
Getting Started with Chisel

Jonathan Bachrach, Vincent Lee
EECS Department, UC Berkeley

{jrb}@eecs.berkeley.edu

August 27, 2014

2

Chapter 1

Chisel Installation

1.1 Introduction

This chapter is an installation guide for Chisel (Con-
structing Hardware In a Scala Embedded Language)
and is intended to prepare your system for subse-
quent tutorials. Chisel is a hardware construction
language embedded in the high-level programming
language Scala.

1.1.1 Development Tool Installation

If you are running Mac or a variant of Linux, you
will need to install the appropriate tools for your OS,
which are described in the following sections:

MacOSX

1. Install XCODE, including console tools.

Linux

Install the following packages:

1. g++-4.8

2. openjdk-7-jre

using

sudo apt-get install

1.2 Setting Up the Tutorial

In subsequent tutorials, you will be using the files
distributed in the chisel-tutorial repository. To ob-
tain these tutorials files, cd to the directory = $DIR

where you want to place the Chisel tutorial and type:

cd $DIR
git clone https://github.com/ucb-bar/chisel-tutorial.git

Your copy of the Chisel Tutorial repository will then
be in $DIR/chisel-tutorial. Define this as a vari-
able in your bash environment named $TUT_DIR.

This is the Chisel tutorial directory structure you
should see, which is explained more in the next tu-
torial:

chisel-tutorial/
Makefile
examples/
Makefile
build.sbt
Accumulator.scala ...

problems/
Makefile
build.sbt
Counter.scala ...

solutions/
Makefile
build.sbt
Counter.scala ...

The following tutorials will explain features of
Chisel by presenting source code examples. The
repository is split into examples, problems, and so-
lutions, where the problems have some piece of the
design for you to fill out and where the examples
and solutions are meant to be complete designs that
should pass the given tests. In order to run either,
you simply need to change directory into the appro-
priate subdirectory and type make of the particular
lesson name. We will use the repository to first test
out if your machine is set up to use Chisel.

To test your Chisel distribution and verify that
your system contains all the correct tools, run the
following commands:

cd $TUT_DIR/examples
make Parity.out

This will run a test build and will take a minute
before it completes. If your system is set up correctly,
you should see a messsage [success] followed by
the total time of the run, and date and time of com-
pletion. If you see a success than your system has

3

4 CHAPTER 1. CHISEL INSTALLATION

been set up correctly and you can continute to the
next tutorial where we will explain more about the
basics of Chisel.

1.3 The Tutorials

For these tutorials, we assume basic knowledge of
digital circuits and blocks. Tutorial 1 will guide you
through a quick compilation of the emulator and Ver-
ilog generation, and explain some basic constructs
such as register and combinational logic. Tutorial
2 will explain the basics of Chisel. Tutorial 3 will
explain how to use basic primitive types and logical
operations that are used in Chisel and how to use
them in context of several examples. Tutorial 4 will
explain how to instantiate components and apply
parametrization. Tutorial 5 will explain how to use
the Chisel test harness. Tutorial 6 will explain how
to set up your own Chisel project and how to build
it. Tutorial 7 will revisit conditional register updates
and explain how to construct memories. Finally, tu-
torial 8 will introduce how to use Scala constructs
such as if...else and for loops.

Along the way there are assignments highlighted
with red titles. These assignments are built around
files in the tutorial problems directory. In order to
check successful completion of the entire set of get-
ting started assignments run:

cd $TUT_DIR/problems
make getting-started

until no error appears.
The following set of tutorials were written using

the build settings Scala version 2.11 and Chisel ver-
sion 2.2.

Chapter 2

The Basics

2.0.1 The Chisel Directory Structure

Once you have acquired the tutorial files you should
see the following Chisel tutorial directory structure
under $TUT_DIR:

chisel-tutorial/
Makefile
examples/ # chisel examples
Makefile # for running examples
build.sbt # project description
Accumulator.scala ...

problems/ # skeletal files for tutorial problems
Makefile # for running / testing problems
build.sbt # project description
Counter.scala ...

solutions/ # solutions to problems
Makefile # for running solutions
build.sbt # project description
Counter.scala ...

Chisel source files are distributed between
examples, problems, and solutions directories. The
tutorial contains the files that you will be modifying
under problems/ while the solutions/ folder con-
tains the reference implementations for each of the
problems. Finally, examples/ contains source to the
complete examples given in this tutorial.

Finally, the build.sbt files contain the build con-
figuration information used to specify what version
of Chisel to make your project with.

2.1 Running Your First Chisel
Build

In this section, we explain how to run your first
build to explore what Chisel has to offer. We will go
through a simple example for a GCD module and fa-
miliarize ourselves with the source files, simulation,
and Verilog generation. More comprehensive details
will follow in subsequent sections of the tutorial.

2.1.1 The Chisel Source Code

Now that you are more familiar with what your
Chisel directory structure contains, let’s start by ex-
ploring one of the Chisel files. Change directory into
the examples/ directory and open up the GCD.scala

file with your favorite text editor.
You will notice that file is already filled out for

you to perform the well known GCD algorithm and
should look like:

package TutorialExamples

import Chisel._

class GCD extends Module {
val io = new Bundle {
val a = UInt(INPUT, 16)
val b = UInt(INPUT, 16)
val e = Bool(INPUT)
val z = UInt(OUTPUT, 16)
val v = Bool(OUTPUT)

}
val x = Reg(UInt())
val y = Reg(UInt())
when (x > y) { x := x - y }
unless (x > y) { y := y - x }
when (io.e) { x := io.a; y := io.b }
io.z := x
io.v := y === UInt(0)

} ...

The first thing you will notice is the
import Chisel._ declaration; this imports the
Chisel library files that allow us to leverage Scala as
a hardware construction language. After the import
declarations you will see the Scala class definition
for the Chisel component you are implementing.
You can think of this as almost the same thing as a
module declaration in Verilog.

Next we see the I/O specification for this com-
ponent in the val io = new Bundle{...} definition.
You will notice that the bundle takes several argu-
ments as part of its construction, each with a speci-
fied type (UInt, Bool, etc.), a direction (either INPUT
or OUTPUT), and a bit width. If a bit width is not

5

6 CHAPTER 2. THE BASICS

specified, Chisel will infer the appropriate bit width
for you (in this case default to 1). The io Bundle is
essentially a constructor for the component that we
are constructing.

The next section of code performs the actual GCD
computation for the module. The register declara-
tions for x and y tell Chisel to treat x and y as a
register of type UInt().

val x = Reg(UInt()) // declares x as UInt register
val y = Reg(UInt()) // declares y as UInt register

The when statement tells Chisel to perform the
operation on a positive clock edge if the condi-
tion is true, treating the left hand assignments as
synchronous. This is similar to how Verilog uses
always @ (posedge clk) to specify synchronous
logic.

Finally we see the output assignments for the
computation for io.z and io.v. One particular thing
to notice is that, we do not have to specify the width
of x and y in this example. This is because Chisel
does the bit width inference for you and sets these
values to their appropriate widths based on the com-
putation they are storing.

2.1.2 Running the Chisel Simulation

Now that we are familiar with the Chisel code for
the GCD.scala file, let’s try to simulate it by gener-
ating the C++ models. Change directory into the
$DIR/examples/ directory. Here you will see one
lonely Makefile which we will call with:

make GCD.out

This will fire off the Chisel emulator that will run the
simulation for the component defined in GCD.scala.
If the simulation succeeds, you should see some
debug output followed by:

PASSED
[success] Total time: 2 s, completed Feb 28, 2013 \
8:14:37 PM

The debug output is generated by the test harness
which composes the second half of the GCD.scala
file. We will talk about this more later. In addition to
the debug output, the build also creates C++ mod-
els which can be used to simulate and debug more
complicated designs.

2.1.3 Generating the Verilog

One of the most powerful features of Chisel is its
ability to generate FPGA and ASIC Verilog from the

Scala sources that you construct. To do this, change
directory into the $DIR/examples/verilog/ directory
and again run:

make GCD.v

This will start the Verilog generation for the GCD
Chisel file. When the Verilog generation finishes,
you should see a [success] message similar to the one
you saw in the emulator and a new GCD.v file. If you
open up GCD.v, you will find that Chisel has com-
piled GCD.scala into its equivalent Verilog source.

You will find that the Chisel compiler has gener-
ated an equivalent Verilog module that performs the
GCD computation.

The Verilog source is roughly divided into three
parts:

1. Module declaration with input and outputs

2. Temporary wire and register declaration used
for holding intermediate values

3. Register assignments in
always @ (posedge clk)

2.2 Combinational Logic

2.2.1 The Scala Node: Declaring Wires

Constructing combinational logic blocks in Chisel
is fairly straightforward; when you declare a val

in Scala, it creates a node that represents the data
that it is assigned to. As long as the value is not
assigned to be a register type (explained later), this
tells the Chisel compiler to treat the value as wire.
Thus any number of these values can be connected
and manipulated to produce the value that we want.

