
Build, Run, and Write RISC-V Programs

CS250 Tutorial 3 (Version 091110b)
September 11, 2010

Yunsup Lee

In this tutorial you will gain experience using the RISC-V toolchain to assemble and compile
programs for the RISC-V v2 processor which you will implement in lab 2 and 3. You will also learn
how to run the programs on the RISC-V ISA simulator and use the test macros to write your own
test programs.

The RISC-V toolchain is a standard GNU cross compiler toolchain ported for RISC-V. You will
be using riscv-{gcc,as,ld} to compile, assemble, and link your source files. Then you will
run the compiled binary on the RISC-V ISA simulator to figure out whether your binary runs
as intended. The RISC-V ISA simulator might report errors because of the RISC-V compiler
generating instructions that are not defined in the RISC-V ISA. You need to carefully write C
code to avoid these instructions. Please refer RISC-V Processor Specification for more information
about the ISA. You will use the same binary for the test harness used in lab 2 and 3. For debugging
purposes, you can also compile benchmarks written in C natively, and run the binary on the host
x86 machine.

Figure 1 shows how everything fits together.

ASM
Source
Code

RISC-V
Binary

riscv-gcc

Execute VCS SIM

VPD Test
Outputs

DVE GUI

C
Source
Code

gcc

Host
Binary

Execute Binaryfesvr -testrun

Test
Outputs

Test
Outputs

Figure 1: RISC-V Assembler and Compiler Toolchain

CS250 Tutorial 3 (Version 091110b), Fall 2010 2

Getting started

You can follow along through the tutorial yourself by typing in the commands marked with a ’%’
symbol at the shell prompt. To cut and paste commands from this tutorial into your bash shell
(and make sure bash ignores the ’%’ character) just use an alias to ”undefine” the ’%’ character
like this:

% alias %=""

All of the CS250 tutorials should be ran on an EECS Instructional machine. Please see the course
website for more information on the computing resources available for CS250 students. Once you
have logged into an EECS Instructional you will need to setup the CS250 toolflow with the following
commands.

% source ~cs250/tools/cs250.bashrc

To begin this tutorial you will need to copy RISC-V test assembly source files and C benchmark
source files from the course locker.

% mkdir tut3

% cd tut3

% TUTROOT=$PWD

% cp -R ~cs250/riscv-tests/ $TUTROOT

% cp -R ~cs250/riscv-bmarks/ $TUTROOT

Building RISC-V Test Assembly Programs

You will begin by assembling the riscv-v1 simple.S assembly test program. Take a look at the
assembly in riscv-tests/riscv-v1 simple.S and notice that this test only has two instructions.
You can use the following commands to generate a binary file, and an assembly dump file.

% cd $TUTROOT/riscv-tests

% riscv-gcc -O2 -G 0 -nostdlib -nostartfiles -T test.ld \

riscv-v1_simple.S -o riscv-v1_simple

% riscv-objdump --disassemble-all --disassemble-zeroes \

--section=.text --section=.data riscv-v1_simple > riscv-v1_simple.dump

Compare the original riscv-v1 simple.S file to the generated riscv-v1 simple.dump file. Using
a combination of the assembly file and the objdump file you can get a good feel for what the test
programs are supposed to do and what instructions are supposed to be executed.

You can use the makefile to automate the process of building RISC-V test assembly programs. The
following commands will clean the build directory and then build the binary files.

% rm -f riscv-v1_simple riscv-v1_simple.dump

% make riscv-v1_simple.dump

Verify that the corresponding RISC-V binary and objdump file were generated.

The riscv-v1 simple test program is located locally in the tut3/riscv-tests directory. Globally
installed RISC-V assembly test programs are located in ~cs250/install/riscv-tests which you
can use for lab 2 and 3 and projects. The following command will build all of the assembly tests.

CS250 Tutorial 3 (Version 091110b), Fall 2010 3

% make

Running RISC-V Test Assembly Programs on the ISA Simulator

Now run your compiled RISC-V binary on the RISC-V ISA simulator.

% cd $TUTROOT/riscv-tests

% fesvr -testrun riscv-v1_simple

*** PASSED ***

In order to see more detailed trace of the run, you can use the interactive mode with a d option.

