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In this tutorial you will gain experience using Synopsys Design Compiler (DC) to perform hardware
synthesis. A synthesis tool takes an RTL hardware description and a standard cell library as input
and produces a gate-level netlist as output. The resulting gate-level netlist is a completely structural
description with standard cells only at the leaves of the design. Internally, a synthesis tool performs
many steps including high-level RTL optimizations, RTL to unoptimized boolean logic, technology
independent optimizations, and finally technology mapping to the available standard cells. Good
RTL designers will familiarize themselves with the target standard cell library so that they can
develop an intuition on how their RTL will be synthesized into gates. In this tutorial you will use
Synopsys Design Compiler to elaborate RTL, set optimization constraints, synthesize to gates, and
prepare various area and timing reports. You will also learn how to read the various DC text reports
and how to use the graphical Synopsys Design Vision tool to visualize the synthesized design.

Synopsys provides a library called Design Ware which includes highly optimized RTL for arithmetic
building blocks. DC can automatically determine when to use Design Ware components and it can
then efficiently synthesize these components into gate-level implementations. In this tutorial you
will learn more about what Design Ware components are available and how to best encourage DC
to use them.

The following documentation is located in the course locker (~cs250/manuals) and provides ad-
ditional information about Design Compiler, Design Vision, the Design Ware libraries, and the
Synopsys 90nm Standard Cell Library.

• dc-user-guide.pdf - Design Compiler User Guide

• dc-quick-reference.pdf - Design Compiler Quick Reference

• dc-user-guide-cli.pdf - Design Compiler Command-Line Interface Guide

• dc-user-guide-lp.pdf - Synopsys Low-Power Flow User Guide

• dc-user-guide-verilog.pdf - HDL Compiler for Verilog User Guide

• dc-user-guide-sysverilog.pdf - HDL Compiler for SystemVerilog User Guide

• dc-user-guide-tcl.pdf - Using Tcl With Synopsys Tools

• dc-user-guide-tco.pdf - Synopsys Timing Constraints and Optimization User Guide

• dc-reference-manual-opt.pdf - Design Compiler Optimization Reference Manual

• dc-reference-manual-rt.pdf - Design Compiler Register Retiming Reference Manual

• dc-application-note-sdc.pdf - Synopsys Design Constraints Format Application Note

• dc dv-user-guide.pdf - Design Vision User Guide

• dc dv-tutorial.pdf - Design Compiler Tutorial Using Design Vision

• designware-intro.pdf - DesignWare Building Block IP Documentation Overview

• designware-user-guide.pdf - DesignWare Building Block IP

• designware-quick-reference.pdf - DesignWare Building Block IP Quick Reference

• designware-datasheets - Directory containing datasheets on each DW component

• synopsys-90nm-databook-stdcells.pdf - Digital Standard Cell Library Databook
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Getting started

You can follow along through the tutorial yourself by typing in the commands marked with a ’%’
symbol at the shell prompt. To cut and paste commands from this tutorial into your bash shell
(and make sure bash ignores the ’%’ character) just use an alias to ”undefine” the ’%’ character
like this:

% alias %=""

All of the CS250 tutorials should be ran on an EECS Instructional machine. Please see the course
website for more information on the computing resources available for CS250 students. Once you
have logged into an EECS Instructional you will need to setup the CS250 toolflow with the following
commands.

% source ~cs250/tools/cs250.bashrc

For this tutorial you will be using an unpipelined RISC-V v1 processor as your example RTL design.
Figure 1 shows the system diagram which is implemented by the example code.
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Figure 1: Block diagram for Unpipelined RISC-V v1 Processor

You should create a working directory and copy files from the course locker using the following
commands.

% mkdir tut5

% cd tut5

% TUTROOT=$PWD

% cp -R ~cs250/examples/v-riscv-v1-1stage/* $TUTROOT
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Before starting, take a look at the subdirectories in the project directory. When pushing designs
through the physical toolflow you will often refer to the core. The core module contains everything
which will be on-chip, while blocks outside the core are assume to be off-chip. For this tutorial
you are assuming that the processor and a combinational memory are located within the core. A
combinational memory means that the read address is specified at the beginning of the cycle, and
the read data returns during the same cycle. Building large combinational memories is relatively
inefficient. It is much more common to use synchronous memories. A synchronous memory means
that the read address is specified at the end of a cycle, and the read data returns during the
next cycle. From Figure 1 it should be clear that the unpipelined RISC-V v1 processor requires
combinational memories (or else it would turn into a four stage pipeline). For this tutorial you
will not be using a real combinational memory, but instead this combinational memory
will be simulated inside the test harness. Therefore, riscvProc will be the top module that
you will be pushing through the toolflow in this tutorial. In later tutorials, you will start using
synchronous on-chip SRAMs, and this case riscvCore will be the top module you will be pushing
through the toolflow. Figure 2 shows the relationship among these hierarchies in more detail. The
grey part depicts the test harness.

riscvTestHarness

riscvCore

riscvProc

Instruction
Memory

Data
Memory

comb0_delay

imem_access_delay

dmem_access_delay

comb1_delay

clock period

Figure 2: Setup for the unpipelined RISC-V v1 Core

In order to synthesize the processor correctly with the two combinational memory, you need to
specify the input and output delays carefully. The input and output delays are marked on one clock
period in figure 2. The output delay of the instruction request signals from the processor (input
signals to the instruction memory) should be specified as clock period - comb0 delay. The input delay
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of the instruction response signals to the processor (output signals from the instruction memory)
can be described as comb0 delay + imem access delay. The output delay of the data request signals
from the processor (input signals to the data memory) should be specified as dmem access delay
+ comb1 delay. The input delay of the data response signals to the processor (output signals from
the data memory) can be described as clock period - comb1 delay. These constants are specified in
build/Makefrag.