Suppose we want to construct a single full adder.
A full adder takes two inputs a and b, and a carry
in cin and produces a sum and carry out cout. The
Chisel source code for our full adder will look some-
thing like:

class FullAdder extends Module {
val io = new Bundle {
val a = UInt(INPUT, 1)
val b = UInt(INPUT, 1)
val cin = UInt(INPUT, 1)
val sum = UInt(OUTPUT, 1)
val cout = UInt(OUTPUT, 1)

}
// Generate the sum
val a_xor_b = io.a ^ io.b
io.sum := a_xor_b ^ io.cin
// Generate the carry
val a_and_b = io.a & io.b
val b_and_cin = io.b & io.cin

2.2. COMBINATIONAL LOGIC 7

val a_and_cin = io.a & io.cin
io.cout := a_and_b | b_and_cin | a_and_cin

}

where cout is defined as a combinational function
of inputs a, b, and cin.

You will notice that in order to access the input
values from the io bundle, you need to first reference
io since the input and output values belong to the
io bundle. The |, &, and ˆ operators correspond to
bitwise OR, AND, and XOR operations respectively.

The corresponding wires for each of these values
is shown below in Figure 2.1. You will notice that
each val corresponds to exactly one of the wires.

Figure 2.1: Full Adder Circuit

2.2.2 Bit Width Inference

If you don’t explicitly specify the width of a value in
Chisel, the Chisel compiler will infer the bit width
for you based on the inputs that define the value.
Notice in the FullAdder definition, the widths for
a_xor_b, a_and_b, b_and_cin, and a_and_cin are
never specified anywhere. However, based on how
the input is computed, Chisel will correctly infer
each of these values are one bit wide since each of
their inputs are the results of bitwise operations ap-
plied to one bit operands.

A quick inspection of the generated Verilog shows
these values are indeed one bit wide:

module FullAdder(
input io_a,
input io_b,
input io_cin,
output io_sum,
output io_cout);

wire T0;
wire a_and_cin;

wire T1;
wire b_and_cin;
wire a_and_b;
wire T2;
wire a_xor_b;

assign io_cout = T0;
assign T0 = T1 | a_and_cin;
assign a_and_cin = io_a & io_cin;
assign T1 = a_and_b | b_and_cin;
assign b_and_cin = io_b & io_cin;
assign a_and_b = io_a & io_b;
assign io_sum = T2;
assign T2 = a_xor_b ^ io_cin;
assign a_xor_b = io_a ^ io_b;

endmodule

Suppose we change the widths of the FullAdder

to be 2 bits wide each instead such that the Chisel
source now looks like:

class FullAdder extends Module {
val io = new Bundle {
val a = UInt(INPUT, 2)
val b = UInt(INPUT, 2)
val cin = UInt(INPUT, 2)
val sum = UInt(OUTPUT, 2)
val cout = UInt(OUTPUT, 2)

}
// Generate the sum
val a_xor_b = io.a ^ io.b
io.sum := a_xor_b ^ io.cin
// Generate the carry
val a_and_b = io.a & io.b
val b_and_cin = io.b & io.cin
val a_and_cin = io.a & io.cin
io.cout := a_and_b | b_and_cin | a_and_cin

}

As a result, the Chisel compiler should
infer each of the intermediate values
a_xor_b, a_and_b, b_and_cin, and a_and_cin

are two bits wide. An inspection of the Verilog
code correctly shows that Chisel inferred each of
the intermediate wires in the calculation to be 2 bits
wide.

module FullAdder(
input [1:0] io_a,
input [1:0] io_b,
input [1:0] io_cin,
output[1:0] io_sum,
output[1:0] io_cout);

wire[1:0] T0;
wire[1:0] a_and_cin;
wire[1:0] T1;
wire[1:0] b_and_cin;
wire[1:0] a_and_b;
wire[1:0] T2;
wire[1:0] a_xor_b;

assign io_cout = T0;
assign T0 = T1 | a_and_cin;
assign a_and_cin = io_a & io_cin;

8 CHAPTER 2. THE BASICS

assign T1 = a_and_b | b_and_cin;
assign b_and_cin = io_b & io_cin;
assign a_and_b = io_a & io_b;
assign io_sum = T2;
assign T2 = a_xor_b ^ io_cin;
assign a_xor_b = io_a ^ io_b;

endmodule

2.3 Using Registers

Unlike Verilog, specifying a register in Chisel tells
the compiler to actually generate a positive edge
triggered register. In this section we explore how to
instantiate registers in Chisel by constructing a shift
register.

In Chisel, when you instantiate a register there
are several ways to specify the connection of the
input to a register. As shown in the GCD example,
you can "declare" the register and assign what it’s
input is connected to in a when... block or you can
simply pass the value that the register is clocking as
a parameter to the register.

If you choose to pass a next value to the register
on construction using the next named parameter, it
will clock the new value every cycle unconditionally:

// Clock the new register value on every cycle
val y = io.x
val z = Reg(next = y)

If we only want to update if certain conditions are
met we use a when block to indicate that the registers
are only updated when the condition is satisfied:

// Clock the new register value when the condition a > b
val x = Reg(UInt())
when (a > b) { x := y }
.elsewhen (b > a) {x := z}
.otherwise { x := w}

It is important to note that when using the con-
ditional method, the values getting assigned to the
input of the register match the type and bitwidth
of the register you declared. In the unconditional
register assignment, you do not need to do this as
Chisel will infer the type and width from the type
and width of the input value.

The following sections show how these can be
used to construct a shift register.

2.3.1 Unconditional Register Update

Suppose we want to construct a basic 4 bit shift
register that takes a serial input in and generates a
serial output out. For this first example we won’t
worry about a parallel load signal and will assume

the shift register is always enabled. We also will
forget about the register reset signal.

If we instantiate and connect each of these 4 reg-
isters explicitly, our Chisel code will look something
like:

class ShiftRegister extends Module {
val io = new Bundle {
val in = UInt(INPUT, 1)
val out = UInt(OUTPUT, 1)

}
val r0 = Reg(next = io.in)
val r1 = Reg(next = r0)
val r2 = Reg(next = r1)
val r3 = Reg(next = r2)
io.out := r3

}

If we take a look at the generated Verilog, we
will see that Chisel did indeed map our design to
a shift register. One thing to notice is that the clock
signal and reset signals are implicitly attached to our
design.

module ShiftRegister(input clk, input reset,
input io_in,
output io_out);

reg[0:0] r3;
reg[0:0] r2;
reg[0:0] r1;
reg[0:0] r0;

assign io_out = r3;
always @(posedge clk) begin
r3 <= r2;
r2 <= r1;
r1 <= r0;
r0 <= io_in;

end
endmodule

2.3.2 Conditional Register Update

As mentioned earlier, Chisel allows you to condition-
ally update a register (use an enable signal) using
the when, .elsewhen, .otherwise block. Suppose we
add an enable signal to our shift register, that allows
us to control whether data is shift in and out on a
given cycle depending on an enable input signal.
The new shift register now looks like:

class ShiftRegister extends Module {
val io = new Bundle {
val in = UInt(INPUT, 1)
val enable = Bool(INPUT)
val out = UInt(OUTPUT, 1)

}

val r0 = Reg(UInt())
val r1 = Reg(UInt())

2.3. USING REGISTERS 9

val r2 = Reg(UInt())
val r3 = Reg(UInt())

when (io.enable) {
r0 := io.in
r1 := r0
r2 := r1
r3 := r2

}
io.out := r3

}

Notice that it is not necessary to specify an
.otherwise condition as Chisel will correctly infer
that the old register value should be preserved oth-
erwise.

2.3.3 Register Reset

Chisel allows you to specify a synchronous reset to a
certain value by specifying an additional parameter
when you first declare them. In our shift register,
let’s add a reset capability that resets all the register
values to zero synchronously. To do this we need to
provide our register declarations a little more infor-
mation using the init parameter with what value
we want on a synchronous reset:

class ShiftRegister extends Module {
val io = new Bundle {
val in = UInt(INPUT, 1)
val enable = Bool(INPUT)
val out = UInt(OUTPUT, 1)

}
// Register reset to zero
val r0 = Reg(init = UInt(0, width = 1))
val r1 = Reg(init = UInt(0, width = 1))
val r2 = Reg(init = UInt(0, width = 1))
val r3 = Reg(init = UInt(0, width = 1))
when (io.enable) {
r0 := io.in
r1 := r0
r2 := r1
r3 := r2

}
io.out := r3

}

Notice that reset value can actually be any value,
simply replace the zeros and width to appropriate
values.

