
W e be l i eve the key to the 10 's longev i ty is its
bas ica l ly s imple , c lean s t ruc ture wi th a d e q u a t e l y large
(one M b y t e) address space tha t a l lows users to get
work done . In this way , it has evo lved eas i ly wi th use
and with t echno logy . A n equa l ly s ignif icant fac tor in
its success is a single o p e r a t i n g sys tem e n v i r o n m e n t
enab l ing user p r o g r a m shar ing a m o n g all mach ines .
The mach ine has thus a t t r a c t ed users who have bui l t
s ignif icant l anguages and app l i ca t ions in a va r ie ty of
env i ronmen t s . These u s e r - d e v e l o p e r s a re thus the
d o m i n a n t sys tem a rch i t ec t s - imp lemen to r s .

In r e t ro spec t , the mach ine t u rned out to be l a rge r
and fu r the r f rom a m i n i c o m p u t e r than we expec t ed .
A s such it could easi ly have d ied o r d e s t r o y e d the t iny
D E C organ iza t ion tha t s t a r t ed it. W e hope that this
p a p e r has p rov ided insight in to the in te rac t ions of its
d e v e l o p m e n t .

Acknowledgments . D a n S iewio rek dese rves ou r
g rea tes t thanks for he lp ing with a c o m p l e t e ed i t ing of
the text . The re fe rees and ed i to r s have been espec ia l ly
helpful . The i m p o r t a n t p r o g r a m con t r ibu t ions by users
a re too n u m e r o u s for us to give by name but he re a re
most of them: APL, Basic , BLISS, DDT, LISP, Pasca l ,
S imula , sos , TECO, and Tenex . L ikewise , t he re have
been so many con t r ibu t ions to the 10 's a rch i t ec tu re
and i m p l e m e n t a t i o n s within D E C and t h r o u g h o u t the
user c o m m u n i t y tha t we da re not give wha t wou ld be a
pa r t i a l list.

Received April 1977; revised September 1977

References
1. Bell, G., Cady, R., McFarland, H., Delagi, B., O'Laughlin, J.,
and Noonan, R. A new architecture for minicomputers---,the DEC
PDP-11. Proc. AFIPS 1970 SJCC, Vol. 36, AFIPS Press,
Montvale, N.J., pp. 657-675.
2. Bell, G., and Freeman, P. C a i - A computer architecture for
AI research AFIPS Conf. Proc. Vol. 38 (Spring, 1971), 779-790.
3. Bell, G., and Newell, A. Computer Structures: Readings and
Examples. McGraw-Hill, New York, 1971.
4. Bobrow, D.G., Burchfiel, J.D., Murphy, D. L., and
Tomlinson, R.S. TENEX, A Paged Time Sharing System for the
PDP-10. Comm. ACM 15, 3 (March 1972), 135-143.
5. Bullman, D.M. Editor, stack computers issue. Computer 10, 5
(May 1977), 14-52.
6. Clark, W.A. The Lincoln TX-2 computer. Proc. WJCC 1957,
Vol. 11, pp. 143-171.
7. Lunde, A. Empirical evaluation of some features of Instruction
Set Processor architecture. Comm. ACM 20, 3 (March 1977), 143-
152.
8. Mitchell, J.L., and Olsen, K.H. TX-0, a transistor computer.
Proc. EJCC 1956, Vol. 10, pp. 93-100.
9. McCarthy, J. Time Sharing Computer Systems, Management
and the Computer of the Future M. Greenberger, Ed., M.I.T. Press,
Cambridge, Mass., 1962, pp. 221-236.
10. Murphy, D.L. Storage organization and management in
TENEX. Proc. AFIPS 1972 FJCC, Vol. 41, Pt. I, AFIPS Press,
Montvale, N.J., pp. 23-32.
11. Olsen, K.H. Transistor circuitry in the Lincoln TX-2. Proc.
WJCC 1957, Vol. 11, pp. 167-171.
12. Roberts, L.G. Ed. Section on Resource Sharing Computer
Networks. AFIPS 1970 SJCC, Vol. 36, AFIPS Press, Montvale,
N.J., pp. 543-598.
13. Wulf, W., and Bell, G. C.mmp--A mutli-mini-processor. Proc.
AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp.
765-777.
14. Wulf, W., Russell, D., and Habermann, A.N. BLISS: A
language for systems programming. Comm. ACM 14, 12 (Dec.
1971), 780-790.