The build directory will also contain all generated content including simulators, synthesized gate-
level Verilog, and final layout. In this course you will always try to keep generated content separate
from your source RTL. This keeps your project directories well organized, and helps prevent you
from unintentionally modifying your source RTL. There are subdirectories in the build directory
for each major step in the CS250 toolflow. These subdirectories contain scripts and configuration
files for running the tools required for that step in the toolflow. For this tutorial you will work
exclusively in the dc-syn.

Synthesizing the Processor

You will begin by running several DC commands manually before learning how you can automate
the tool with scripts. DC can generate a large number of output files, so you will be running DC
within a build directory beneath dc-syn. Use the following commands to create a build directory
for DC and to start the DC shell. To cut and past commands from this lab into your Design
Compiler shell and make sure Design Compiler ignores the dc shell-topo> string, we will use an
alias to ”undefine” the dc shell-topo> string.

% cd $TUTROOT/build/dc-syn

% mkdir manual

% cd manual

% dc_shell-xg-t -64bit -topographical_mode

...

Initializing...

dc_shell-topo> alias "dc_shell-topo>" ""

You should be left at the DC shell prompt from which you can can execute various commands to
load in your design, specify constraints, synthesize your design, print reports, etc. You can get
more information about a specific command by entering man <command> at the dc shell prompt.
You will now execute some commands to setup your environment.

dc_shell-topo> set ucb_vlsi_home [getenv UCB_VLSI_HOME]

dc_shell-topo> set stdcells_home \

$ucb_vlsi_home/stdcells/synopsys-90nm/default

dc_shell-topo> set_app_var search_path \

"$stdcells_home/db $ucb_vlsi_home/install/vclib ../../../src"

dc_shell-topo> set_app_var target_library "cells.db"

dc_shell-topo> set_app_var synthetic_library "dw_foundation.sldb"

dc_shell-topo> set_app_var link_library "* $target_library $synthetic_library"

dc_shell-topo> set_app_var alib_library_analysis_path "$stdcells_home/alib"

dc_shell-topo> set_app_var mw_logic1_net "VDD"

dc_shell-topo> set_app_var mw_logic0_net "VSS"
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dc_shell-topo> create_mw_lib -technology $stdcells_home/techfile/techfile.tf \

-mw_reference_library $stdcells_home/mw/cells.mw "riscvProc_LIB"

dc_shell-topo> open_mw_lib "riscvProc_LIB"

dc_shell-topo> check_library

dc_shell-topo> set_tlu_plus_file \

-max_tluplus $stdcells_home/tluplus/max.tluplus \

-min_tluplus $stdcells_home/tluplus/min.tluplus \

-tech2itf_map $stdcells_home/techfile/tech2itf.map

dc_shell-topo> check_tlu_plus_files

dc_shell-topo> define_design_lib WORK -path "./work"

These commands point to your Verilog source directory, create a Synopsys work directory, and
point to the standard libraries you will be using for this class. The DB file contains timing/area
information for each standard cell, and the Milkyway library contains wireload models. DC will
use this information to try and optimize the synthesis process. You can now load your Verilog
design into Design Compiler with the analyze, elaborate, and link commands. Executing these
commands will result in a great deal of log output as the tool elaborates some Verilog constructs
and starts to infer some high-level components. Try executing the commands as follows.

dc_shell-topo> analyze -format verilog \

"defCommon.vh riscvInst.vh riscvConst.vh \

riscvProcCtrl.v riscvProcDpathRegfile.v riscvProcDpath.v \

riscvProc.v"

dc_shell-topo> elaborate "riscvProc"

dc_shell-topo> link

Take a closer look at the output during elaboration. DC will report all state inferences. This is a
good way to verify that latches and flip-flops are not being accidentally inferred. You should be
able to check that the only inferred state elements are the PC, the tohost register, a one-bit reset
register, and the register file. DC will also note information about inferred muxes. Figure 3 shows
a fragment from the elaboration output text. From this output you can see that DC is inferring
32-bit flip-flops for the register file and two 32 input 32-bit muxes for the register file read ports. See
the HDL Compiler for Verilog User Guide (dc-user-guide-verilog.pdf) for more information
on the output from the elaborate command and more generally how DC infers combinational and
sequential hardware elements.

After reading your design into DC you can use the check design command to check that the design
is consistent. A consistent design is one which does not contain any errors such as unconnected
ports, constant-valued ports, cells with no input or output pins, mismatches between a cell and its
reference, multiple driver nets, connection class violations, or recursive hierarchy definitions. You
will not be able to synthesize your design until you eliminate any errors. Many of these warning
are obviously not an issue, but it is still useful to skim through this output.

dc_shell-topo> check_design

Before you can synthesize your design, you must specify some constraints; most importantly you
must tell the tool your target clock period. The following commands tell the tool that the pin
named clk is the clock and that your desired clock period is 2.5 nanoseconds. You need to set the
clock period constraint carefully. If the period is unrealistically small, then the tools will spend
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in routine riscvProcDpathRegfile line 26 in file

’../../../src/riscvProcDpathRegfile.v’.

===============================================================================

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

===============================================================================

| registers_reg | Flip-flop | 32 | Y | N | N | N | N | N | N |

...

| registers_reg | Flip-flop | 32 | Y | N | N | N | N | N | N |

===============================================================================

Statistics for MUX_OPs

===================================================================

| block name/line | Inputs | Outputs | # sel inputs | MB |

===================================================================

| riscvProcDpathRegfile/22 | 32 | 32 | 5 | N |

| riscvProcDpathRegfile/23 | 32 | 32 | 5 | N |

===================================================================

Figure 3: Output from the Design Compiler elaborate command

forever trying to meet timing and ultimately fail. If the period is too large, then the tools will
have no trouble but you will get a very conservative implementation. You also need to specify the
input and output delays discussed in figure 2. For more information about constraints consult the
Synopsys Timing Constraints and Optimization User Guide (dc-user-guide-tco.pdf).