Chisel also has an implict global reset signal that
you can use in a when block. The reset signal is con-
veniently called reset and does not have to be de-
clared. The shift register using this implict global
reset now looks like:

class ShiftRegister extends Module {
val io = new Bundle {
val in = UInt(INPUT, 1)
val enable = Bool(INPUT)

val out = UInt(OUTPUT, 1)
}
val r0 = Reg(UInt())
val r1 = Reg(UInt())
val r2 = Reg(UInt())
val r3 = Reg(UInt())
when(reset) {
r0 := UInt(0)
r1 := UInt(0)
r2 := UInt(0)
r3 := UInt(0)

} .elsewhen(io.enable) {
r0 := io.in
r1 := r0
r2 := r1
r3 := r2

}
io.out := r3

}

This will generate slightly different looking Ver-
ilog source code but will still function the same as
the previous implementation of the shift register
with reset.

2.3.4 Sequential Circuit Problem

The following exercises can be found in your
$TUT_DIR/problems/ folder. You will find that some
parts of the tutorial files have been completed for
you and the section that you need to will need
to complete is indicated in the file. The solutions
to each of these exercises can be found in the
$TUT_DIR/solutions/ folder.

The first tutorial problem is to write write a se-
quential circuit that sums in values. You can find the
template in $TUT_DIR/problems/Accumulator.scala

including a stubbed out version of the circuit:

class Accumulator extends Module {
val io = new Bundle {
val in = UInt(INPUT, 1)
val out = UInt(OUTPUT, 8)

}

// flush this out ...

io.out := UInt(0)
}

and a complete tester that confirms that you have
successfully designed the circuit. Run

make Accumulator.out

until your circuit passes the tests.

10 CHAPTER 2. THE BASICS

Chapter 3

Basic Types and Operations

3.1 Chisel Assignments and Re-
assignments

When you first define a value in Chisel, we use the =

operator in order to tell Chisel to allocate the value
for the first time. On every subsequent reassignment
to the value, we must use a := when reassigning the
value.

Since we are constructing a digital circuit, the
notion of reassignment does not make much sense
since connections between circuit nodes only need
to be specified once. However, there are some cases
when we will need to perform reassignment to a
value in Chisel since it is compiled sequentially un-
like Verilog. Thus it may be necessary to perform re-
assignment when a value or connection is not known
until later in the Chisel source.

A simple example of when reassignment is nec-
essary is in the construction of the top level I/O
for your module; the values of the output are not
immediately known at the time of declaration.

Consider the simple FullAdder circuit from previ-
ous tutorial that determines the sum sum and carry
out cout given two values a and b, and a carry in
cin.

class FullAdder extends Module {
val io = new Bundle {
// first definition of io values so use =
val a = UInt(INPUT, 1)
val b = UInt(INPUT, 1)
val cin = UInt(INPUT, 1)
val sum = UInt(OUTPUT, 1)
val cout = UInt(OUTPUT, 1)

}
// Generate the sum
val a_xor_b = io.a ^ io.b
// Reassignment to io.sum so use :=
io.sum := a_xor_b ^ io.cin
// Generate the carry
val a_and_b = io.a & io.b
val b_and_cin = io.b & io.cin
val a_and_cin = io.a & io.cin
// reassignment to io.cout so use :=

io.cout := a_and_b | b_and_cin | a_and_cin
}

In this example we make sure to use the := reas-
signment for the io.sum and io.cout output values
because we only know what they’re values are later
in the code and not at the time of construction of the
io Bundle. All other values in this example use the
= assignment operator since they need to be created.

In general, the rule of thumb is to use the reas-
signment operator := if the value already has been
assigned by the = operator, otherwise the = operator
should be used. Note that if you do not use the =

or := operators correctly you will get an error when
you try and compile your design.

3.2 The Chisel UInt Class

In the previous examples we have been using the
UInt type which is an unsigned integer as the type
for all of our values. For many of the basic compu-
tations in Chisel the UInt class is sufficient.1 The
following example shows some of the commonly
used UInt operations in the context of a simple ALU2:

class BasicALU extends Module {
val io = new Bundle {
val a = UInt(INPUT, 4)
val b = UInt(INPUT, 4)
val opcode = UInt(INPUT, 4)
val output = UInt(OUTPUT, 4)

}
io.output := UInt(0)
when (io.opcode === UInt(0)) {
io.output := io.a // pass A

} .elsewhen (io.opcode === UInt(1)) {
io.output := io.b // pass B

} .elsewhen (io.opcode === UInt(2)) {

1The UInt class definition for Chisel can be found in the /chis-
el/src/main folder in the compiler source repository, not the
chisel-tutorial. You can obtain the Chisel source by cloning
https://github.com/ucb-bar/chisel.git

2We ignore overflow and underflow in this example.

11

12 CHAPTER 3. BASIC TYPES AND OPERATIONS

io.output := io.a + UInt(1) // inc A by 1
} .elsewhen (io.opcode === UInt(3)) {
io.output := io.a - UInt(1) // inc B by 1

} .elsewhen (io.opcode === UInt(4)) {
io.output := io.a + UInt(4) // inc A by 4

} .elsewhen (io.opcode === UInt(5)) {
io.output := io.a - UInt(4) // dec A by 4

} .elsewhen (io.opcode === UInt(6)) {
io.output := io.a + io.b // add A and B

} .elsewhen (io.opcode === UInt(7)) {
io.output := io.a - io.b // sub B from A

} .elsewhen (io.opcode === UInt(8)) {
io.output := (io.a < io.b) // set on A < B

} .otherwise {
io.output := (io.a === io.b) // set on A == B

}
}

You will notice that there are multiple reassign-
ments to io.output inside a when block which in-
dicates that the value of io.output can take many
different values depending on the io.opcode in this
example. Also notice that in order to specify con-
stants to add to our operands, we must also specify
them as a UInt type as UInt operations on different
type operands is not allowed.

// Specify that 1 is a UInt type
io.output := io.a + UInt(1)

A list of commonly used UInt operations is given
in the table below:

Operand Operation Output Type
+ Add UInt
- Subtract UInt
∗ Multiply UInt
/ UInt Divide UInt
˜ Bitwise Negation UInt
ˆ Bitwise XOR UInt
& Bitwise AND UInt
| Bitwise OR Bool
=== Equal Bool
!= Not Equal Bool
> Greater Bool
< Less Bool
>= Greater or Equal Bool
<= Less or Equal Bool

3.2.1 Bit Extraction

The UInt class allows you to extract bits based on
their index of their representation. Given an n bit
wide value value we can extract the bits x through y

(n > x > y >= 0) by simply doing the following:

// extracts the x through y bits of value
val x_to_y = value(x, y)

Note that the higher index is specified first in
the argument list when extraction the bits. Also
notice that the bits in the UInt are zero indexed so
the highest bit that can be extracted from an n bit
wide value is n-1.

If you just want to extract a single bit from the
value, say bit x we simply need to specify a single
index instead as follows:

// extract the x-th bit from value
val x_of_value = value(x)

A more concrete example of bit extraction in ac-
tion is shown below. In this example, based on the
value of the offset, we would like to select a byte
from a word which is a common operation when
loading a byte from word addressed memories:

class ByteSelector extends Module {
val io = new Bundle {
val in = UInt(INPUT, 32)
val offset = UInt(INPUT, 2)
val out = UInt(OUTPUT, 8)

}
io.out := UInt(0, width = 8)
when (io.offset === UInt(0)) {
io.out := io.in(7,0) // pull out lowest byte

} .elsewhen (io.offset === UInt(1)) {
io.out := io.in(15,8) // pull out second byte

} .elsewhen (io.offset === UInt(2)) {
io.out := io.in(23,16) // pull out third byte

} .otherwise {
io.out := io.in(31,24) // pull out highest byte

}
}

3.2.2 Bit Concatenation

Chisel also allows you to easily concatenate bits to-
gether using Cat. Suppose you have a data bus that
you would like to drive with two seperate words
A and B. In order to concatenate these two values
together we simply say:

val A = UInt(width = 32)
val B = UInt(width = 32)
val bus = Cat(A, B) // concatenate A and B

Again, the first argument to Cat will be placed in
the high part while the second argument gets the
low part of bus. Thus for this example bits 0 to 31 of
bus correspond to B, while bits 32 to 63 correspond
to A.

3.2.3 LFSR16 Problem

In this assignment, write the LFSR16 circuit as shown
below:

3.3. THE CHISEL BOOL CLASS 13

^^^

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

^

by filling in the following module:

class LFSR16 extends Module {
val io = new Bundle {
val inc = Bool(INPUT)
val out = UInt(OUTPUT, 16)

}
// ...
io.out := UInt(0)

}

found in $TUT_DIR/problems/LFSR16.scala. Make
sure to define and initialize an internal register to
one and update it when inc is asserted. Use bit
concatentation and bit extraction in conjunction with
the xor operator ^. Run

make LFSR16.out

until your circuit passes the tests.

3.2.4 UInt Operation Bit Inference

Note that for some operations such as addition and
multiplication, that number of resulting bits of the
computation can be greater than the number of bits
for the operands.

