
Simulating Verilog RTL using Synopsys VCS

CS250 Tutorial 4 (Version 091209a)
September 12, 2010

Yunsup Lee

In this tutorial you will gain experience using Synopsys VCS to compile cycle-accurate executable
simulators from Verilog RTL. You will also learn how to use the Synopsys Waveform viewer to
trace the various signals in your design. Figure 1 illustrates the basic VCS toolflow and RISC-V
toolchain. For more information about the RISC-V toolchain consult Tutorial 3: Build, Run, and
Write RISC-V Programs.

VCS takes a set of Verilog files as input and produces a simulator. When you execute the simulator
you need some way to observe your design so that you can measure its performance and verify that it
is working correctly. There are two primary ways to observe your design: (1) you can use $display
statements in your Verilog RTL to output textual trace information, or (2) you can instruct the
simulator to automatically write transition information about each signal in your design to a file.
There is standard text format for this type of signal transition trace information called the Value
Change Dump format (VCD). Unfortunately, these textual trace files can become very large very
quickly, so Synopsys uses a proprietary compressed binary trace format called VCD Plus (VPD).
You can view VPD files using the Synopsys waveform viewer called Discovery Visual Environment
(DVE).

Verilog
Source
(RTL)

VCS

RTL
Sim

Execute SIM

VPD Test
Outputs

DVE GUI

ASM
Source
Code

RISC-V
Binary

RISC-V toolchain

C
Source
Code

Verilog
Library
(RTL)

Figure 1: VCS Toolflow and RISC-V Assembler Toolchain

CS250 Tutorial 4 (Version 091209a), Fall 2010 2

You will be using a simple unpipelined RISC-V v1 processor as your design example for this tutorial,
and thus you will also learn how to build and run test codes on the processor simulator. Figure 2
shows the block diagram for the example processor. Figure 1 shows the RISC-V toolchain which
starts with an RISC-V assembly file and generates a binary file suitable to run on the cycle-accurate
simulator. This tutorial assumes you are familiar with the RISC-V ISA. For more information please
consult the RISC-V Processor Specification.

+4

Instruction
Mem Reg

File

Sign
Extend

Decoder

>>1

Cmp

Data Mem

ir[24:20]

branch
pc+4

pc
_s

el

rd0
rd1 Add

Control
Signals

eq?

w
b_

se
l

Reg
File

ir[
24

:2
0]

rf_
w

en

va
l

rw

PC

tohost
testrig_tohost

tohost_en

va
l

op
0

op
1

addr
wdata

rdata

ir[19:15]

ir[11:0]

Figure 2: Block diagram for Unpipelined RISC-V v1 Processor

The following documentation is located in the course locker ~cs250/manuals and provides addi-
tional information about VCS, DVE, and Verilog.

• vcs-user-guide.pdf - VCS User Guide

• vcs-quick-reference.pdf - VCS Quick Reference

• vcs dve-user-guide.pdf - Discovery Visual Environment User Guide

• vcs ucli-user-guide.pdf - Unified Command Line Interface User Guide

• ieee-std-1364-1995-verilog.pdf - Language specification for the original Verilog-1995

• ieee-std-1364-2001-verilog.pdf - Language specification for Verilog-2001

• ieee-std-1364-2005-verilog.pdf - Language specification for Verilog-2005

• ieee-std-1364.1-2002-verilog-synthesis.pdf - Standard for Verilog Register Transfer
Level Synthesis

• ieee-std-1800-2005-sysverilog.pdf - Language specification for the original SystemVerilog-
2005

• ieee-std-1800-2009-sysverilog.pdf - Language specification for SystemVerilog-2009

CS250 Tutorial 4 (Version 091209a), Fall 2010 3

Getting started

You can follow along through the tutorial yourself by typing in the commands marked with a ’%’
symbol at the shell prompt. To cut and paste commands from this tutorial into your bash shell
(and make sure bash ignores the ’%’ character) just use an alias to ”undefine” the ’%’ character
like this:

% alias %=""

All of the CS250 tutorials should be ran on an EECS Instructional machine. Please see the course
website for more information on the computing resources available for CS250 students. Once you
have logged into an EECS Instructional you will need to setup the CS250 toolflow with the following
commands.