dc_shell-topo> create_clock clk -name ideal_clock1 -period 2.5

dc_shell-topo> set_output_delay -clock ideal_clock1 2.3 imemreq_bits_addr

dc_shell-topo> set_output_delay -clock ideal_clock1 2.3 imemreq_val

dc_shell-topo> set_input_delay -clock ideal_clock1 0.6 imemresp_bits_data

dc_shell-topo> set_output_delay -clock ideal_clock1 0.65 dmemreq_bits_rw

dc_shell-topo> set_output_delay -clock ideal_clock1 0.65 dmemreq_bits_addr

dc_shell-topo> set_output_delay -clock ideal_clock1 0.65 dmemreq_bits_data

dc_shell-topo> set_output_delay -clock ideal_clock1 0.65 dmemreq_val

dc_shell-topo> set_input_delay -clock ideal_clock1 2.25 dmemresp_bits_data

Now you are ready to use the compile ultra command to actually synthesize your design into
a gate-level netlist. -gate clock enables clock gating. -no autoungroup is specified in order to
preserve the hierarchy during synthesis or disable inter-module optimizations. With no options
given, compile ultra command optimizes across module boundaries. For more information on the
compile ultra command consult the Design Compiler User Guide (dc-user-guide.pdf) or use
man compile ultra at the DC shell prompt. Run the following command and take a look at the
output.

DC will attempt to synthesize your design while still meeting the constraints. DC considers two
types of constraints: user specified constraints and design rule constraints. User specified constraints
can be used to constrain the clock period (as you saw with the create clock command) but they
can also be used to constrain the arrival of certain input signals, the drive strength of the input
signals, and the capacitive load on the output signals. Design rule constraints are fixed constraints
which are specified by the standard cell library. For example, there are restrictions on the loads
specific gates can drive and on the transition times of certain pins. For more information consult
Synopsys Design Constraints Format Application Note (dc-application-note-sdc.pdf).
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dc_shell-topo> compile_ultra -gate_clock -no_autoungroup

The compile command will report how the design is being optimized. You should see DC performing
technology mapping, delay optimization, and area reduction. Figure 4 shows a fragment from the
compile output. Each line is an optimization pass. The area column is in units specific to the
standard cell library which is um2, but for now you should just use the area numbers as a relative
metric. The worst negative slack column shows how much room there is between the critical path
in your design and the clock constraint. Larger negative slack values are worse since this means
that your design is missing the desired clock frequency by a greater amount. Total negative slack
is the sum of all negative slack across all endpoints in the design - if this is a large negative number
it indicates that not only is the design not making timing, but it is possible that many paths are
too slow. If the total negative slack is a small negative number, then this indicates that only a
few paths are too slow. The design rule cost is a indication of how many cells violate one of the
standard cell library design rules constraints. Figure 4 shows that on the first iteration, the tool
makes timing but at a high area cost, so on the second iteration it optimizes area but this causes
the design to no longer meet timing. The tool continues to optimize until it meets the constraints.

...

ELAPSED WORST NEG TOTAL NEG DESIGN LEAKAGE

TIME AREA SLACK SLACK RULE COST ENDPOINT POWER

--------- --------- --------- --------- --------- ------------- ---------

0:00:25 56092.3 0.68 193.7 0.0 308556192.0000

Beginning Delay Optimization

----------------------------

0:00:28 51442.8 0.28 5.4 0.0 274241280.0000

0:00:28 51589.3 0.23 4.5 0.0 275486656.0000

0:00:28 51589.3 0.23 4.5 0.0 275486656.0000

0:00:33 52530.3 0.12 2.1 0.0 281122144.0000

0:00:33 52530.3 0.12 2.1 0.0 281122144.0000

0:00:35 54100.7 0.00 0.0 0.0 295563680.0000

0:00:35 54100.7 0.00 0.0 0.0 295563680.0000

0:00:35 54100.7 0.00 0.0 0.0 295563680.0000

...

Figure 4: Output from the Design Compiler compile ultra command

You can now use various commands to examine timing paths, display reports, and further optimize
your design. Entering in these commands by hand can be tedious and error prone, plus doing
so makes it difficult to reproduce a result. Thus you will mostly use TCL scripts to control the
tool. Even so, using the shell directly is useful for finding out more information about a specific
command or playing with various options.

Before continuing, exit the DC shell and delete your build directory with the following commands.

dc_shell-topo> exit

% cd $TUTROOT/build/dc-syn

% rm -rf manual
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Automating Synthesis with TCL Scripts and Makefiles

In this section you will examine how to use various TCL scripts and makefiles to automate the
synthesis process. There are a couple files you should take a close look in the build directory.

• Makefrag - Makefile fragment file which contains clock period

• dc-syn/Makefile - Makefile for driving synthesis with the TCL scripts

• dc-syn/rm dc scripts/dc.tcl - Primary TCL script which contains the DC commands

• dc-syn/rm dc scripts/find regs.tcl - TCL script which finds all reigsters

• dc-syn/rm setup/common setup.tcl - TCL fragment for various common variables

• dc-syn/rm setup/dc setup.tcl - TCL fragment for various library variables

• dc-syn/rm setup/dc setup filenames.tcl - TCL fragment for various filename variables

• dc-syn/constraints.tcl - User specified constraints

First take a look at the Makefrag file. This file contains the desired clock period. Notice that it
uses a shorter clock period (90% of the desired clock period) for synthesis in order to leave some
slack for place and route. Now open up the dc setup.tcl script. You will see that it sets up
several library variables, creates the search path, and instructs DC to use a work directory. The
first line of the dc setup.tcl script loads the make generated vars.tcl script. This script is
generated by the makefile and it contains variables which are defined by the makefile and used by
the TCL scripts. You will take a closer look at it in a moment. Now examine the dc.tcl script.
You will see many familiar commands which we executed by hand in the previous section. You
will also see some new commands. Take a closer look at the bottom of this TCL script where we
write out several text reports. Remember that you can get more information on any command by
using man <command> at the DC shell prompt. The constraints.tcl file contains various user
specified constraints. You specify that DC should assume that minimum sized inverters are driving
the inputs to the design and that the outputs must drive 4 fF of capacitance.