Consider the following example where we multi-
ply two 16 bit numbers A and B together. Note that
the product of two 16 bit numbers is at worst 32 bits
wide.

class HiLoMultiplier() extends Module {
val io = new Bundle {
val A = UInt(INPUT, 16)
val B = UInt(INPUT, 16)
val Hi = UInt(OUTPUT, 16)
val Lo = UInt(OUTPUT, 16)

}
val mult = io.A * io.B
io.Lo := mult(15, 0)
io.Hi := mult(31, 16)

}

Notice that we never specify the width of the
value mult anywhere in the Chisel source. Normally
if we performed this in Verilog we would have had
to specify the width beforehand. But a look at the
generated Verilog for this example shows that Chisel
correctly inferred the mult value to be 32 bits wide:

module HiLoMultiplier(
input [15:0] io_A,
input [15:0] io_B,

output[15:0] io_Hi,
output[15:0] io_Lo);

wire[15:0] T0;
wire[31:0] mult; // Chisel infers this to be 32 bits
wire[15:0] T1;

assign io_Lo = T0;
assign T0 = mult[4’hf:1’h0];
assign mult = io_A * io_B;
assign io_Hi = T1;
assign T1 = mult[5’h1f:5’h10];

endmodule

As we get to more complicate designs, it will be-
come more clear that bit inference in Chisel is a very
powerful feature that makes constructing hardware
more efficient. A list of common bit inferences is
shown below for commonly used operations:

Operation Result Bit Width
Z = X + Y max(Width(X), Width(Y))
Z = X - Y max(Width(X), Width(Y))
Z = X & Y max(Width(X), Width(Y))
Z = X | Y max(Width(X), Width(Y))
Z = X ^ Y max(Width(X), Width(Y))
Z = ~X Width(X)
Z = Mux(C, X, Y) max(Width(X), Width (Y))
Z = X * Y Width(X) + Width(Y)
Z = X << n Width(X) + n
Z = X >> n Width(X) - n
Z = Cat(X, Y) Width(X) + Width(Y)
Z = Fill(n, x) Width(X) + n

3.3 The Chisel Bool Class

The Bool class in Chisel is used to represent the result
of logical expressions and takes either the values
true or false. These can be used in conditional
statements such as when blocks.

val change = io.a === io.b // change gets Bool type
when (change) { // exec if change is true
...

} .otherwise {
...

}

You can instantiate a Bool value like this:

val true_value = Bool(true)
val false_value = Bool(false)

14 CHAPTER 3. BASIC TYPES AND OPERATIONS

3.4 Casting Between Types

When assigning values, it is required that you as-
sign a value of the same type. For instance, if you
try to assign a Bool type to an output value that is
expecting a UInt type, you will get an error.

...
val io = new Bundle {
val in = UInt(INPUT, 2)
val out = UInt(OUTPUT, 1)

}
// attempted Bool assignment to UInt
io.out := (in === UInt(0))
...

The correct way to perform the intended opera-
tion is to cast the resulting Bool type to a UInt using
the toUInt() cast. The correct Chisel code will look
like:

...
val io = new Bundle {
val in = UInt(INPUT, 2)
val out = UInt(OUTPUT, 1)

}
io.out := (in === UInt(0)).toUInt() // UInt cast
...

Some of the common casts that you may use are:

• toUInt()

• toSInt()

• toBool()

Chapter 4

Instantiating Modules

4.1 Module Instantiation

Like other hardware description languages, Chisel
allows fairly straightforward module instantiation
to enable modularity and hierarchy. In Chisel, in-
stantiating a Module class is the equivalent to instan-
tiating a module in Verilog. To do this, we simply
use a call to Module with module created with the
Scala new keyword in order to indicate that we are
instantiation a new module. We want to make sure
we assign this to a value so that we can reference its
input and outputs which we also need to connect.

For example, suppose we would like to construct
a 4-bit adder using multiple copies of the FullAdder

module. as shown in the Figure 1. The Chisel source
code is shown below.

Figure 4.1: Block Diagram of 4-Bit Adder

// A 4-bit adder with carry in and carry out
class Adder4 extends Module {
val io = new Bundle {
val A = UInt(INPUT, 4)
val B = UInt(INPUT, 4)
val Cin = UInt(INPUT, 1)
val Sum = UInt(OUTPUT, 4)
val Cout = UInt(OUTPUT, 1)

}
// Adder for bit 0
val Adder0 = Module(new FullAdder())

Adder0.io.a := io.A(0)
Adder0.io.b := io.B(0)
Adder0.io.cin := io.Cin
val s0 = Adder0.io.sum
// Adder for bit 1
val Adder1 = Module(new FullAdder())
Adder1.io.a := io.A(1)
Adder1.io.b := io.B(1)
Adder1.io.cin := Adder0.io.cout
val s1 = Cat(Adder1.io.sum, s0)
// Adder for bit 2
val Adder2 = Module(new FullAdder())
Adder2.io.a := io.A(2)
Adder2.io.b := io.B(2)
Adder2.io.cin := Adder1.io.cout
val s2 = Cat(Adder2.io.sum, s1)
// Adder for bit 3
val Adder3 = Module(new FullAdder())
Adder3.io.a := io.A(3)
Adder3.io.b := io.B(3)
Adder3.io.cin := Adder2.io.cout
io.Sum := Cat(Adder3.io.sum, s2).toUInt()
io.Cout := Adder3.io.cout

}

In this example, notice how when referencing
each module I/O we must first reference the io that
contains the ports for the I/Os. Again, note how
all assignments to the module I/Os use a reassign-
ment operator :=. When instantiating modules, it
is important to make sure that you connect all the
input and output ports. If a port is not connected,
the Chisel compiler may optimize away portions
of your design that it find unecessary due to the
unconnected ports and throw errors or warnings.

4.2 The Vec Class

The Vec class allows you to create an indexable vec-
tor in Chisel which can be filled with any expression
that returns a chisel data type. The general syntax
for a Vec declaration is given by:

val myVec =
Vec.fill(<number of elements>) { <data type> }

15

16 CHAPTER 4. INSTANTIATING MODULES

Where <number of elements> corresponds to how
long the vector is and <data type> corresponds to
what type of class the vector contains.

For instance, if we wanted to instantiate a 10 entry
vector of 5 bit UInt values, we would use:

val ufix5_vec10 := Vec.fill(10) { UInt(width = 5) }

If we want to define a vector of registers...

val reg_vec32 := Vec.fill(32){ Reg() }

In order to assign to a particular value of the Vec,
we simply assign the target value to the vector at a
specified index. For instance, if we wanted to assign
a UInt value of zero to the first register in the above
example, the assignment would look like:

reg_vec32(1) := UInt(0)

To access a particular element in the vector at
some index, we specify the index of the vector. For
example, to extract the 5th element of the register
vector in the above example and assign it to some
value reg5, the assignment would look like:

val reg5 = reg_vec(5)

The syntax for the Vec class is slightly different
when instantiating a vector of modules. When in-
stantiating a vector of modules the data type that
is specified in the braces is slightly different than
the usualy primitive types. To specify a vector of
modules, we use the io bundle when specifying the
type of the vector. For example, in order to specify
a Vec with 16 modules , say FullAdders in this case,
we would use the following declaration:

val FullAdders =
Vec.fill(16){ Module(new FullAdder()).io }

Notice we use the keyword new in the vector defi-
nition before the module name FullAdder. For how
to actually access the io on the vector modules, refer
to the next section.

4.2.1 Vec Shift Reg Problem

The next assignment is to construct a simple bit
shift register. The following is a the template from
$TUT_DIR/problems/VecShiftRegisterSimple.scala:

class VecShiftRegisterSimple extends Module {
val io = new Bundle {
val in = UInt(INPUT, 8)
val out = UInt(OUTPUT, 8)

}
val delays = Vec.fill(4){ Reg(UInt(width = 8)) }

...
io.out := UInt(0)

}

where out is a four cycle delayed copy of values on
in.

4.3 Parametrization

In the previous Adder example, we explicitly instan-
tiated four different copies of a FullAdder and wired
up the ports. But suppose we want to generalize
this structure to an n-bit adder. Like Verilog, Chisel
allows you to pass parameters to specify certain as-
pects of your design. In order to do this, we add a
parameter in the Module declaration to our Chisel
definition. For a carry ripple adder, we would like
to parametrize the width to some integer value n as
shown in the following example:

// A n-bit adder with carry in and carry out
class Adder(n: Int) extends Module {
val io = new Bundle {
val A = UInt(INPUT, n)
val B = UInt(INPUT, n)
val Cin = UInt(INPUT, 1)
val Sum = UInt(OUTPUT, n)
val Cout = UInt(OUTPUT, 1)

}
// create a vector of FullAdders
val FAs = Vec.fill(n){ Module(new FullAdder()).io }

// define carry and sum wires
val carry = Vec.fill(n+1){ UInt(width = 1) }
val sum = Vec.fill(n){ Bool() }

// first carry is the top level carry in
carry(0) := io.Cin

// wire up the ports of the full adders
for(i <- 0 until n) {

FAs(i).a := io.A(i)
FAs(i).b := io.B(i)
FAs(i).cin := carry(i)
carry(i+1) := FAs(i).cout
sum(i) := FAs(i).sum.toBool()

}
io.Sum := sum.toBits().toUInt()
io.Cout := carry(n)

}

Note that in this example, we keep track of the
sum output in a Vec of Bools. This is because Chisel
does not support bit assignment directly. Thus in
order to get the n-bit wide sum in the above example,
we use an n-bit wide Vec of Bools and then cast it
to a UInt(). Note that it must first be casted to the
Bits() type before casting it to UInt().