% cd $TUTROOT/riscv-tests

% fesvr -testrun -d riscv-v1_simple

:<enter>

core 0: 0x0000000000000000 (0xec100001) move v0,v0

:<enter>

core 0: 0x0000000000000004 (0xfc185000) mtpcr v0,$cr16

:*** PASSED ***

% fesvr -testrun -d riscv-v1_simple

:while tohost 0 0

*** PASSED ***

% fesvr -testrun -d riscv-v1_simple

:<enter>

core 0: 0x0000000000000000 (0xec100001) move v0,v0

:reg 0 0

0x0000000000000000

:mem 0

0xfc185000ec100001

:while tohost 0 0

:*** PASSED ***

You can see the cycle count, pc, instruction, register dump, memory dump, and the disassembled
instruction. The first register of the instruction mtpcr tells you whether or not the test passed or
not. Number 1 is used to indicate that the test passed, while the number bigger than 1 points
you to the failed testcase number. You can also use the automated makefile to run through all the
binaries.

% cd $TUTROOT/riscv-tests

% make run

...

[PASSED] riscv-v1_addiu.out

[PASSED] riscv-v1_bne.out

[PASSED] riscv-v1_simple.out

[PASSED] riscv-v1_lw.out

[PASSED] riscv-v1_sw.out

[PASSED] riscv-v2_addiu.out

[PASSED] riscv-v2_addu.out

CS250 Tutorial 3 (Version 091110b), Fall 2010 4

[PASSED] riscv-v2_andi.out

...

[PASSED] riscv-v2_xor.out

Writing RISC-V Test Assembly Programs

Take a look at test macro.h. You can see helper macros which are used in various test assembly
programs. Brief explanation of each macro follows.

• TEST RISCV BEGIN - This macro defines things that need to be included at the beginning of
the test.

• TEST RISCV END - This macro defines things that need to be included at the end of the test.

• TEST CASE(testnum,testreg,correctval,code...)- This macro defines a test case. Runs
the code, and loads testnum to register $x28. Then checks if the value of testreg is
correctval. If not, the program will jump to fail which is defined in TEST PASSFAIL.

• TEST INSERT NOPS [0-10]- This macro defines nops. The number in macro the indicates
the number of nops to be inserted.

• TEST IMM OP(testnum,inst,result,val1,imm)- Basic test for immediate instructions. Loads
val1 to $x1, executes inst $x3,$x1,imm and checks if the result and $x3 match.

• TEST IMM SRC1 EQ DEST(testnum,inst,result,val1,imm)- Similar test to TEST IMM OP, though,
executes inst $x1,$x1,imm and checks if the result and $x1 match.

• TEST IMM DEST BYPASS(testnum,nop cycles,inst,result,val1,imm)- Destination regis-
ter bypass test for immediate instructions. Loads val1 to $x1, executes inst $x3,$x1,imm

then reads $x3 from the next instruction which is separated by nop cycles.

• TEST IMM SRC1 BYPASS(testnum,nop cycles,inst,result,val1,imm)- Source register by-
pass test for immediate instructions. Loads val1 to $x1, waits for nop cycles, then executes
the instruction, and checks.

• TEST RR OP(testnum,inst,result,val1,val2)- Basic test for register register instructions.
Loads val1 to $x1, val2 to $x2, executes inst $x3,$x1,$x2 and checks if the result and
$x3 match.

• TEST RR SRC1 EQ DEST(testnum,inst,result,val1,val2)- Similar test to TEST RR OP, though,
executes inst $x1,$x1,$x2 and checks if the result and $x1 match.

• TEST RR SRC2 EQ DEST(testnum,inst,result,val1,val2)- Similar test to TEST RR OP, though,
executes inst $x2,$x1,$x2 and checks if the result and $x2 match.

• TEST RR SRC12 EQ DEST(testnum,inst,result,val1)- Similar test to TEST RR OP, though,
loads val1 to $x1, executes inst $x1,$x1,$x1 and checks if the result and $x1 match.

• TEST RR DEST BYPASS(testnum,nop cycles,inst,result,val1,val2)- Destination regis-
ter bypass test for register register instructions. Loads val1 to $x1, val2 to $x2, executes inst
$x3,$x1,$x2 then reads $x3 from the next instruction which is separated by nop cycles.

• TEST RR SRC12 BYPASS(testnum,src1 nops,src2 nops,inst,result,val1,val2)- Source
register bypass test for register register instructions. Loads val1 to $x1, waits src1 nops,
loads val2 to $x2, waits src2 nops, then executes instruction, and checks.