Now that you are more familiar with the various TCL scripts, you will see how to use the makefile to
drive synthesis. Look inside the makefile and identify where the Verilog sources and the C sources
are defined. Notice that the test harness is not included. You should only list those Verilog files
which are part of the processor; do not included non-synthesizable test harnesses modules. Also
notice that we must identify the toplevel Verilog module in the design, toplevel instance, and finally
the test harness module. The build rules in the makefile will create new build directories, copy the
TCL scripts into these build directories, and then run DC. Use the following make target to create
a new build directory.

% cd $TUTROOT/build/dc-syn

% make new-build-dir

You should now see a new build directory named build-<date> where <date> represents the time
and date. The current-dc symlink always points to the most recent build directory. If you look in-
side the build directory, you will see the common setup.tcl, dc setup.tcl, dc setup filenames.tcl,
dc.tcl, find regs.tcl and constraints.tcl scripts but you will also see an additional make generated vars.tcl

script. Various variables inside make generated vars.tcl are used to specify the search path,
which Verilog files to read in, which modules should be marked don’t touch, the toplevel Verilog
name, etc. After using make new-build-dir you can cd into the current-dc directory, start the
DC shell, and run DC commands by hand. For example, the following sequence will perform the
same steps as in the previous section.
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% cd $TUTROOT/build/dc-syn

% cd current-dc

% dc_shell-xg-t -64bit -topographical_mode

dc_shell-topo> alias "dc_shell-topo>" ""

dc_shell-topo> source dc_setup.tcl

dc_shell-topo> define_design_lib WORK -path ./work

dc_shell-topo> analyze -format verilog ${RTL_SOURCE_FILES}

dc_shell-topo> elaborate ${DESIGN_NAME}

dc_shell-topo> link

dc_shell-topo> source constraints.tcl

dc_shell-topo> compile_ultra -gate_clock -no_autoungroup

dc_shell-topo> exit

The new-build-dir make target is useful when you want to conveniently run through some DC
commands by hand to try them out. To completely automate your synthesis you can use the dc

make target (which is also the default make target). For example, the following commands will
automatically synthesize the design and save several text reports to the build directory.

% cd $TUTROOT/build/dc-syn

% make dc

You should see DC compiler start and then execute the commands located in the dc.tcl script.
Once synthesis is finished try running make dc again. The makefile will detect that nothing has
changed (i.e. the Verilog source files and DC scripts are the same) and so it does nothing. Edit
Makefrag and change the clock period constraint to 10 ns. Now use make dc to resynthesize the
design. Since you changed the clock period, make will correctly run DC again. Take a look at the
current contents of dc-syn.

% cd $TUTROOT/build/dc-syn

% ls -l

total 32

-rw-r--r-- 1 yunsup grad 5003 Sep 12 10:52 Makefile

drwxr-xr-x 7 yunsup grad 4096 Sep 12 11:12 build-dc-2010-09-12_11-11

drwxr-xr-x 7 yunsup grad 4096 Sep 12 11:14 build-dc-2010-09-12_11-13

-rw-r--r-- 1 yunsup grad 1712 Sep 12 10:52 constraints.tcl

lrwxrwxrwx 1 yunsup grad 25 Sep 12 11:13 current-dc -> build-dc-2010-09-12_11-13

drwxr-xr-x 2 yunsup grad 4096 Sep 12 10:52 rm_dc_scripts

drwxr-xr-x 2 yunsup grad 4096 Sep 12 10:52 rm_notes

drwxr-xr-x 2 yunsup grad 4096 Sep 12 10:52 rm_setup

Notice that the makefile does not overwrite build directories. It always creates new build directories.
This makes it easy to change your synthesis scripts or source Verilog, resynthesize your design, and
compare your results to previous designs. You can use symlinks to keep track of what various build
directories correspond to. For example, the following commands label the build directory which
corresponds to a 2.5 ns clock period constraint and the build directory which corresponds to a 10 ns
clock period constraint.

% cd $TUTROOT/build/dc-syn

% ln -s build-dc-2010-09-12_11-11 build-2.5ns

% ln -s build-dc-2010-09-12_11-13 build-10ns
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Every so often you should delete old build directories to save space. The make clean command will
delete all build directories so use it carefully. Sometimes you want to really force the makefile to
resynthesize the design but for some reason it may not work properly. To force a resynthesis without
doing a make clean simply remove the current symlink. For example, the following commands
will force a resynthesis without actually changing any of the source TCL scripts or Verilog.

% cd $TUTROOT/build/dc-syn

% rm -f current-dc

% make dc

Interpreting the Synthesized Gate-Level Netlist and Text Reports

In this section you will examine some of the output which our dc.tcl script generates. You will
initially focus on the contents of the build-2.5ns build directory. The primary output from the syn-
thesis scripts is the synthesized gate-level netlist which is contained in results/riscvProc.mapped.v.
Take a look at the gate-level netlist for the 2.5 ns clock constraint. Notice that the RTL module
hierarchy is preserved in the gate-level netlist since you did not flatten any part of your design.
Find the four two-input multiplexers in the gate-level netlist by searching for riscvProcDpathMux.
Although the same two-input mux was instantiated four times in the design (the PC mux, the
Adder operand muxes, and the writeback mux), DC has optimized each multiplexer differently.
Figure 5 shows the gate-level netlist for the synthesized multiplexers.