4.4. BUILT IN PRIMITIVES 17

You will notice that modules are instantiated in
a Vec class which allows us to iterate through each
module when assigning the ports connections to
each FullAdder. This is similar to the generate state-
ment in Verilog. However, you will see in more ad-
vanced tutorials that Chisel can offer more powerful
variations.

Instantiating a parametrized module is very sim-
ilar to instantiating an unparametrized module ex-
cept that we must provide arguments for the param-
eter values. For instance, if we wanted to instanti-
ate a 4-bit version of the Adder module we defined
above, it would look like:

val adder4 = Module(new Adder(4))

We can also instantiate the Adder by explicitly
specifying the value of it parameter n like the this:

val adder4 = Module(new Adder(n = 4))

Explicitly specifying the parameter is useful when
you have a module with multiple parameters. Sup-
pose you have a parametrized FIFO module with
the following module definition:

class FIFO(width: Int, depth: Int) extends Module {...}

You can explicitly specify the parameter values in
any order:

val fifo1 = Module(new FIFO(16, 32))
val fifo2 = Module(new FIFO(width = 16, depth = 32))
val fifo3 = Module(new FIFO(depth = 32, width = 16))

All of the above definitions pass the same param-
eters to the FIFO module. Notice that when you
explicitly assign the parameter values, they can oc-
cur in any order you want such as the definition for
fifo3.

4.4 Built In Primitives

Like other HDL, Chisel provides some very basic
primitives. These are constructs that are built in
to the Chisel compiler and come for free. The Reg,
UInt, and Bundle classes are such primitives that has
already been covered. Unlike Module instantiations,
primitive do not require explicit connections of their
io ports to use. Other useful primitive types include
the Mem and Vec classes which will be discussed in
a more advanced tutorial. In this tutorial we explore
the use of the Mux primitive

4.4.1 The Mux Class

The Mux primitive is a two input multiplexer. In
order to use the Mux we first need to define the ex-
pected syntax of the Mux class. As with any two
input multiplexer, it takes three inputs and one out-
put. Two of the inputs correspond to the data values
A and B that we would like to select which can be any
width and data type as long as they are the same.
The third input select which is a Bool type deter-
mines which one to output. A select value of true
will output the first value A, while a select value of
false will pass B.

val out = Mux(select, A, B)

Thus if A=10, B=14, and select was true, the value
of out would be assigned 10. Notice how using the
Mux primitive type abstracts away the logic struc-
tures required if we had wanted to implement the
multiplexer explicitly.

4.4.2 Parameterized Width Adder Prob-
lem

The next assignment is to construct an adder with a
parameterized width and using the built in addition
operator +. The following is a the template from
$TUT_DIR/problems/Adder.scala:

class Adder(val w: Int) extends Module {
val io = new Bundle {
val in0 = UInt(INPUT, 1)
val in1 = UInt(INPUT, 1)
val out = UInt(OUTPUT, 1)

}
...
io.out := UInt(0)

}

where out is sum of w width unsigned inputs in0 and
in1. Notice how val is added to the width parameter
value to allow the width to be accessible from the
tester as a field of the adder module object. Run

make Adder.out

until your circuit passes the tests.

18 CHAPTER 4. INSTANTIATING MODULES

Chapter 5

Writing Scala Testbenches

5.1 The Scala Testbench Simula-
tion

Chisel’s Scala based testbench is the first line of de-
fense against simple bugs in your design. The Scala
testbench uses several unique Chisel constructs to
perform this. To see how this works, let’s first ex-
plore a simple example.

5.1.1 Scala Testbench Example

Below is the ByteSelector.scala module definition
from the previous tutorial and the corresponding
Chisel test harness.

package TutorialExamples

import Chisel._

class ByteSelector extends Module {
val io = new Bundle {
val in = UInt(INPUT, 32)
val offset = UInt(INPUT, 2)
val out = UInt(OUTPUT, 8)

}
io.out := UInt(0, width = 8)
when (io.offset === UInt(0)) {
io.out := io.in(7,0)

} .elsewhen (io.offset === UInt(1)) {
io.out := io.in(15,8)

} .elsewhen (io.offset === UInt(2)) {
io.out := io.in(23,16)

} .otherwise {
io.out := io.in(31,24)

}
}

class ByteSelectorTests(c: ByteSelector)
extends Tester(c) {

val test_in = 12345678
for (t <- 0 until 4) {
poke(c.io.in, test_in)
poke(c.io.offset, t)
step(1)
expect(c.io.out, (test_in >> (t * 8)) & 0xFF)

}
}

In the test harness ByteSelectorTests we see that
the test portion is written in Scala with some Chisel
constructs inside a Tester class definition. The de-
vice under test is passed to us as a parameter c.

In the for loop, the assignments for each input of
the ByteSelector is set to the appropriate values us-
ing poke. For this particular example, we are testing
the ByteSelector by hardcoding the input to some
known value and checking if each of the 4 offsets
returns the appropriate byte. To do this, on each iter-
ation we generate appropriate inputs to the module
and tell the simulation to assign this value to the
input of the device we are testing c:

val test_in = 12345678
for (t <- 0 until 4) {
// set in of the DUT to be some known word
poke(c.io.in, test_in)
// set the offset of the DUT
poke(c.io.offset, t)
...

}

Next we step the circuit. We next advance the
simulation by calling the step function. This effec-
tively advances the simulation one clock cycle in the
presence of sequential logic.

step(1)

Finally, we check for expected outputs. In this
case, we check the expected output of ByteSelector
as follows:

expect(c.io.out, (test_in >> (t * 8)) & 0xFF)

This defines the reference output expected for
this particular cycle of the simulation. Since the
circuit we are testing is purely combinational, we
expected that the output we define appears on any
advancement of the simulation. The expect function
will record either true or false after checking if the
output generates the expected reference output. The

19

20 CHAPTER 5. WRITING SCALA TESTBENCHES

results of successive expect’s are anded into a Tester

field called ok which starts out as true. The value of
the ok field determines the success or failure of the
tester execution.

Actually expect is defined in terms of peek

roughly as follows:

def expect (data: Bits, expected: BigInt) =
ok = peek(data) == expected && ok

where peek gets the value of a signal from the
DUT.

5.1.2 Simulation Debug Output

Now suppose we run the testbench for the
ByteSelector defined previously. To do this,
cd into the $DIR/problems directory and run
make ByteSelector.

When we run the testbench, we will notice that
the simulation produces debug output every time
the step function is called. Each of these calls
gives the state of the inputs and outputs to the
ByteSelector and whether the check between the
reference output and expected output matched as
shown below:

STARTING ../emulator/problems/ByteSelector

POKE ByteSelector__io_in <- 12345678
POKE ByteSelector__io_offset <- 0
STEP 1 <- 0
PEEK ByteSelector__io_out -> 0x4e
EXPECT ByteSelector__io_out <- 78 == 78 PASS
POKE ByteSelector__io_in <- 12345678
POKE ByteSelector__io_offset <- 1
STEP 1 <- 0
PEEK ByteSelector__io_out -> 0x61
EXPECT ByteSelector__io_out <- 97 == 97 PASS
...
POKE ByteSelector__io_in <- 12345678
POKE ByteSelector__io_offset <- 3
STEP 1 <- 0
PEEK ByteSelector__io_out -> 0x00
EXPECT ByteSelector__io_out <- 0 == 0 PASS
PASSED // Final pass assertion
[success] Total time: 6 s, completed Feb 23, 2014

9:52:22 PM

Also notice that there is a final pass assertion
"PASSED" at the end which corresponds to the
allGood at the very end of the testbench. In this
case, we know that the test passed since the allGood
assertion resulted in a "PASSED". In the event of
a failure, the assertion would result in a "FAILED"
output message here.

5.1.3 General Testbench

In general, the scala testbench should have the fol-
lowing rough structure:

• Set inputs using poke

• Advance simulation using step

• Check expected values using expect (and/or
peek)

• Repeat until all appropriate test cases verified

For sequential modules we may want to delay
the output definition to the appropriate time as the
step function implicitly advances the clock one pe-
riod in the simulation. Unlike Verilog, you do not
need to explicitly specify the timing advances of the
simulation; Chisel will take care of these details for
you.

