular large program, namely the kernel
Linux, which is used together with the GNU operating system that I launched.

Chapter 25: The Danger of Software Patents 157

This was five years ago now; he found 283 different US patents, each of which
appeared to prohibit some computation done somewhere in the code of Linux.
At the time I saw an article saying that Linux was 0.25 percent of the whole
system. So by multiplying 300 by 400 we can estimate the number of patents that
would prohibit something in the whole system as being around 100,000. This is
a very rough estimate only, and no more accurate information is available, since
trying to figure it out would be a gigantic task.

Now this lawyer did not publish the list of patents, because that would have
endangered the developers of Linux the kernel, putting them in a position where
the penalties if they were sued would be greater. He didn’t want to hurt them;
he wanted to demonstrate how bad this problem is, of patent gridlock.

Programmers can understand this immediately, but politicians usually don’t
know much about programming; they usually imagine that patents are basically
much like copyrights, only somehow stronger. They imagine that since software
developers are not endangered by the copyrights on their work, that they won’t
be endangered by the patents on their work either. They imagine that, since
when you write a program you have the copyright, [therefore likewise] if you
write a program you have the patents also. This is false—so how do we give
them a clue what patents would really do? What they really do in countries like
the US?

I find it’s useful to make an analogy between software and symphonies. Here’s
why it’s a good analogy.

A program or symphony combines many ideas. A symphony combines many
musical ideas. But you can’t just pick a bunch of ideas and say “Here’s my
combination of ideas, do you like it?” Because in order to make them work you
have to implement them all. You can’t just pick musical ideas and list them and
say, “Hey, how do you like this combination?” You can’t hear that [list]. You
have to write notes which implement all these ideas together.

The hard task, the thing most of us wouldn’t be any good at, is writing all
these notes to make the whole thing sound good. Sure, lots of us could pick
musical ideas out of a list, but we wouldn’t know how to write a good-sounding
symphony to implement those ideas. Only some of us have that talent. That’s
the thing that limits you. I could probably invent a few musical ideas, but I
wouldn’t know how to use them to any effect.

So imagine that it’s the 1700s, and the governments of Europe decide that
they want to promote the progress of symphonic music by establishing a system
of musical idea patents, so that any musical idea described in words could be
patented.

For instance, using a particular sequence of notes as a motif could be
patented, or a chord progression could be patented, or a rhythmic pattern could
be patented, or using certain instruments by themselves could be patented, or
a format of repetitions in a movement could be patented. Any sort of musical
idea that could be described in words would have been patentable.

Now imagine that it’s 1800 and you’re Beethoven, and you want to write a
symphony. You’re going to find it’s much harder to write a symphony you don’t

158 Free Software, Free Society, 2nd ed.

get sued for than to write one that sounds good, because you have to thread
your way around all the patents that exist. If you complained about this, the
patent holders would say, “Oh, Beethoven, you’re just jealous because we had
these ideas first. Why don’t you go and think of some ideas of your own?”

Now Beethoven had ideas of his own. The reason he’s considered a great
composer is because of all of the new ideas that he had, and he actually used.
And he knew how to use them in such a way that they would work, which was
to combine them with lots of well-known ideas. He could put a few new ideas
into a composition together with a lot of old and uncontroversial ideas. And
the result was a piece that was controversial, but not so much so that people
couldn’t get used to it.

To us, Beethoven’s music doesn’t sound controversial; I’m told it was, when
it was new. But because he combined his new ideas with a lot of known ideas,
he was able to give people a chance to stretch a certain amount. And they
could, which is why to us those ideas sound just fine. But nobody, not even a
Beethoven, is such a genius that he could reinvent music from zero, not using
any of the well-known ideas, and make something that people would want to
listen to. And nobody is such a genius he could reinvent computing from zero,
not using any of the well-known ideas, and make something that people want to
use.

When the technological context changes so frequently, you end up with a
situation where what was done 20 years ago is totally inadequate. Twenty years
ago there was no World Wide Web. So, sure, people did a lot of things with
computers back then, but what they want to do today are things that work with
the World Wide Web. And you can’t do that using only the ideas that were
known 20 years ago. And I presume that the technological context will continue
to change, creating fresh opportunities for somebody to get patents that give
the shaft to the whole field.

Big companies can even do this themselves. For instance, a few years ago
Microsoft decided to make a phony open standard for documents and to get
it approved as a standard by corrupting the International Standards Organi-
zation, which they did. But they designed it using something that Microsoft
had patented. Microsoft is big enough that it can start with a patent, design
a format or protocol to use that patented idea (whether it’s helpful or not), in
such a way that there’s no way to be compatible unless you use that same idea
too. And then Microsoft can make that a de facto standard with or without
help from corrupted standards bodies. Just by its weight it can push people into
using that format, and that basically means that they get a stranglehold over
the whole world. So we need to show the politicians what’s really going on here.
We need to show them why this is bad.

Now I’ve heard it said that the reason New Zealand is considering software
patents is that one large company wants to be given some monopolies. To
restrict everyone in the country so that one company will make more money is
the absolute opposite of statesmanship.