From the gate-level netlist you can determine that the tool synthesized different types of muxes. The
PC mux, operand 1 mux, and the write back mux used MUX21X1 standard cells with some buffers.Use
the databook for the Synopsys 90nm Standard Cell Library (synopsys-90nm-databook-stdcells.pdf)
to determine the function of the MUX21X1 standard cell. You should discover that this is a 2 input
1-bit mux cell. Notice that the pc mux used 32 MUX21X1 cells. In constrast, op 0 mux used a lot of
random standard cells. Looking back into figure 1, you can notice that one of the input operand
comes from register file. The tool has figured out that op 0 mux is on the critical path, and selected
a different architecture (a combinational reduction tree) to implement a mux. All input operands
of op 1 mux comes directly from the instruction, and therefore it changed less MUX21X1 standard
cells into a reduction tree.

In addition to the actual synthesized gate-level netlist, the dc.tcl also generates several reports.
Reports usually have the rpt filename suffix. The following is a list of the synthesis reports.

• reports/*.mapped.area.rpt - Area information for each module instance

• reports/*.mapped.clock gating.rpt - Clock gating information

• reports/*.mapped.power.rpt - Power information for each module instance

• reports/*.mapped.qor.rpt - QoR (Quality of Result) information and statistics

• reports/*.mapped.reference.rpt - Information on references

• reports/*.mapped.resources.rpt - Information on Design Ware components

• reports/*.mapped.timing.rpt - Contains critical timing paths

• log/dc.log - Log file of all output during DC run
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module riscvProcDpathMux_0 ( sel, in0, in1, out ); // pc mux

...

MUX21X1 U10 ( .IN1(in0[15]), .IN2(in1[15]), .S(n3), .Q(out[15]) );

MUX21X1 U11 ( .IN1(in0[16]), .IN2(in1[16]), .S(n3), .Q(out[16]) );

MUX21X1 U12 ( .IN1(in0[17]), .IN2(in1[17]), .S(n3), .Q(out[17]) );

MUX21X1 U13 ( .IN1(in0[18]), .IN2(in1[18]), .S(n3), .Q(out[18]) );

MUX21X1 U14 ( .IN1(in0[19]), .IN2(in1[19]), .S(n3), .Q(out[19]) );

MUX21X1 U15 ( .IN1(in0[20]), .IN2(in1[20]), .S(n3), .Q(out[20]) );

...

endmodule

module riscvProcDpathMux_3 ( sel, in0, in1, out ); // op0 mux

...

NAND2X2 U2 ( .IN1(n7), .IN2(n6), .QN(out[2]) );

NAND2X2 U19 ( .IN1(in1[9]), .IN2(sel), .QN(n10) );

NAND2X2 U24 ( .IN1(n13), .IN2(n12), .QN(out[11]) );

NAND2X2 U28 ( .IN1(n16), .IN2(n15), .QN(out[29]) );

NAND2X2 U32 ( .IN1(n19), .IN2(n18), .QN(out[28]) );

NAND2X2 U36 ( .IN1(n22), .IN2(n21), .QN(out[7]) );

NAND2X2 U40 ( .IN1(n25), .IN2(n24), .QN(out[25]) );

NAND2X2 U52 ( .IN1(n34), .IN2(n33), .QN(out[14]) );

NAND2X2 U58 ( .IN1(n57), .IN2(n56), .QN(out[16]) );

...

endmodule

module riscvProcDpathMux_2 ( sel, in0, in1, out ); // op1 mux

...

MUX21X1 U14 ( .IN1(in0[1]), .IN2(in0[0]), .S(sel), .Q(out[1]) );

MUX21X1 U15 ( .IN1(in0[4]), .IN2(in0[3]), .S(sel), .Q(out[4]) );

MUX21X1 U16 ( .IN1(in0[5]), .IN2(in0[4]), .S(sel), .Q(out[5]) );

MUX21X1 U17 ( .IN1(in0[6]), .IN2(in0[5]), .S(sel), .Q(out[6]) );

MUX21X1 U18 ( .IN1(in0[7]), .IN2(in0[6]), .S(sel), .Q(out[7]) );

MUX21X1 U19 ( .IN1(in1[10]), .IN2(in0[8]), .S(sel), .Q(out[9]) );

MUX21X1 U20 ( .IN1(in0[10]), .IN2(in1[10]), .S(sel), .Q(out[10]) );

MUX21X1 U21 ( .IN1(in0[11]), .IN2(in0[10]), .S(sel), .Q(out[11]) );

...

endmodule

module riscvProcDpathMux_1 ( sel, in0, in1, out ); // wb mux

...

MUX21X2 U37 ( .IN1(in0[10]), .IN2(in1[10]), .S(n35), .Q(out[10]) );

MUX21X2 U51 ( .IN1(in0[24]), .IN2(in1[24]), .S(n34), .Q(out[24]) );

MUX21X2 U50 ( .IN1(in0[23]), .IN2(in1[23]), .S(n34), .Q(out[23]) );

MUX21X2 U58 ( .IN1(in0[31]), .IN2(in1[31]), .S(n33), .Q(out[31]) );

MUX21X2 U55 ( .IN1(in0[28]), .IN2(in1[28]), .S(n33), .Q(out[28]) );

MUX21X2 U54 ( .IN1(in0[27]), .IN2(in1[27]), .S(n34), .Q(out[27]) );

MUX21X2 U52 ( .IN1(in0[25]), .IN2(in1[25]), .S(n34), .Q(out[25]) );

...

endmodule

Figure 5: Gate-Level Netlist for Two Synthesized 32 Input 32-bit Muxes
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In this section you will discuss the area.rpt, timing.rpt, and the reference.rpt reports. The
next section will discuss the resources.rpt report. The area.rpt report contains area infor-
mation for each module in the design. Figure 6 shows a fragment from area.rpt for the RISC-
V v1 unpipelined processor. You can use the reference.rpt report (Figure 7 to gain insight
into how various modules are being implemented. For example, you can use the reference re-
port in a similar fashion as the results/riscvProc.mapped.v gate-level netlist to see that the
riscvProcDpathMux 2 (op 1 mux) module includes only 8 mux cell.