5.2 Max2 Testbench Problem

In this assignment, write a tester for the Max2 circuit:

class Max2 extends Module {
val io = new Bundle {
val in0 = UInt(INPUT, 8)
val in1 = UInt(INPUT, 8)
val out = UInt(OUTPUT, 8)

}
io.out := Mux(io.in0 > io.in0, io.in0, io.in1)

}

found in $TUT_DIR/problems/Max2.scala by filling
in the following tester:

class Max2Tests(c: Max2) extends Tester(c) {
for (i <- 0 until 10) {
// FILL THIS IN HERE
poke(c.io.in0, 0)
poke(c.io.in1, 0)
// FILL THIS IN HERE
step(1)
expect(c.io.out, 1)

}
}

using random integers generated as follows:

// returns random int in 0..lim-1
val in0 = rnd.nextInt(lim)

Run

make Max2.out

until the circuit passes your tests.

5.3. LIMITATIONS OF THE TESTBENCH 21

5.3 Limitations of the Testbench

The Chisel testbench works well for simple tests and
small numbers of simulation iterations. However,
for larger test cases, the Chisel testbench quickly
becomes more complicated and slower simply due
to the inefficiency of the infrastructure. For these
larger and more complex test cases, we recommend
using the C++ emulator or Verilog test harnesses
which run faster and can handle more rigorous test
cases.

22 CHAPTER 5. WRITING SCALA TESTBENCHES

Chapter 6

Creating Your Own Project

6.1 Creating Your Own Projects

In order to create your own projects from scratch,
you will need to create a directory, a Chisel source
file, and a build.sbt configuration file. In the first
part of this tutorial we cover the basic calls to SBT
in order generate appropriate files. At the end of the
tutorial, we will explain how the Makefile infrastruc-
ture can make the process more streamlined.

6.1.1 Directory Structure

The simplest project file organization is using a sin-
gle directory containing your Scala project file and
your Chisel source file. The project directory struc-
ture would look like:

Hello/
build.sbt # scala configuration file
Hello.scala # your source file

We will refer to the path to the Hello directory as
$BASEDIR from here on. More sophisticated directory
structures can be useful in the future. Consult the
SBT documentation for more information.

6.1.2 The Source Directory and Chisel
Main

The top directory $BASEDIR/ contains Scala source
files containing all of the Chisel module definitions
for your circuit and a main method. In this simple
example, we have one Scala source file as shown
below:

package Hello

import Chisel._

class HelloModule extends Module {
val io = new Bundle {
val out = UInt(OUTPUT, 8)

}

io.out := UInt(42)
}

class HelloModuleTests(c: HelloModule)
extends Tester(c) {

step(1)
expect(c.io.out, 42)

}

object hello {
def main(args: Array[String]): Unit = {
val margs =
Array("--backend", "c", "--genHarness",

"--compile", "--test")
chiselMainTest(margs, () => Module(new

HelloModule())) {
c => new HelloModuleTests(c)

})
}

}

In the above example, we have a module defi-
nition in package Hello for a Hello module. The
main method calls chiselMainTest for a new Hello
module1. In addition to creating the module, the
call to chiselMainTest also includes a call to ex-
ecute the scala testbench defined in the routine
HelloModuleTests.

6.1.3 The build.sbt Template

The build.sbt configuration file is located in the
top folder and contains a number of settings used by
sbt when building and compiling the Chisel sources.
The following shows the recommended build.sbt

template that should be used:

scalaVersion := "2.10.2"

resolvers ++= Seq(
"scct-github-repository" at

"http://mtkopone.github.com/scct/maven-repo"
)

1Note that when you have multiple Scala files, in order for
main to recognize your module definition, your module defini-
tion must be in the same package as the main function

23

24 CHAPTER 6. CREATING YOUR OWN PROJECT

libraryDependencies +=
"edu.berkeley.cs" %% "chisel" % "latest.release"

The SBT project file contains a reference to Scala
version greater or equal to 2.10.2 and a dependency
on the latest release of the Chisel library.

6.2 Compiling the Chisel Source

6.2.1 Compiling the Emulation Files

In order to launch SBT to compile the Chisel code
we must first be in the directory $BASEDIR/. The
following call is then made to compile and run the
Hello module:

sbt run

6.2.2 Running the Chisel Tests

To actually run the tests referenced in the main
method of $BASEDIR/Hello.scala, we need to tell
SBT to also generate the harness and run the tests.
For instance, for our Hello module introduced ear-
lier, the Chisel main method references a test routine
HelloTests. In order to both compile the Hello com-
ponent and run the tests defined in Hello, we make
the following call to sbt:

sbt "run --backend c --compile --test --genHarness"

Note the addition of the 5 arguments at the end
of the call to run. This will both compile the .cpp

and .h files for the emulator and run the Chisel tests
defined.

6.2.3 Compiling Verilog

Similarly to compile the Chisel code and generate
the Verilog HDL, a similar call to SBT is made with
slightly different arguments. The call looks like:

sbt "run --backend v --genHarness"

Notice the call is very similar to when generat-
ing C++; the key difference is the parameter to the
--backend attribute which is now v which specifies
to sbt that we would like to compile our Chisel com-
ponent to Verilog.

6.3 Putting It All Together

In summary, the bare minimum project components
that are necessary for your project to get off the
ground are the following files:

1. $BASEDIR/build.sbt

2. $BASEDIR/<Chisel source files>.scala

Together, these files compose a Chisel project and
can be used to generate the Verilog and C++ files.
It is strongly recommended that you supplement
the file structure with appropriate Makefiles but is
not strictly necessary (examples can be found in the
Chisel tutorial project).

Chapter 7

Conditional Assignments and Memories

7.1 Conditional Register Updates

As shown earlier in the tutorial, conditional register
updates are performed with the when block which
takes a Bool value or some boolean expression to
evaluate. In this section we more fully explore how
to use this when conditional update structure.

If a when block is used by itself, Chisel will as-
sume that if the condition for the when block doesn’t
evaluate to true, there is no update to the register
value. However, most of the time we don’t want
to limit ourselves to a single conditional. Thus in
Chisel we use .elsewhen and .otherwise statements
to select between multiple possible register updates
as shown in the following sections.

7.1.1 The .elsewhen Clause

When specifying a conditional update, we may want
to check several conditions which we want to check
in some order. To do this for register updates, we use
a whenelsewhen structure. This is analagous
to an if... else if control structure in sequential
programming. 1 As with else if clauses, as many
.elsewhen statements can be chained together in a
single when block.

The general structure thus looks like:

when (<condition 1>) {<register update 1>}
.elsewhen (<condition 2>) {<register update 2>}
...
.elsewhen (<condition N>) {<register update N>}

Where <condition 1> through <condition N>

represent the trigger conditions of their respective
<register update> segments.

An example of this statement in action is shown
in the following implementation of a simple stack
pointer. Suppose, we need to maintain a pointer

1Note that the if .. else if control structure in Chisel is NOT
used to specify register updates

that keeps track of the address of the top of a stack.
Given a signal pop that decrements the stack pointer
address by 1 entry and a signal push that increments
the stack pointer address by 1 entry, the implementa-
tion of just the pointer would look like the following:

class StackPointer(depth:Int) extends Module {
val io = new Bundle {
val push = Bool(INPUT)
val en = Bool(INPUT)
val pop = Bool(INPUT)

}

val sp = Reg(init = UInt(0, width = log2Up(depth)))

when (io.en && io.push && (sp != UInt(depth-1))) {
sp := sp + UInt(1)

} .elsewhen(io.en && io.pop && (sp > UInt(0))) {
sp := sp - UInt(1)

}
}

Notice that in this implementation, the push sig-
nal has higher priority over the pop signal as it ap-
pears earlier in the when block.

7.1.2 The .otherwise Clause

In order to specify a default register update value
if all the conditions in the when block fail to trig-
ger, we use an .otherwise clause. The .otherwise

clause is analagous to the else case that completes
an if ... else block. The .otherwise statement
must occur last in the when block.

The general structure for the complete when block
now looks like:

when (<condition 1>) {<register update 1>}
.elsewhen (<condition 2>) {<register update 2>}
...
.elsewhen (<condition N>) {<register update N>}
.otherwise {<default register update>}

In the previous example, we could add a default
statement which just assigns sp to the current value

25

26 CHAPTER 7. CONDITIONAL ASSIGNMENTS AND MEMORIES

of sp. The block would then look like:

when(io.en && io.push && (sp != UInt(depth-1))) {
sp := sp + UInt(1)

} .elsewhen(io.en && io.pop && (sp > UInt(0))) {
sp := sp - UInt(1)

} .otherwise {
sp := sp

}

The explicit assignment to preserve the value of
sp is redundant in this case but it captures the point
of the .otherwise statement.