63

C o m p u t e r
Sys tems

G . Bel l , S. H . Fu l l e r , and
D. S i ewio rek , E d i t o r s

The CRAY- 1
Computer System
R i c h a r d M . R u s s e l l
C r a y R e s e a r c h , I n c .

This paper describes the C R A Y , 1 , discusses the
evolution of its architecture, and gives an account of
some of the problems that were overcome during its
manufacture.

The CRAY-1 is the only computer to have been
built to date that satisfies ERDA's Class VI
requirement (a computer capable of processing from
20 to 60 million floating point operations per second)
[11.

The CRAY-I 's Fortran compiler (CVT) is designed
to give the scientific user immediate access to the
benefits of the C R A Y - r s vector processing
architecture. An optimizing compBer, cFr,
"vectorizes" innermost D O loops. Compatible with
the ANSI 1966 Fortran Standard and with many
commonly supported Fortran extensions, CVT does not
require any source program modifications or the use
of additional nonstandard Fortran statements to
achieve vectorization. Thus the user's investment of
hundreds of man months of effort to develop Fortran
programs for other contemporary computers is
protected.

Key Words and Phrases: architecture, computer
systems

CR Categories: 1.2, 6.2, 6.3

Introduction

V e c t o r p rocessors a re no t ye t c o m m o n p l a c e ma-
chines in the la rger -sca le c o m p u t e r ma rke t . A t the
t ime of this wri t ing we know of only 12 n o n - C R A Y - 1
vec to r p roces so r ins ta l la t ions wor ldwide . O f these 12,
the mos t power fu l p roces so r is the I L L I A C I V (1
ins ta l l a t ion) , the mos t p o p u l o u s is the Texas Ins t ru-
men t s A d v a n c e d Scientif ic C o m p u t e r (7 ins ta l la t ions)
and the mos t pub l i c ized is Con t ro l D a t a ' s S T A R 100

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that" reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Author's address: Cray Research Inc., Suite 213, 7850 Metro
Parkway, Minneapolis, MN 55420.

Communications January 1978
of Volume 21
the ACM Number 1

Krste Asanovic

(4 installations). In its report on the CRAY-1, Auer-
bach Computer Technology Reports published a com-
parison of the CRAY-1, the ASC, and the STAR 100
[2]. The CRAY-1 is shown to be a more powerful
computer than any of its main competi tors and is
est imated to be the equivalent of five IBM 370/195s.

Independent benchmark studies have shown the
CRAY-1 fully capable of supporting computat ional
rates of 138 million floating-point operations per sec-
ond (MFLOPS) for sustained periods and even higher
rates of 250 MrLOPS in short bursts [3, 4]. Such
comparat ively high performance results from the
CRAY-1 internal architecture, which is designed to
accommodate the computat ional needs of carrying out
many calculations in discrete steps, with each step
producing interim results used in subsequent steps.
Through a technique called "chaining," the CRAY-1
vector functional units, in combination with scalar and
vector registers, generate interim results and use them
again immediately without additional memory refer-
ences, which slow down the computat ional process in
other contemporary computer systems.

Other features enhancing the C R A Y - I ' s computa-
tional capabilities are: its small size, which reduces
distances electrical signals must travel within the com-
puter 's f ramework and allows a 12.5 nanosecond clock
period (the CRAY-1 is the world's fastest scalar proc-
essor); a one million word semiconductor memory
equipped with error detection and correction logic
(SECD~D); its 64-bit word size; and its optimizing
Fortran compiler.