• TEST RR SRC21 BYPASS(testnum,src nops,src2 nops,inst,result,val1,val2)- Similar to
TEST RR SRC12 BYPASS, though, loads val2 to $x2 before loading val1 to $x1.

CS250 Tutorial 3 (Version 091110b), Fall 2010 5

• TEST LD OP(testnum,inst,result,offset,base)- Basic test for load instructions. Loads
base to $x1, executes inst $x3,offset($x1) and checks if the result and $x3 match.

• TEST ST OP(testnum,load inst,store inst,result,offset,base)- Basic test for store in-
structions. Loads base to $x1, result to $x2, executes store inst $x2,offset($x1) and
load inst $x3,offset($x1) and checks if the result and $x3 match.

• TEST LD DEST BYPASS(testnum,nop cycles,inst,result,offset,base)- Destination reg-
ister bypass test for load instructions. Loads base to $x1, executes inst $x3,offset($x1),
then reads $x3 from the next instruction which is separated by nop cycles.

• TEST LD SRC1 BYPASS(testnum,nop cycles,inst,result,offset,base)- Source register by-
pass test for load instructions. Loads base to $x1, waits nop cycles, then executes instruc-
tion, and checks.

• TEST ST SRC12 BYPASS(testnum,src1 nops,src2 nops,load inst,store inst,results,offset,base)-

Source register bypass test for store instructions. Loads result to $x1, waits for src1 nops,
loads base to $x2, waits for src2 nops, executes the store instruction and the load instruction,
then checks if the result and $x3 match,

• TEST ST SRC21 BYPASS(testnum,src1 nops,src2 nops,load inst,store inst,results,offset,base)-

Similar to TEST ST SRC12 BYPASS, though, loads base to $x2 before loading result to $x1.

• TEST BR1 OP TAKEN(testnum,inst,val1)- Basic taken test for branch instructions with one
input. Loads val1 to $x1, then executes inst $x1,pass. If branch is not-taken the program
will jump to fail which is defined in TEST PASSFAIL.

• TEST BR1 OP NOTTAKEN(testnum,inst,val1)- Basic not-taken test for branch instructions
with one input. Loads val1 to $x1, then executes inst $x1,fail. If branch is taken the
program will jump to fail which is defined in TEST PASSFAIL.

• TEST BR1 SRC1 BYPASS(testnum,nop cycles,inst,val1)- Source register bypass test for
branch instructions with one input. Loads val1 to $x1, waits for nop cycles, then executes
branch instruction.

• TEST BR2 OP TAKEN(testnum,inst,val1,val2)- Basic taken test for branch instruction with
two inputs. Loads val1 to $x1, val2 to $x2, then executes inst $x1,$x2,pass. If branch
is not-taken the program will jump to fail which is defined in TEST PASSFAIL.

• TEST BR2 OP NOTTAKEN(testnum,inst,val1,val2)- Basic not-taken test for branch instruc-
tion with two inputs. Loads val1 to $x1, val2 to $x2, then executes inst $x1,$x2,fail.
If branch is taken the program will jump to fail which is defined in TEST PASSFAIL.

• TEST BR2 SRC12 BYPASS(testnum,src1 nops,src2 nops,inst,val1,val2)- Source register
bypass test for branch instruction with two inputs. Loads val1 to $x1, waits for src1 nops,
loads val2 to $x2, waits for src2 nops, executes branch instruction.

• TEST BR2 SRC21 BYPASS(testnum,src1 nops,src2 nops,inst,val1,val2)- This macro is
similar to TEST BR2 SRC12 BYPASS, though, loads val2 to $x2 before loading val1 to $x1.

• TEST JR SRC1 BYPASS(testnum,nop cycles,inst)- Loads an address to $x6, waits for nop cycles,
then executes jump register instruction.

• TEST JALR SRC1 BYPASS(testnum,nop cycles,inst)- Similar to TEST JR SRC1 BYPASS, though,
executes jump and link register instruction.

• TEST PASSFAIL - This macro defines what do to when success or fail. RISC-V v2 defines this
macro using mtpcr.

• SET STATS(enable)- This macro stimulates the test harness to turn logging on/off.

Open $TUTROOT/riscv-test/riscv-v2 addu.S to see how the macros are used.