7.1.3 The unless Clause

To complement the when statement, Chisel also sup-
ports an unless statement. The unless statement is a
conditional assignment that triggers only if the con-
dition is false. The general structure for the unless

statement is:

unless (<condition>) { <assignments> }

For example, suppose we want to do a simple
search of the contents of memory and determine the
address that contains some number. Since we don’t
know how long the search will take, the module will
output a done signal when it is finished and until
then, we want to continue to search memory. The
Chisel code for the module would look like:

class MemorySearch extends Module {
val io = new Bundle {
val target = UInt(INPUT, 4)
val address = UInt(OUTPUT, 3)
val en = Bool(INPUT)
val done = Bool(INPUT)

}
val index = Reg(init = UInt(0, width = 3))
val list = Vec(UInt(0), UInt(4), UInt(15), UInt(14),

UInt(2), UInt(5), UInt(13))
val memVal = list(index)

val done = (memVal === io.target) || (index ===
UInt(7))

unless (done) {
index := index + UInt(1)

}
io.done := done
io.address := index

}

In this example, we limit the size of the memory
to 8 entries and use a vector of literals to create a read
only memory. Notice that the unless statement is
used to terminate the iteration if it see that the done

signal is asserted. Otherwise, it will continue to in-
crement the index in memory until it finds the value
in target or reaches the last index in the memory

(7).

7.2 Combinational Conditional
Assignment

You can also use the when .elsewhen .otherwise

block to define combinational values that may take
many values. For example, the following Chisel
code show how to implement a basic arithmetic unit
with 4 operations: add, subtract, and pass. In this
example, we check the opcode to determine which
operation to perform and conditionally assign the
output.

class BasicALU extends Module {
val io = new Bundle {
val a = UInt(INPUT, 4)
val b = UInt(INPUT, 4)
val opcode = UInt(INPUT, 2)
val output = UInt(OUTPUT, 4)

}
io.output := UInt(0)
when (io.opcode === UInt(0)) {
io.output := io.a + io.b // ADD

} .elsewhen (io.opcode === UInt(1)) {
io.output := io.b - io.b // SUB

} .elsewhen (io.opcode === UInt(2)) {
io.output := io.a // PASS A

} .otherwise {
io.output := io.b // PASS B

}
}

Notice that this can easily be easily expanded to
check many different conditions for more compli-
cated arithmetic units or combinational blocks.

7.3 Read Only Memories

To instantiate read only memories in Chisel, we use
a vector of constant literals and specify a literal type.
For example, in order to instantiate an 4 entry read
only memory with the values 0 to 3, the definition
would look like the following:

val numbers =
Vec(UInt(0),UInt(1),UInt(2),UInt(3)){ UInt(width = 2) }

Notice that we need to specify the type of literal
in the ... braces following the literals. Accessing
the values in the read only memory is the same as
accessing an entry in a Vec. For example, to access
the 2nd entry of the memory we would use:

val entry2 = numbers(2)

7.4. READ-WRITE MEMORIES 27

7.4 Read-Write Memories

Chisel contains a primitive for memories called Mem.
Using the Mem class it is possible to construct multi-
ported memory that can be synchronous or combi-
national read. 2

7.4.1 Basic Instantiation

The Mem construction takes a memory depth and
a data type which it is composed of. The general
declaration structure looks like:

val myMem = Mem(<type>, <depth>)

Where <depth> corresponds to the number of en-
tries of <type> are in the memory.

For instance, if you wanted to create a 128 deep
memory of 32 bit UInt types, you would use the
following instantiation:

val myMem = Mem(UInt(width = 32), depth = 128)

Note that when constructing a memory in Chisel,
the initial value of memory contents cannot be spec-
ified. Therefore, you should never assume anything
about the initial contents of your Mem class.

7.4.2 Synchronous vs. Combinational
Read

It is possible to specify either combinational or syn-
chronous read behavior during instantiation by set-
ting the seqRead parameter when defining the Mem.
The seqRead parameter is a Bool that tells Chisel if
you want synchronous read behavior memory or
not.

For instance, if we wanted a combinational read
128 entry memory of 32 bit UInt types, we would
use the following definition:

val asyncMem =
Mem(UInt(width = 32), 128, seqRead = false)

Likewise, if we wanted a synchronous read 128
entry memory of 32 bit UInt types, we would set the
seqRead to true:

val syncMem =
Mem(UInt(width = 32), 128, seqRead = true)

By default, Chisel will assume that the read be-
havior is combinational.

2The complete definition can be found in the chisel source in
Mem.scala

7.4.3 Adding Write Ports

To add write ports to the Mem, we use a when block
to allow Chisel to infer a write port. Inside the when

block, we specify the location and data for the write
transaction. In general, adding a write port requires
the following definition:

when (<write condition>) {
<memory name>(<write address>) := <write data>

}

Where <write address> refers to the entry num-
ber in the memory to write to. Also notice that we
use the reassignment operator := when writing to
the memory.

For example, suppose we have a 128 deep mem-
ory of 32 bit UInt types. If we wanted to write a 32 bit
value dataIn to the memory at location writeAddr

if as write enable signal we is true, our Chisel code
would look like:

...
val myMem = Mem(UInt(width = 32), depth = 128)
when (wen) {
myMem(writeAddr) := dataIn

}
...

<what is the behavior of multiple write ports?>

7.4.4 Adding Read Ports

Depending on the type of read behaviour specified,
the syntax for adding read ports to Mem in Chisel is
slightly different for combinational read and syn-
chronous read memories.

Combinational Read Ports

For combinational read memories, adding read ports
to the memory simply amounts to placing an assign-
ment inside a when block with some trigger condi-
tion. If you want Chisel to infer multiple read ports,
simply add more assignments in the when definition.
The general definition for read ports is thus:

when (<read condition>) {
<read data 1> := <memory name>(<read address 1>)
...
<read data N> := <memory name>(<read address N>)

}

For instance, if you wanted a 128 entry memory
of 32 bit UInt values with two combinational read
ports, with some read enable re and reads from ad-
dresses raddr1 and raddr2, we would use the follow-
ing when block definition:

28 CHAPTER 7. CONDITIONAL ASSIGNMENTS AND MEMORIES

...
val myMem =
Mem(UInt(width = 32), 128, seqRead = false)

val read_port1 = UInt(width = 32)
val read_port2 = UInt(width = 32)
when (re) {
read_port1 := myMem(raddr1)
read_port2 := myMem(raddr2)

}
...

Note that the type and width of the read_port1

and read_port2 should match the type and width of
the entries in the Mem.

Synchronous Read Ports

In order to add synchronous read ports to the Chisel
Mem class, Chisel requires that the output from the
memory be assigned to a Reg type. Like the combi-
national read port, a synchronous read assignment
must occur in a when block. The general structure
for the definition of a synchronous read port is as
follows:

...
val myMem =
Mem(UInt(width = 32), depth = 128, seqRead = true)

val read_port = Reg(UInt(width = 32))
when (re) {
read_port := myMem(raddr)

}
...

7.4.5 Example of Mem in Action

Here we provide a small example of using a memory
by implementing a stack.

Suppose we would like to implement a stack that
takes two signals push and pop where push tells the
stack to push an input dataIn to the top of the stack,
and pop tells the stack to pop off the top value from
the stack. Furthermore, an enable signal en disables
pushing or popping if not asserted. Finally, the stack
should always output the top value of the stack.

class Stack(depth: Int) extends Module {
val io = new Bundle {
val dataIn = UInt(INPUT, 32)
val dataOut = UInt(OUTPUT, 32)
val push = Bool(INPUT)
val pop = Bool(INPUT)
val en = Bool(INPUT)

}

// declare the memory for the stack
val stack_mem =
Mem(UInt(width = 32), depth, seqRead = false)

val sp = Reg(init = UInt(0, width = log2Up(depth)))

val dataOut = Reg(init = UInt(0, width = 32))

// Push condition - make sure stack isn’t full
when(io.en && io.push && (sp != UInt(depth-1))) {
stack_mem(sp + UInt(1)) := io.dataIn
sp := sp + UInt(1)

}
// Pop condition - make sure the stack isn’t empty
.elsewhen(io.en && io.pop && (sp > UInt(0))) {
sp := sp - UInt(1)

}

when(io.en) {
dataOut := stack_mem(sp)

}

io.dataOut := dataOut
}

Since the module is parametrized to be depth

entries deep, in order to correctly extract the min-
imum width of the stack pointer sp we take the
log2Up(depth). This takes the base 2 logarithm of
depth and rounds up.

7.4.6 Load/Search Mem Problem

In this assignment, write a memory module that
supports loading elements and searching based on
the following template:

class DynamicMemorySearch(val n: Int, val w: Int)
extends Module {

val io = new Bundle {
val isWr = Bool(INPUT)
val wrAddr = UInt(INPUT, log2Up(n))
val data = UInt(INPUT, w)
val en = Bool(INPUT)
val target = UInt(OUTPUT, log2Up(n))
val done = Bool(OUTPUT)

}
val index = Reg(init = UInt(0, width = log2Up(n)))
val memVal = UInt(0)
/// fill in here
io.done := Bool(false)
io.target := index

}

and found in $TUT_DIR/problems/DynamicMemorySearch.scala.
Notice how it support depth and width parameters
n and w and how the address width is computed
from the depth. Run

make DynamicMemorySearch.out

until your circuit passes the tests.