Architecture

The CRAY-1 has been called " the world's most
expensive love-seat" [5]. Certainly, most people 's first
reaction to the C R A Y - I is that it is so small. But in
computer design it is a truism that smaller means
faster. The greater the separation of components , the
longer the time taken for a signal to pass between
them. A cylindrical shape was chosen for the CRAY-1
in order to keep wiring distances small.

Figure 1 shows the physical dimensions of the
machine. The mainframe is composed of 12 wedge-
like columns arranged in a 270 ° arc. This leaves room
for a reasonably trim individual to gain access to the
interior of the machine. Note that the love-seat dis-
guises the power supplies and some plumbing for the
Freon cooling system. The photographs (Figure 2 and
3) show the interior of a working CRAY-1 and an
exterior view of a column with one module in place.
Figure 4 is a photograph of the interior of a single
module.

An Analysis of the Architecture
Table I details important characteristics of the

CRAY-1 Compute r System. The CRAY-1 is equipped
with 12 i/o channels, 16 memory banks, 12 functional

64

Fig. 1. Physical organization of mainframe.

1, 1031/2" ,I
- Dimensions

Base-103½ inches diameter by 19 inches high
Columns-56½ inches diameter by 77 inches high including

height of base
--24 chassis
- 1662 modules; 113 module types
--Each module contains up to 288 IC packages per module
-Power consumption approximately 115 kw input for maximum

memory size
--Freon cooled with Freon/water heat exchange
-Three memory options
-Weight 10,500 lbs (maximUm memory size)
-Three basic chip types

5/4 NAND gates
Memory chips
Register chips

units, and more than 4k bytes of register storage.
Access to memory is shared by the i/o channels and
high-speed registers. The most striking features of the
CRAY-1 are: only four chip types, main memory
speed, cooling system, and computat ion section.

Four Chip Types
Only four chip types are used to build the CRAY-

1. These are 16 × 4 bit bipolar register chips (6
nanosecond cycle t ime), 1024 × 1 bit bipolar memory
chips (50 nanosecond cycle t ime), and bipolar logic
chips with subnanosecond propagat ion times. The logic
chips are all simple low- or high-speed gates with both
a 5 wide and a 4 wide gate (5/4 NAND). Emit ter-
coupled logic circuit (ECL) technology is used through-
out the CRAY-1 .

The printed circuit board used in the CRAY-1 is a
5-layer board with the two outer surfaces used for
signal runs and the three inner layers for - 5 . 2 V ,
- 2 . 0 V , and ground power supplies. The boards are
six inches wide, 8 inches long, and fit into the chassis
as shown in Figure 3.

All integrated circuit devices used in the CRAY-1
are packaged in 16-pin hermetically sealed flat packs
supplied by both Fairchild and Motorola . This type of
package was chosen for its reliability and compactness.
Compactness is of special importance; as many as 288
packages may be added to a board to fabricate a
module (there are 113 module types), and as many as
72 modules may be inserted into a 28-inch-high chassis.

Communications January 1978
of Volume 21
the ACM Number 1

Fig. 2. The CRAY-1 Computer. Fig. 4. A single module.

Fig. 3. CRAY-1 modules in place.

Such component densities evitably lead to a mammoth
cooling problem (to be described).

Main Memory Speed
CRAY-1 memory is organized in 16 banks, 72

modules per bank. Each module contributes 1 bit to a
64-bit word. The other 8 bits are used to store an 8-bit
check byte required for single-bit error correction,
double-bit error detection (SECDEO). Data words are
stored in 1-bank increments throughout memory. This
organization allows 16-way interleaving of memory
accesses and prevents bank conflicts except in the case

65

Table I. CRAY-1 CPU characteristics summary

Computation Section
Scalar and vector processing modes
12.5 nanosecond clock period operation
64-bit word size
Integer and floating-point arithmetic
Twelve fully segmented functional units
Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address (B) registers
Eight 64-bit scalar(S) registers
Sixty-four 64-bit intermediate scalar (T) registers
Eight 64-element vector (V) registers (64-bits per element)
Vector length and vector mask registers
One 64-bit real time clock (RT) register
Four instruction buffers of sixty-four 16-bit parcels each
128 basic instructions
Prioritized interrupt control