CS250 Tutorial 3 (Version 091110b), Fall 2010 6

#include "test_macros.h"

TEST_RISCV_BEGIN

SET_STATS(1)

#---

Arithmetic tests

#---

TEST_RR_OP(2, addu, 0x00000000, 0x00000000, 0x00000000);

TEST_RR_OP(3, addu, 0x00000002, 0x00000001, 0x00000001);

TEST_RR_OP(4, addu, 0x0000000a, 0x00000003, 0x00000007);

TEST_RR_OP(5, addu, 0xffff8000, 0x00000000, 0xffff8000);

TEST_RR_OP(6, addu, 0x80000000, 0x80000000, 0x00000000);

TEST_RR_OP(7, addu, 0x7fff8000, 0x80000000, 0xffff8000);

TEST_RR_OP(8, addu, 0x00007fff, 0x00000000, 0x00007fff);

TEST_RR_OP(9, addu, 0x7fffffff, 0x7fffffff, 0x00000000);

TEST_RR_OP(10, addu, 0x80007ffe, 0x7fffffff, 0x00007fff);

TEST_RR_OP(11, addu, 0x80007fff, 0x80000000, 0x00007fff);

TEST_RR_OP(12, addu, 0x7fff7fff, 0x7fffffff, 0xffff8000);

TEST_RR_OP(13, addu, 0xffffffff, 0x00000000, 0xffffffff);

TEST_RR_OP(14, addu, 0x00000000, 0xffffffff, 0x00000001);

TEST_RR_OP(15, addu, 0xfffffffe, 0xffffffff, 0xffffffff);

#---

Source/Destination tests

#---

TEST_RR_SRC1_EQ_DEST(16, addu, 24, 13, 11);

TEST_RR_SRC2_EQ_DEST(17, addu, 25, 14, 11);

TEST_RR_SRC12_EQ_DEST(18, addu, 26, 13);

#---

Bypassing tests

#---

TEST_RR_DEST_BYPASS(19, 0, addu, 24, 13, 11);

TEST_RR_DEST_BYPASS(20, 1, addu, 25, 14, 11);

TEST_RR_DEST_BYPASS(21, 2, addu, 26, 15, 11);

TEST_RR_SRC12_BYPASS(22, 0, 0, addu, 24, 13, 11);

TEST_RR_SRC12_BYPASS(23, 0, 1, addu, 25, 14, 11);

TEST_RR_SRC12_BYPASS(24, 0, 2, addu, 26, 15, 11);

TEST_RR_SRC12_BYPASS(25, 1, 0, addu, 24, 13, 11);

CS250 Tutorial 3 (Version 091110b), Fall 2010 7

TEST_RR_SRC12_BYPASS(26, 1, 1, addu, 25, 14, 11);

TEST_RR_SRC12_BYPASS(27, 2, 0, addu, 26, 15, 11);

TEST_RR_SRC21_BYPASS(28, 0, 0, addu, 24, 13, 11);

TEST_RR_SRC21_BYPASS(29, 0, 1, addu, 25, 14, 11);

TEST_RR_SRC21_BYPASS(30, 0, 2, addu, 26, 15, 11);

TEST_RR_SRC21_BYPASS(31, 1, 0, addu, 24, 13, 11);

TEST_RR_SRC21_BYPASS(32, 1, 1, addu, 25, 14, 11);

TEST_RR_SRC21_BYPASS(33, 2, 0, addu, 26, 15, 11);

SET_STATS(0)

TEST_PASSFAIL

TEST_RISCV_END

Building RISC-V C Benchmark Programs

Go ahead and build the RISC-V binary and the corresponding object dump file for the quicksort
benchmark.

% cd $TUTROOT/riscv-bmarks

% riscv-gcc -mabi=32 -O2 -G 0 -nostdlib -nostartfiles -DPREALLOCATE=1 -DHOST_DEBUG=0 \

-c -I./qsort qsort/qsort_main.c -o qsort_main.o

% riscv-gcc -mabi=32 -T ./stuff/test.ld qsort_main.o -o qsort.riscv

% riscv-objdump --disassemble-all --disassemble-zeroes \

--section=.text --section=.data qsort.riscv > qsort.riscv.dump

Search for symbol sort in qsort.riscv.dump. You can see how the compiler transformed the C
sort function into instructions.

For debugging purposes, you might want to compile your code natively. There is no reason why
you can’t do that because the benchmark is written in C. However, there are some RISC-V specific
instructions embedded in the benchmark, for example, mtpcr instruction would not run on an x86
machine. Take a close look at qsort main.c. RISC-V specific things are already wrapped by
HOST DEBUG. You just need to define HOST DEBUG to 1 when compiling.