% source ~cs250/tools/cs250.bashrc

For this tutorial you will be using an unpipelined RISC-V v1 processor as your example RTL design.
Create a working directory and copy files from the course locker using the following commands.

% mkdir tut4

% cd tut4

% TUTROOT=$PWD

% cp -R ~cs250/examples/v-riscv-v1-1stage/* $TUTROOT

Before starting, take a look at the subdirectories in the project directory. All of your projects will
have a similar structure. Source RTL should be placed in the src directory and test input files
should be placed in the riscv-tests directory. The build directory will contain all generated
content including simulators, synthesized gate-level Verilog, and final layout. In this course you
will always try to keep generated content separate from your source RTL. This keeps your project
directories well organized, and helps prevent you from unintentionally modifying your source RTL.
There are subdirectories in the build directory for each major step in the CS250 toolflow. These
subdirectories will contain scripts and configuration files necessary for running the tools required
for that step in the toolflow. For example, the build/vcs-sim-rtl directory contains a makefile
which can build Verilog simulators and run tests on these simulators. For more information, please
consult Tutorial 2: Bits and Pieces of CS250’s toolflow. You should browse the source code for the
processor in src to become familiar with the design. The csrc directory contains Direct C source
files. These C source files are used in the Verilog test harness to simulate memory, parse and load
ELF files. Direct C is a very convenient way to glue Verilog simulation with C functions, which
will be used through out the course. Please refer to the VCS user guide chapter 19 (C Language
Interface) for more information on Direct C.

Compiling the Simulator

In this section you will first see how to run VCS from the command line, and then you will see how
to automate the process using a makefile. To build the simulator you need to run the vcs compiler
with the appropriate command line arguments and a list of input Verilog files.

CS250 Tutorial 4 (Version 091209a), Fall 2010 4

% cd $TUTROOT/build/vcs-sim-rtl

% vcs -full64 -PP +lint=all,noVCDE +v2k -timescale=1ns/10ps \

+vc+list -CC "-I$VCS_HOME/include" \

+define+CLOCK_PERIOD=1.25 \

+define+IMEM_DELAY=0.4 \

+define+DMEM_DELAY=0.4 \

../../src/defCommon.vh \

../../src/riscvInst.vh \

../../src/riscvConst.vh \

../../src/riscvProcCtrl.v \

../../src/riscvProcDpathRegfile.v \

../../src/riscvProcDpath.v \

../../src/riscvProc.v \

../../src/riscvTestHarness.v \

../../csrc/elf.cc \

../../csrc/memif.cc \

../../csrc/main.cc \

By default, VCS generates a simulator named simv. The -full64 command line argument makes
you use the 64-bit version. -PP command line argument turns on support for using the VPD trace
output format. The +lint=all,noVCDE argument turns on Verilog warnings except the VCDE
warning. Since it is relatively easy to write legal Verilog code which is probably functionally
incorrect, you will always want to use this argument. For example, VCS will warn you if you
connect nets with different bitwidths or forget to wire up a port. Always try to eliminate all VCS
compilation errors and warnings. Since you will be making use of various Verilog-2001 language
features, you need to set the +v2k command line option so that VCS will correctly handle these
new constructs. Verilog allows a designer to specify how the abstract delay units in their design
map into real time units using the ‘timescale compiler directive. To make it easy to change this
parameter you will specify it on the command line instead of in the Verilog source. +vc+list -CC

"-I$VCS HOME/include" arguments let you compile Direct C. After these arguments you list the
Verilog source files and Direct C source files. After running this command, you should see text
output indicating that VCS is parsing the Verilog files and compiling the modules. Notice that
VCS actually generates ANSI C code which is then compiled using gcc. When VCS is finished you
should see a simv executable in the build directory.