Chapter 8

Scripting Hardware Generation

8.1 Using the For loop

Often times parametrization requires instantiating
multiple components which are connected in a very
regular structure. A revisit to the parametrized
Adder component definition shows the for loop con-
struct in action:

// A n-bit adder with carry in and carry out
class Adder(n: Int) extends Module {
val io = new Bundle {
val A = UInt(INPUT, n)
val B = UInt(INPUT, n)
val Cin = UInt(INPUT, 1)
val Sum = UInt(OUTPUT, n)
val Cout = UInt(OUTPUT, 1)

}
// create a vector of FullAdders
val FAs = Vec.fill(n){ Module(new FullAdder()).io }
val carry = Vec.fill(n+1){ UInt(width = 1) }
val sum = Vec.fill(n){ Bool() }

// first carry is the top level carry in
carry(0) := io.Cin

// wire up the ports of the full adders
for(i <- 0 until n) {

FAs(i).a := io.A(i)
FAs(i).b := io.B(i)
FAs(i).cin := carry(i)
carry(i+1) := FAs(i).cout
sum(i) := FAs(i).sum.toBool()

}
io.Sum := sum.toBits().toUInt()
io.Cout := carry(n)

}

Notice that a Scala integer i value is used in the
for loop definition as the index variable. This index-
ing variable is specified to take values from 0 until

n, which means it takes values 0, 1, 2..., n-1. If we
wanted it to take values from 0 to n inclusive, we
would use for (i <- 0 to n).

It is also important to note, that the indexing vari-
able i does not actually manifest itself in the gener-
ated hardware. It exclusively belongs to Scala and
is only used in declaring how the connections are

specified in the Chisel component definition.
The for loop construct is also very useful for as-

signing to arbitrarily long Vecs

8.2 Using If, Else If, Else

As previously mentioned, the if, elseif, and else

keywords are reserved for Scala control structures.
What this means for Chisel is that these constructs
allow you to selectively generate different structures
depending on parameters that are supplied. This is
particularly useful when you want to turn certain
features of your implementation "on" or "off", or if
you want to use a different variant of some compo-
nent.

For instance, suppose we have several simple
counters that we would like to package up into a gen-
eral purpose counter module: UpCounter, Down-
Counter, and OneHotCounter. From the definitions
below, we notice that for these simple counters, the
I/O interfaces and parameters are identical:

// Simple up counter that increments from 0 and wraps
around

class UpCounter(CounterWidth:Int) extends Module {
val io = new Bundle {
val output = UInt(OUTPUT, CounterWidth)
val ce = Bool(INPUT)

}...
}

// Simple down counter that decrements from
// 2^CounterWidth-1 then wraps around
class DownCounter(CounterWidth:Int) extends Module{
val io = new Bundle {
val output = UInt(OUTPUT, CounterWidth)
val ce = Bool(INPUT)

}...
}

// Simple one hot counter that increments from one hot 0
// to CounterWidth-1 then wraps around
class OneHotCounter(CounterWidth:Int) extends Module {
val io = new Bundle {

val output = UInt(OUTPUT, CounterWidth)

29

30 CHAPTER 8. SCRIPTING HARDWARE GENERATION

val ce = Bool(INPUT)
}...

}

We could just instantiate all three of these coun-
ters and multiplex between them but if we needed
one at any given time this would be a waste of hard-
ware. In order to choose between which of these
three counters we want to instantiate, we can use
Scala’s if, else if, else statements to tell Chisel
how to pick which component to instantiate based
on a CounterType parameter:

class Counter(CounterWidth: Int, CounterType: String)
extends Module {

val io = new Bundle {
val output = UInt(OUTPUT, CounterWidth)
val ce = Bool(INPUT)

}
if (CounterType == "UpCounter") {

val upcounter = new UpCounter(CounterWidth)
upcounter.io.ce := io.ce
io.output := upcounter.io.output

} else if (CounterType == "DownCounter") {
val downcounter = new DownCounter(CounterWidth)
downcounter.io.ce := io.ce
io.output := downcounter.io.output

} else if (CounterType == "OneHotCounter") {
val onehotcounter = new OneHotCounter(CounterWidth)
onehotcounter.io.ce := io.ce
io.output := onehotcounter.io.output

} else {
// default output 1
io.output := UInt(1)

}
}

By consolidating these three counter components
into a single Counter module, we can instantiate a
different counter by simply changing the parameter
CounterType. For instance:

// instantiate a down counter of width 16
val downcounter =
Module(new Counter(16, "DownCounter"))

// instantiate an up counter of width 16
val upcounter =
Module(new Counter(16, "UpCounter"))

// instantiate a one hot counter of width 16
val onehotcounter =
Module(new Counter(16, "OneHotCounter"))

This allows seamless alternation between them.

8.3 Using def

Chisel also allows the usage of the Scala def state-
ment to define Chisel code that may be used fre-
quently. These def statements can be packaged into

a Scala Object and then called inside a Module. The
following Chisel code shows an alternate implemen-
tation of an counter using def that increments by
amt if the inc signal is asserted.

object Counter {
def wrapAround(n: UInt, max: UInt) =
Mux(n > max, UInt(0), n)

def counter(max: UInt, en: Bool, amt: UInt) = {
val x = Reg(init = UInt(0, max.getWidth))
x := wrapAround(x + amt, max)
x

}
}

class Counter extends Module {
val io = new Bundle {
val inc = Bool(INPUT)
val amt = UInt(INPUT, 4)
val tot = UInt(OUTPUT, 8)

}
io.tot := counter(UInt(255), io.inc, io.amt)

}

In this example, we use calls to subroutines defined
in the Counter object in order to perform the appro-
priate logic.

8.4 Parameterized Vec Shift Reg
Problem

The next assignment is to construct a
bit shift register with delay parameter.
The following is a the template from
$TUT_DIR/problems/VecShiftRegisterParam.scala:

class VecShiftRegisterParam(val n: Int, val w: Int)
extends Module {

val io = new Bundle {
val in = UInt(INPUT, w)
val out = UInt(OUTPUT, w)

}
...
io.out := UInt(0)

}

where out is a n cycle delayed copy of values on
in. Also notice how val is added to each parameter
value to allow those values to be accessible from the
tester. Run

make VecShiftRegisterParam.out

until your circuit passes the tests.

8.5. MUL LOOKUP TABLE PROBLEM 31

8.5 Mul Lookup Table Problem

The next assignment is to write a 16x16 multiplica-
tion table using Vec. The following is a the template
from $TUT_DIR/problems/Mul.scala:

class Mul extends Module {
val io = new Bundle {
val x = UInt(INPUT, 4)
val y = UInt(INPUT, 4)
val z = UInt(OUTPUT, 8)

}
val muls = new ArrayBuffer[UInt]()

// flush this out ...

io.z := UInt(0)
}

As a hint build the lookup table using a rom con-
structed from the tab lookup table represented as
a Scala ArrayBuffer with incrementally added ele-
ments (using +=):

val tab = Vec(muls)

and lookup the result using an address formed from
the x and y inputs as follows:

io.z := tab(Cat(io.x, io.y))

Run

make Mul.out

until your circuit passes the tests.

	Chisel Installation
	Introduction
	Development Tool Installation

	Setting Up the Tutorial
	The Tutorials

	The Basics
	The Chisel Directory Structure
	Running Your First Chisel Build
	The Chisel Source Code
	Running the Chisel Simulation
	Generating the Verilog

	Combinational Logic
	The Scala Node: Declaring Wires
	Bit Width Inference

	Using Registers
	Unconditional Register Update
	Conditional Register Update
	Register Reset
	redSequential Circuit Problem

	Basic Types and Operations
	Chisel Assignments and Reassignments
	The Chisel UInt Class
	Bit Extraction
	Bit Concatenation
	redLFSR16 Problem
	UInt Operation Bit Inference

	The Chisel Bool Class
	Casting Between Types

	Instantiating Modules
	Module Instantiation
	The Vec Class
	redVec Shift Reg Problem

	Parametrization
	Built In Primitives
	The Mux Class
	redParameterized Width Adder Problem

	Writing Scala Testbenches
	The Scala Testbench Simulation
	Scala Testbench Example
	Simulation Debug Output
	General Testbench

	redMax2 Testbench Problem
	Limitations of the Testbench

	Creating Your Own Project
	Creating Your Own Projects
	Directory Structure
	The Source Directory and Chisel Main
	The build.sbt Template

	Compiling the Chisel Source
	Compiling the Emulation Files
	Running the Chisel Tests
	Compiling Verilog

	Putting It All Together

	Conditional Assignments and Memories
	Conditional Register Updates
	The .elsewhen Clause
	The .otherwise Clause
	The unless Clause

	Combinational Conditional Assignment
	Read Only Memories
	Read-Write Memories
	Basic Instantiation
	Synchronous vs. Combinational Read
	Adding Write Ports
	Adding Read Ports
	Example of Mem in Action
	redLoad/Search Mem Problem

	Scripting Hardware Generation
	Using the For loop
	Using If, Else If, Else
	Using def
	Parameterized Vec Shift Reg Problem
	redMul Lookup Table Problem