Global cell area Local cell area

------------------- ------------------------------

Hierarchical cell Absolute Percent Combi- Noncombi- Black

Total Total national national boxes

-------------------------------- ---------- ------- ---------- ---------- ------

riscvProc 53125.7656 100.0 32.2560 49.7664 0.0000

ctrl 259.8913 0.5 259.8913 0.0000 0.0000

dpath 52783.8516 99.4 5336.9897 1045.0942 0.0000

dpath/add_in0_mux 970.4451 1.8 970.4451 0.0000 0.0000

dpath/add_in1_mux 145.6128 0.3 145.6128 0.0000 0.0000

dpath/clk_gate_tohost_reg_reg 37.7856 0.1 12.9024 24.8832 0.0000

dpath/pc_mux 364.9537 0.7 364.9537 0.0000 0.0000

dpath/rfile 44453.7031 83.7 18652.0801 24683.9023 0.0000

dpath/rfile/clk_gate_registers_reg_10_ 35.9424 0.1 13.8240 22.1184 0.0000

...

dpath/rfile/clk_gate_registers_reg_9_ 35.9424 0.1 13.8240 22.1184 0.0000

dpath/wdata_mux 429.4657 0.8 429.4657 0.0000 0.0000

-------------------------------- ---------- ------- ---------- ---------- ------

Total 26633.1465 26493.0254 0.0000

Figure 6: Fragment from riscvProc.mapped.area.rpt

****************************************

Design: riscvProcDpathMux_2

****************************************

Reference Library Unit Area Count Total Area Attributes

-----------------------------------------------------------------------------

AND2X1 saed90nm_typ 7.372800 1 7.372800

INVX0 saed90nm_typ 5.529600 2 11.059200

INVX2 saed90nm_typ 6.451200 1 6.451200

MUX21X1 saed90nm_typ 11.059200 8 88.473602

NAND2X0 saed90nm_typ 5.529600 7 38.707201

NAND2X1 saed90nm_typ 5.529600 2 11.059200

-----------------------------------------------------------------------------

Total 6 references 163.123204

Figure 7: Fragment from riscvProc.mapped.reference.rpt

You can also use the area report to measure the relative area of the various modules. The report
clearly shows that the majority of the processor area is in the datapath. More specifically you can
see that register file consumes 84% of the total processor area. The reference report reveals that
the register file is being implemented with approximately 1000 enable flip-flops and input muxes
(for the read ports). This is a very inefficient way to implement a register file, but it is the best the
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synthesizer can do. Real ASIC designers rarely synthesize memories and instead turn to memory
generators. A memory generator is a tool which takes an abstract description of the memory block
as input and produces a memory in formats suitable for various tools. Memory generators use
custom cells and procedural place+route to achieve an implementation which can be an order of
magnitude better in terms of performance and area than synthesized memories.

Figure 8,9,10 illustrates a fragment of the timing report found in timing.rpt. The report lists the
critical path of the design. The critical path is the slowest logic path between any two registers and
is therefore the limiting factor preventing you from decreasing the clock period constraint (and thus
increasing performance). The report is generated from a purely static worst-case timing analysis
(i.e. independent of the actual signals which are active when the processor is running). The first
column lists various nodes in the design. Note that several nodes internal to higher level modules
have been cut out to save space. The last column lists the cumulative delay to that node, while
the middle column shows the incremental delay.

Since we specified our delays to incorporate combinational memory (described in figure 2, we should
have three types of critical paths. Starting from the PC register to the instruction memory request
ports (shown in figure 8), instruction memory response ports to data memory request ports (shown
in figure 9), and finally data memory response ports to register file write ports (shown in figure 10).

You can see that the critical path in figure 8 starts at the second bit of the PC register; ends at
the instruction memory request port before 0.2 ns. The critical path in figure 9 starts from the
instruction memory response port at 0.6 ns; goes through register file decode logic; goes through the
op 0 mux; goes through the adder; and finally ends at the data memory request port at 1.6 ns. The
last critical path in figure 10 starts from the data memory response port at 2.0 ns; goes through the
write back mux; ends at the register write port at 2.25 ns. The reason why it’s 2.25 ns not 2.5 ns is
because we set up a shorter clock period for synthesis to leave some slack for place and route.

Point Fanout Cap Trans Incr Path

-----------------------------------------------------------------------------------------

clock ideal_clock1 (rise edge) 0.0000 0.0000

clock network delay (ideal) 0.0000 0.0000

dpath/pc_reg_reg_2_/CLK (DFFX1) 0.0000 0.0000 0.0000 r

dpath/pc_reg_reg_2_/QN (DFFX1) 0.1056 0.1620 0.1620 r

dpath/imemreq_bits_addr[2] (net) 4 24.0762 0.0000 0.1620 r

dpath/imemreq_bits_addr[2] (riscvProcDpath) 0.0000 0.1620 r

imemreq_bits_addr[2] (net) 24.0762 0.0000 0.1620 r

imemreq_bits_addr[2] (out) 0.1056 0.0005 * 0.1625 r

data arrival time 0.1625

clock ideal_clock1 (rise edge) 2.2500 2.2500

clock network delay (ideal) 0.0000 2.2500

output external delay -2.0500 0.2000

data required time 0.2000

-----------------------------------------------------------------------------------------

data required time 0.2000

data arrival time -0.1625

-----------------------------------------------------------------------------------------

slack (MET) 0.0375

Figure 8: Fragment from riscvProc.mapped.rpt, PC register to imem request ports
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Point Fanout Cap Trans Incr Path