Typing in all the Verilog source files on the command line can be very tedious, so you will use
makefiles to help automate the process of building your simulators. The following commands will
first delete the simulator you previously built, and then regenerate it using the makefile.

% cd $TUTROOT/build/vcs-sim-rtl

% rm -f simv

% make

The make program uses the Makefile located in the current working directory to generate the file
given on the command line. Take a look at the Makefile located in build/vcs-sim-rtl. Makefiles
are made up of variable assignments and a list of rules in the following form.

CS250 Tutorial 4 (Version 091209a), Fall 2010 5

target : dependency1 dependency2 ... dependencyN

command1

command2

...

commandN

Each rule has three parts: a target, a list of dependencies, and a list of commands. When a desired
target file is “out of date” or does not exist, then the make program will run the list of commands
to generate the target file. To determine if a file is “out of date”, the make program compares
the modification times of the target file to the modification times of the files in the dependency
list. If any dependency is newer than the target file, make will regenerate the target file. Locate
in the makefile where the Verilog source files are defined. Find the rule which builds simv. More
information about makefiles is online at http://www.gnu.org/software/make/manual.

Not all make targets need to be actual files. For example, the clean target will remove all gener-
ated content from the current working directory. So the following commands will first delete the
generated simulator and then rebuild it.

% cd $TUTROOT/build/vcs-sim-rtl

% make clean

% make simv

Building RISC-V Test Assembly Programs

A test program called riscv-v1 example.S is located locally in the riscv-tests directory. If you
want to add your own test programs, you would add them to this directory. There are additional
globally installed RISC-V assembly test programs located in ~cs250/install/riscv-tests which
you can use for your lab assignments and projects. The following command will build all of the
local tests and run it on the RISC-V v2 ISA simulator.

% cd $TUTROOT/riscv-tests

% make

% make run

Please refer to Tutorial 3: Build, Run, and Write RISC-V Programs for more information about
building, running, and writing assembly test programs.

Running the Simulator and Viewing Trace Output

Now that you have learned how to build the simulator and how to build RISC-V test assembly
programs, you will learn how to execute RISC-V test assembly programs on the simulator. The
following command runs the local riscv-v1 example.S test program on the simulator.

% cd $TUTROOT/build/vcs-sim-rtl

% ./simv +exe=$TUTROOT/riscv-tests/riscv-v1_example

Try running a globally installed RISC-V test assembly program.

CS250 Tutorial 4 (Version 091209a), Fall 2010 6

% cd $TUTROOT/build/vcs-sim-rtl

% ./simv +exe=$UCB_VLSI_HOME/install/riscv-tests/riscv-v1_addiw

You should see some textual trace output showing the state of the processor on each cycle. The
trace output includes the cycle number, reset signal, pc, instruction bits, register file accesses,
testrig tohost signal, and the disassembled instruction. The test program does a series of loads and
verifies that the loaded data is correct. After running all the tests, the program writes a one into
the tohost coprocessor register to indicate that all tests have passed. If any test fails, the program
will write a number greater than one into the tohost register. The test harness waits until the
testrig tohost signal is non-zero and displays either PASSED or FAILED as appropriate.

In addition to the textual output, you should see a vcdplus.vpd in your build directory. Use the
following command to start the Synopsys Discovery Visual Environment (DVE) waveform viewer
and open the generated VPD file.

% dve -vpd vcdplus.vpd &

Figure 3 shows the DVE Hierarchy window. You can use this window to browse the design’s module
hierarchy. Choose Window > New > Wave View to open a waveform viewer (see Figure 4). To
add signals to the waveform window you can select them in the Hierarchy window and then right
click to choose Add to Waves > Recent.

Figure 3: DVE Module Hierarchy Window

Add the following signals to the waveform viewer.