Memory Section
1,048,576 64-bit words (plus 8 check bits per word)
16 independent banks of 65,536 words each
4 clock period bank cycle time
1 word per clock period transfer rate for B, T, and V registers
1 word per 2 clock periods transfer rate for A and S registers
4 words per clock period transfer rate to instruction buffers (up to

16 instructions per clock period)
i/o Section

24 i/o channels organized into four 6-channel groups
Each channel group contains either 6 input or 6 output channels
Each channel group served by memory every 4 clock periods
Channel priority within each channel group
16 data bits, 3 control bits per channel, and 4 parity bits
Maximum channel rate of one 64-bit word every 100 nanoseconds
Maximum data streaming rate of 500,000 64-bit words/second
Channel error detection

of memory accesses that step through memory with
either an 8 or 16-word increment.

Cooling System
The CRAY-1 generates about four times as much

heat per cubic inch as the 7600. To cool the CRAY-1
a new cooling technology was developed, also based
on Freon, but employing available metal conductors in
a new way. Within each chassis vertical aluminum/
stainless steel cooling bars line each column wall. The

Communications January 1978
of Volume 21
the ACM Number 1

Fig. 5. Block diagram of registers.

VECTOR REGISTERS

4EMOR)

,K-'- '] v7
/ ~ - i v6

//~-. I ' v5
~ ~ _ . ~ v3 v4

Z.Z~ I vl v2

/ j / co,' VO

Vector
C o n t r o l

Vj
Vk
Vi

i .SJ
I v. F

.~i

~ SCALAR REGISTERS
oo

T77 s~ ~

((Ah) + jkm) ~'?" I SO ~--- -~-

~XCn~aonl ge

Vector
ADDRESS REGISTERS

Shlftl

VECTOR I I

_F

vj

FLOATING

POINT

r

n | | ! J

l

I 71 I I I~

Ak

control

Ak

,,P

L,, F

INSTRUCTION BUFFERS

ADDRESS

FUNCTIONAL UNITS

Freon refrigerant is passed through a stainless steel
tube within the aluminum casing. When modules are
in place, heat is dissipated through the inner copper
heat transfer plate in the module to the column walls
and thence into the cooling bars. The modules are
mated with the cold bar by using stainless steel pins to
pinch the copper plate against the aluminum outer
casing of the bar.

To assure component reliability, the cooling system

66

was designed to provide a maximum case temperature
of 130°F (54°C). To meet this goal, the following
temperature differentials are observed:

T e m p e r a t u r e at cen te r of m o d u l e
T e m p e r a t u r e at edge of m o d u l e
Cold p la te t e m p e r a t u r e at wedge
Cold ba r t e m p e r a t u r e
Re f r i ge r an t t ube t e m p e r a t u r e

130°F (54°C)
l18°F (48°C)

78°F (25°C)
70°F (21°C)
70°F (21°C)

Communications January 1978
of Volume 21
the ACM Number 1

Functional Units
There are 12 functional units, organized in four

groups: address, scalar, vector, and floating point.
Each functional unit is pipelined into single clock
segments. Functional unit t ime is shown in Table II .
Note that all of the functional units can operate concur-
rently so that in addition to the benefits of pipelining
(each functional unit can be driven at a result rate of 1
per clock period) we also have parallelism across the
units too. Note the absence of a divide unit in the
CRAY-1. In order to have a completely segmented
divide operat ion the CRAY-1 performs floating-point
division by the method of reciprocal approximation.
This technique has been used before (e.g. IBM System/
360 Model 91).