-----------------------------------------------------------------------------------------

clock ideal_clock1 (rise edge) 0.0000 0.0000

clock network delay (ideal) 0.0000 0.0000

input external delay 0.6000 0.6000 f

imemresp_bits_data[16] (in) 0.0781 0.0366 0.6366 f

imemresp_bits_data[16] (net) 4 28.4830 0.0000 0.6366 f

dpath/imemresp_bits_data[16] (riscvProcDpath) 0.0000 0.6366 f

dpath/imemresp_bits_data[16] (net) 28.4830 0.0000 0.6366 f

dpath/rfile/raddr1[1] (riscvProcDpathRegfile) 0.0000 0.6366 f

dpath/rfile/raddr1[1] (net) 28.4830 0.0000 0.6366 f

... rfile decode ...

dpath/rfile/rdata1[1] (net) 2 15.7610 0.0000 1.1037 r

dpath/rfile/rdata1[1] (riscvProcDpathRegfile) 0.0000 1.1037 r

dpath/rdatab[1] (net) 15.7610 0.0000 1.1037 r

dpath/add_in0_mux/in1[1] (riscvProcDpathMux_3) 0.0000 1.1037 r

dpath/add_in0_mux/in1[1] (net) 15.7610 0.0000 1.1037 r

... in0 mux ...

dpath/add_in0_mux/out[1] (net) 2 8.5538 0.0000 1.1559 r

dpath/add_in0_mux/out[1] (riscvProcDpathMux_3) 0.0000 1.1559 r

dpath/add_in0[1] (net) 8.5538 0.0000 1.1559 r

dpath/U152/IN1 (NOR2X2) 0.0414 0.0000 * 1.1559 r

dpath/U152/QN (NOR2X2) 0.0493 0.0264 1.1823 f

dpath/add_x_135_1_n286 (net) 2 5.7337 0.0000 1.1823 f

dpath/U220/INP (INVX1) 0.0493 0.0000 * 1.1824 f

dpath/U220/ZN (INVX1) 0.0373 0.0234 1.2057 r

dpath/n201 (net) 1 5.5251 0.0000 1.2057 r

... adder ...

dpath/add_x_135_1_U189/IN2 (OAI21X1) 0.0392 0.0001 * 1.4363 f

dpath/add_x_135_1_U189/QN (OAI21X1) 0.0323 0.0975 1.5338 r

dpath/add_x_135_1_n175 (net) 1 4.2785 0.0000 1.5338 r

dpath/U169/IN1 (XOR2X1) 0.0323 0.0000 * 1.5338 r

dpath/U169/Q (XOR2X1) 0.0366 0.0661 1.5998 f

dpath/dmemreq_bits_addr[17] (net) 2 3.1988 0.0000 1.5998 f

dpath/dmemreq_bits_addr[17] (riscvProcDpath) 0.0000 1.5998 f

dmemreq_bits_addr[17] (net) 3.1988 0.0000 1.5998 f

dmemreq_bits_addr[17] (out) 0.0366 0.0000 * 1.5998 f

data arrival time 1.5998

clock ideal_clock1 (rise edge) 2.2500 2.2500

clock network delay (ideal) 0.0000 2.2500

output external delay -0.6500 1.6000

data required time 1.6000

-----------------------------------------------------------------------------------------

data required time 1.6000

data arrival time -1.5998

-----------------------------------------------------------------------------------------

slack (MET) 0.0002

Figure 9: Fragment from riscvProc.mapped.rpt, imem response ports to dmem request ports
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Point Fanout Cap Trans Incr Path

-----------------------------------------------------------------------------------------

clock ideal_clock1 (rise edge) 0.0000 0.0000

clock network delay (ideal) 0.0000 0.0000

input external delay 2.0000 2.0000 r

dmemresp_bits_data[13] (in) 0.0323 0.0096 2.0096 r

dmemresp_bits_data[13] (net) 1 8.6507 0.0000 2.0096 r

dpath/dmemresp_bits_data[13] (riscvProcDpath) 0.0000 2.0096 r

dpath/dmemresp_bits_data[13] (net) 8.6507 0.0000 2.0096 r

dpath/wdata_mux/in1[13] (riscvProcDpathMux_1) 0.0000 2.0096 r

dpath/wdata_mux/in1[13] (net) 8.6507 0.0000 2.0096 r

dpath/wdata_mux/U40/IN2 (MUX21X2) 0.0323 0.0002 * 2.0098 r

dpath/wdata_mux/U40/Q (MUX21X2) 0.1364 0.1449 2.1547 r

dpath/wdata_mux/out[13] (net) 31 73.7699 0.0000 2.1547 r

dpath/wdata_mux/out[13] (riscvProcDpathMux_1) 0.0000 2.1547 r

dpath/wdata[13] (net) 73.7699 0.0000 2.1547 r

dpath/rfile/wdata_p[13] (riscvProcDpathRegfile) 0.0000 2.1547 r

dpath/rfile/wdata_p[13] (net) 73.7699 0.0000 2.1547 r

dpath/rfile/registers_reg_1__13_/D (DFFX1) 0.1364 0.0020 * 2.1568 r

data arrival time 2.1568

clock ideal_clock1 (rise edge) 2.2500 2.2500

clock network delay (ideal) 0.0000 2.2500

dpath/rfile/registers_reg_1__13_/CLK (DFFX1) 0.0000 2.2500 r

library setup time -0.0833 2.1667

data required time 2.1667

-----------------------------------------------------------------------------------------

data required time 2.1667

data arrival time -2.1568

-----------------------------------------------------------------------------------------

slack (MET) 0.0099

Figure 10: Fragment from riscvProc.mapped.rpt, dmem response ports to register write ports
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Synopsys Design Ware Libraries

Synopsys provides a library of commonly used arithmetic components as highly optimized building
blocks. This library is called Design Ware and DC will automatically use Design Ware components
when it can. To get a feel for what type of components are available, take a look at the Design
Ware Quick Reference Guide (designware-quick-reference.pdf). The components you will be
using in the class are the Building Block IP described in Chapter 2.