CS250 Tutorial 4 (Version 091209a), Fall 2010 7

Figure 4: DVE Waveform Window

• riscvTestHarness.clk

• riscvTestHarness.proc.dpath.ctrl sel pc

• riscvTestHarness.proc.dpath.pc reg

• riscvTestHarness.proc.dpath.raddra

• riscvTestHarness.proc.dpath.rdataa

• riscvTestHarness.proc.dpath.raddrb

• riscvTestHarness.proc.dpath.rdatab

• riscvTestHarness.proc.dpath.ctrl wen

• riscvTestHarness.proc.dpath.waddr

• riscvTestHarness.proc.dpath.wdata

• riscvTestHarness.dasm.minidasm

• riscvTestHarness.testrig tohost

The dasm module is a special tracing module which includes Verilog behavioral code to disassemble
instructions. The minidasm signal is a short text string which is useful for identifying which
instruction is executing during each cycle. To display this signal as a string instead of a hex
number, right click on the signal in the waveform viewer. Choose Set Radix > ASCII from the
popup menu. You should now see the instruction type in the waveform window. Use Zoom > Zoom
Out to zoom out so you can see more of the trace at once. Figure 5 shows the waveforms in more
detail. You should be able to identify the addiw instructions correctly loading the register file with
various constants and the addiw instructions writing the correct result into the register file. The
ctrl sel pc control signal should remain low until the very end of the program when the code
branches to the pass code where it sets the tohost register to one.

CS250 Tutorial 4 (Version 091209a), Fall 2010 8

Figure 5: Waveforms for unpipelined RISC-V v1 processor executing riscv-v1 addiw

The Verilog test harness provides two optional command line arguments in addition to the required
+exe argument as shown below:

simv +exe=<vmh-filename>

+max-cycles=<integer>

+verbose=<0|1>

By default, the harness will run for 2,000 cycles. This limit helps prevent bugs in test programs
or the RTL from causing the simulator to run forever. When there is a timeout, the harness
will display *** FAILED *** timeout. The +max-cycles argument allows you to increase this
limit and is required for longer running programs. If the +verify argument is set to one (the
default), then the harness will execute in “verification mode”. This means that the harness waits
until testrig tohost is non-zero and then outputs either PASSED or FAILED as appropriate. If
the +verify argument is set to zero, then the harness will execute in “performance mode”. This
means that the harness waits until testrig tohost is non-zero and then it outputs a collection of
statistics. You should use “verification mode” for running test programs which verify the correctness
of your processor, and you should use “performance mode” for running benchmarks to evaluate
the performance of your processor. Try running the the riscv-v1 addiw program in “performance
mode”. You should observe that the Instructions per Cycle (IPC) is one. This is to be expected
since the processor you are evaluating is an unpipelined processor with no stalls.

The following makefile target will build all of the test programs, run them on the processor simu-
lator, and output a summary of the results.

% make run

CS250 Tutorial 4 (Version 091209a), Fall 2010 9

Review

The following sequence of commands will setup the CS250 toolflow and the RISC-V toolchain,
checkout the RISC-V v1 processor example, build local RISC-V test assembly programs, build the
simulator, run all assembly tests, and report the results.

% source ~cs250/tools/cs250.bashrc

% mkdir tut4

% cd tut4

% TUTROOT=$PWD

% cp -R ~cs250/examples/v-riscv-v1-1stage/* $TUTROOT

% cd $TUTROOT/riscv-tests

% make

% make run

% cd $TUTROOT/build/vcs-sim-rtl

% make

% make run

Acknowledgements

Many people have contributed to versions of this tutorial over the years. The tutorial was origi-
nally developed for CS250 VLSI Systems Design course at University of California at Berkeley by
Yunsup Lee. Contributors include: Krste Asanović, Christopher Batten, John Lazzaro, and John
Wawrzynek. Versions of this tutorial have been used in the following courses:

• CS250 VLSI Systems Design (2009-2010) - University of California at Berkeley

• 6.375 Complex Digital Systems (2005-2009) - Massachusetts Institute of Technology

• CSE291 Manycore System Design (2009) - University of California at San Diego