% gcc -DPREALLOCATE=0 -DHOST_DEBUG=1 ./qsort/qsort_main.c -o qsort.host

You can use the makefile to automate build process for RISC-V binaries. There are globally installed
RISC-V C benchmarks located in ~cs250/install/riscv-bmarks which are already compiled for
lab 2 and 3.

% cd $TUTROOT/riscv-bmarks

% make

Running RISC-V C Benchmark Programs on the ISA Simulator

Now run the compiled benchmarks on the RISC-V ISA simulator. Go ahead an try the automated
run as well.

CS250 Tutorial 3 (Version 091110b), Fall 2010 8

% cd $TUTROOT/riscv-bmarks

% fesvr -testrun qsort.riscv

*** PASSED ***

% fesvr -testrun -d qsort.riscv

:<enter>

core 0: 0x0000000000000000 (0xe3d00020) lui sp,0x20

:<enter>

core 0: 0x0000000000000004 (0xc80001c8) jal 0x0000000000000390

:<enter>

core 0: 0x0000000000000390 (0xe2400000) lui a1,0x0

:<enter>

core 0: 0x0000000000000394 (0xedde8fe8) addiw sp,sp,-24

:<enter>

core 0: 0x0000000000000398 (0xec4204c0) addiw a1,a1,1216

:<enter>

core 0: 0x000000000000039c (0xe83040fa) li a0,0xfa

:<enter>

core 0: 0x00000000000003a0 (0xf3fea014) sw ra,20(sp)

:<enter>

core 0: 0x00000000000003a4 (0xc80000b4) jal 0x0000000000000168

:<enter>

core 0: 0x0000000000000168 (0xedde8f38) addiw sp,sp,-200

:while tohost 0 0

:*** PASSED ***

% cd $TUTROOT/riscv-bmarks

% make run-riscv

...

[PASSED] median.riscv.out

[PASSED] qsort.riscv.out

[PASSED] towers.riscv.out

[PASSED] vvadd.riscv.out

You can also run the benchmark which is compiled natively. The native run is automated as well.

% cd $TUTROOT/riscv-bmarks

% ./qsort.host

..

979 979 981 985 985 989 989 997 997 998

*** PASSED ***

% cd $TUTROOT/riscv-bmarks

% make run-host

...

[PASSED] median.host.out

[PASSED] qsort.host.out

[PASSED] towers.host.out

[PASSED] vvadd.host.out

CS250 Tutorial 3 (Version 091110b), Fall 2010 9

Writing RISC-V C Benchmark Programs

Writing benchmark programs for RISC-V is similar with writing plain C programs. However when
you are coding, keep in mind that you also want to test the code natively. Try to guard your
RISC-V specific parts with a macro named HOST DEBUG. Another thing to keep in mind is that
since you are running the compiled code on the RISC-V v2 processor, some instructions generated
by the compiler might not be in the RISC-V v2 ISA. Keep your memory accesses aligned by 4
bytes, and avoid arithmetic that is not defined in the ISA. Try to write your own function that
emulates the functionality. For example, write a multiply function which only uses adds and shifts.
Then call the multiply function whenever you need to do a multiplication. Before you test your
program on the processor, always try to verify the compiled binary against the ISA simulator first!

Review

The following sequence of command will setup the RISC-V toolchain, copy the source files, build
the binaries, run all tests, and report the results.

% source ~cs250/tools/cs250.bashrc

% mkdir tut3

% cd tut3

% TUTROOT=$PWD

% cp -R ~cs250/riscv-tests/ $TUTROOT

% cp -R ~cs250/riscv-bmarks/ $TUTROOT

% cd $TUTROOT/riscv-tests

% make run

% cd $TUTROOT/riscv-bmarks

% make run-host

% make run-riscv

Acknowledgements

Many people have contributed to versions of this tutorial over the years. The tutorial was origi-
nally developed for CS250 VLSI Systems Design course at University of California at Berkeley by
Yunsup Lee. Contributors include: Krste Asanović, Christopher Batten, John Lazzaro, and John
Wawrzynek. Versions of this tutorial have been used in the following courses:

• CS250 VLSI Systems Design (2009-2010) - University of California at Berkeley

• CSE291 Manycore System Design (2009) - University of California at San Diego