The resources.rpt report can help you determine when DC is using Design Ware components. For
example, if you look at the riscvProcDpath module in resources.rpt you will see that it contains
a description of modules it used during synthesis. The DW01 add in the module name indicates that
this is a Design Ware adder. To find out more information about this component you can refer to the
corresponding Design Ware datasheet located in the locker (~cs250/manuals/designware-datasheets/dw01 add_pdf).
The data sheets contain information on the different component implementation types. For exam-
ple, DC can use a ripple-carry adder, a carry-lookahead adder, delay-optimized flexible parallel-
prefix adder, or an area-optimized flexible parallel-prefix adder. The resources.rpt report con-
tains information on which implementation was chosen for each Design Ware component. Figure 11
shows a fragment from resources.rpt which indicates that the adder uses a pparch implemen-
tation. The pparch implementation is an delay-optimized flexible parallel-prefix adder. Compare
this to what is generated with the 10 ns clock constraint. Look at the resources.rpt file in the
build-10ns directory. Figure 12 shows that with the much slower clock period constraint, DC
has chosen to use a area-optimized flexible parallel-prefix adder (apparch). Although the area-
optimized flexible parallel-prefix adder is slower than the delay-optimized parallel-prefix adder, it
is still fast enough to meet the clock period constraint and it uses significantly less area.

Resource Report for this hierarchy in file ../../../src/riscvProcDpath.v

=============================================================================

| Cell | Module | Parameters | Contained Operations |

=============================================================================

| add_x_62_1 | DW01_add | width=32 | add_62 |

| eq_x_100_1 | DW_cmp | width=32 | eq_100 |

| add_x_135_1 | DW01_add | width=32 | add_135 |

=============================================================================

...

===============================================================================

| | | Current | Set |

| Cell | Module | Implementation | Implementation |

===============================================================================

| add_x_62_1 | DW01_add | pparch (area,speed) |

| eq_x_100_1 | DW_cmp | apparch (area) | |

| add_x_135_1 | DW01_add | pparch (area,speed) |

===============================================================================

Figure 11: Fragment from resources.rpt for 2 ns clock period

There are two ways to use Design Ware components: inference or instantiation. For each com-
ponent the corresponding datasheet outlines the appropriate Verilog RTL which should result in
DC inferring that Design Ware component. Note that sometimes DC decides not to use a Design
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Resource Report for this hierarchy in file ../../../src/riscvProcDpath.v

=============================================================================

| Cell | Module | Parameters | Contained Operations |

=============================================================================

| add_x_62_1 | DW01_add | width=32 | add_62 |

| eq_x_100_1 | DW_cmp | width=32 | eq_100 |

| add_x_135_1 | DW01_add | width=32 | add_135 |

=============================================================================

...

===============================================================================

| | | Current | Set |

| Cell | Module | Implementation | Implementation |

===============================================================================

| add_x_62_1 | DW01_add | apparch (area) | |

| eq_x_100_1 | DW_cmp | apparch (area) | |

| add_x_135_1 | DW01_add | apparch (area) | |

===============================================================================

Figure 12: Fragment from resources.rpt for 10 ns clock period

Ware component because it can do other optimizations which result in a better implementation. If
you really want to try and force DC to use a specific Design Ware component you can instantiate
the component directly. If you use direct instantiation you will need to included the appropriate
Verilog model so that VCS can simulate the component. You can do this by adding the following
command line parameter to VCS.

-y $DC_HOME/dw/sim_ver +libext+.v+

We suggest only using direct instantiation as a last resort since it it creates a dependency between
your high-level design and the Design Ware libraries, and it limits the options available to Design
Compiler during synthesis.

Using Design Vision to Analyze the Synthesized Gate-Level Netlist

Synopsys provides a GUI front-end to Design Compiler called Design Vision which you will use to
analyze the synthesis results. You should avoid using the GUI to actually perform synthesis since
you want to use scripts for this. To launch Design Vision and read in your synthesized design, move
into the appropriate working directory and use the following commands.

% cd $TUTROOT/build/dc-syn/build-10ns

% design_vision-xg -64bit

design_vision> source dc_setup.tcl

design_vision> read_ddc results/riscvProc.mapped.ddc

You can browse your design with the hierarchical view. If you right click on a module and choose
the Schematic View option, the tool will display a schematic of the synthesized logic corresponding
to that module. Figure 13 shows the schematic view for the write back mux module with the 10 ns
clock constraint. Notice the MUX21X1 standard cells.
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Figure 13: Screen shot of a schematic view in Design Vision

You can use Design Vision to examine various timing data. The Timing > Paths Slack menu
option will create a histogram of the worst case timing paths in your design. You can use this
histogram to gain some intuition on how to approach a design which does not meet timing. If there
are a large number of paths which have a very large negative timing slack then a global solution is
probably necessary, while if there are just one or two paths which are not making timing a more
local approach may be sufficient. You can click on a bin and the tool will report critical paths
in the bin. Figure 14 shows an example of using these two features. Go ahead and right click to
choose Path Inspector. Figure 15 shows the actual components on the critical path.

It is sometimes useful to examine the critical path through a single submodule. To do this, right
click on the module in the hierarchy view and use the Characterize option. Check the timing,
constraints, and connections boxes and click OK. Now choose the module from the drop down list
box on the toolbar (called the Design List). Choosing Timing > Report Timing Path will provide
information on the critical path through that submodule given the constraints of the submodule
within the overall design’s context.

Fore more information on Design Vision consult the Design Vision User Guide (dc dv-user-guide.pdf).
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Figure 14: Screen shot of timing results in Design Vision

Figure 15: Screen shot of the path inspector in Design Vision
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Review

The following sequence of commands will setup the CS250 toolflow, checkout the RISC-V v1 pro-
cessor example, and synthesize the design.

% source ~cs250/tools/cs250.bashrc

% mkdir tut5

% cd tut5

% TUTROOT=$PWD

% cp -R ~cs250/examples/v-riscv-v1-1stage/* $TUTROOT

% cd $TUTROOT/build/dc-syn

% make
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