Registers
Figure 5 shows the CRAY-1 registers in relation-

ship to the functional units, instruction buffers, i/o
channel control registers, and memory . The basic set
of programmable registers are as follows:

8 24-bit address (A) registers
64 24-bit address-save (B) registers
8 64-bit scalar (S) registers
64 64-bit scalar-save (T) registers
8 64-word (4096-bit) vector (V) registers

Expressed in 8-bit bytes rather than 64-bit words,
that 's a total of 4,888 bytes of high-speed (6ns) register
storage.

The functional units take input operands from and
store result operands only to A, S, and V registers.
Thus the large amount of register storage is a crucial
factor in the C R A Y - I ' s architecture. Chaining could
not take place if vector register space were not availa-
ble for the storage of final or intermediate results. The
B and T registers greatly assist scalar performance.
Temporary scalar values can be stored from and re-
loaded to the A and S register in two clock periods.
Figure 5 shows the C R A Y - I ' s register paths in detail.
The speed of the eFT Fortran IV compiler would be
seriously impaired if it were unable to keep the many
Pass 1 and Pass 2 tables it needs in register space,
Without the register storage provided by the B, T, and
V registers, the C R A Y - I ' s bandwidth of only 80
million words/second would be a serious impediment
to performance.

Instruction Formats
Instructions are expressed in either one or two 16-

bit parcels. Below is the general form of a CRAY-1
instruction. Two-parcel instructions may overlap mem-
ory-word boundaries, as follows:
Fields g h i j k m

0-3 4-6 7-9 10-12 13 -15 16-31
Bit posi- (4) (3) (3) (3) (3) (16)
tions

Parcel 1 Parcel 2
The computat ion section processes instructions at a

maximum rate of one parcel per clock period.

Table II. CRAY-1 functional units

Functional
Register unit time

usage (clock pe-
riods)

Address function units
address add unit A 2
address multiply unit A 6

Scalar functional units
scalar add unit S
scalar shift unit S

scalar logical unit S
population/leading zero count

unit S 3
Vector functional units

vector add unit V 3
vector shift unit V 4
vector logical unit V 2

Floating-point functional units
floating-point add unit S and V 6
floating-point multiply unit S and V 7
reciprocal approximation unit S and V 14

3
2 or 3 if double-

word shift
1

For arithmetic and logical instructions, a 7-bit op-
eration code (gh) is followed by three 3-bit register
designators. The first field, i, designates the result
register. The j and k fields designate the two operand
registers or are combined to designate a B or T
register.

The shift and mask instructions consist of a 7-bit
operat ion code (gh) followed by a 3-bit i field and a 6-
bit jk field. The i field designates the operand register.
The jk combined field specifies a shift or mask count.

Immedia te operand, read and store memory , and
branch instructions require the two-parcel instruction
word format. The immediate operand and the read
and store memory instructions combine the j, k, and
m fields to define a 22-bit quantity or memory address.
In addition, the read and store memory instructions
use the h field to specify an operating register for
indexing. The branch instructions combine the i, j, k,
and m fields into a 24-bit memory address field. This
allows branching to any one of the four parcel positions
in any 64-bit word, whether in memory or in an
instruction buffer.

Operating Registers
Five types of r e g i s t e r s - t h r e e primary (A, S, and

V) and two intermediate (B and T) - a r e provided in
the CRAY-1 .

A registers-eight 24-bit A registers serve a variety
of applications. They are primarily used as address
registers for memory references and as index registers,
but also are used to provide values for shift counts,
loop control, and channel i/o operations. In address
applications, they are used to index the base address
for scalar memory references and for providing both a
base address and an index address for vector memory
references.

The 24-bit integer functional units modify values

67 Communications January 1978
of Volume 21
the ACM Number 1

(such as program addresses) by adding, subtracting,
and multiplying A register quantities. The results of
these operations are returned to A registers.

Data can be transferred directly from memory to A
registers or can be placed in B registers as an interme-
diate step. This allows buffering of the data between
A registers and memory. Data can also be transferred
between A and S registers and from an A register to
the vector length registers. The eight A registers are
individually designated by the symbols A0, A1, A2,
A3, A4, A5, A6, and A7.

B registers--there are sixty-four 24-bit B registers,
which are used as auxiliary storage for the A registers.
The transfer of an operand between an A and a B
register requires only one clock period. Typically, B
registers contain addresses and counters that are refer-
enced over a longer period than would permit their
being retained in A registers. A block of data in B
registers may be transferred to or from memory at the
rate of one clock period per register. Thus, it is feasible
to store the contents of these registers in memory
prior to calling a subroutine requiring their use. The
sixty-four B registers are individually designated by
the symbols B0, B1, B2 and B778.

S registers -eight 64-bit S registers are the principle
data handling registers for scalar operations. The S
registers serve as both source and destination registers
for scalar arithmetic and logical instructions. Scalar
quantities involved in vector operations are held in S
registers. Logical, shift, fixed-point, and floating-point
operations may be performed on S register data. The
eight S registers are individually designated by the
symbols SO, S1, $2, $3, $4, $5, $6, and $7.

T registers -sixty-four 64-bit T registers are used as
auxiliary storage for the S registers. The transfer of an
operand between S and T registers requires one clock
period. Typically, T registers contain operands that
are referenced over a longer period than would permit
their being retained in S registers. T registers allow
intermediate results of complex computations to be
held in intermediate access storage rather than in
memory. A block of data in T registers may be
transferred to or from memory at the rate of one word
per clock period. The sixty-four T registers are individ-
ually designated by the symbols TO, T1, T2 and
T778.

V registers-eight 64-element V registers provide
operands to and receive results from the functional
units at a one clock period rate. Each element of a V
register holds a 64-bit quantity. When associated data
is grouped into successive elements of a V register, the
register may be considered to contain a vector. Exam-
ples of vector quantities are rows and columns of a
matrix, or similarly related elements of a table. Com-
putational efficiency is achieved by processing each
element of the vector identically. Vector merge and
test instructions are provided in the CRAY-1 to allow
operations to be performed on individual elements
designated by the content of the vector mask (VM)

68

register. The number of vector register elements to be
processed is contained in the vector length (VL) regis-
ter. The eight V registers are individually designated
by the symbols V0, V1, V2, V3, V4, V5, B6, and V7.

Supporting Registers
The CPU contains a variety of additional registers

that support the control of program execution. These
are the vector length (VL) and vector mask (VM)
registers, the program counter (P), the base address
(BA) and limit address (LA) registers, the exchange
address (XA) register, the flag (F) register, and the
mode (M) register.

VL register-the 64-bit vector mask (VM) register
controls vector element designation in vector merge
and test instructions. Each bit of the VM register
corresponds to a vector register element. In the vector
test instruction, the VM register content is defined by
testing each element of a V register for a specific
condition.

P register-the 24-bit P register specifies the mem-
ory register parcel address of the current program
instruction. The high order 22 bits specify a memory
address and the low order two bits indicate a parcel
number. This parcel address is advanced by one as
each instruction parcel in a nonbranching sequence is
executed and is replaced whenever program branching
occurs.

BA registers- the 18-bit base address (BA) register
contains the upper 18 bits of a 22-bit memory address.
The lower four bits of this address are considered
zeros. Just prior to initial or continued execution of a
program, a process known as the "exchange sequence"
stores into the BA register the upper 18 bits of the
lowest memory address to be referenced during pro-
gram execution. As the program executes, the address
portion of each instruction referencing memory has its
content added to that of the BA register. The sum
then serves as the absolute address used for the mem-
ory reference and ensures that memory addresses lower
than the contents of the BA register are not accessed.
Programs must, therefore, have all instructions refer-
encing memory do so with their address portions
containing relative addresses. This process supports
program loading and memory protection operations
and does not, in producing an absolute address, affect
the content of the instruction buffer, BA, or memory.

LA register--the 18-bit limit address (LA) register
contains the upper 18 bits of a 22-bit memory address.
The lower 4 bits of this address are considered zeros.
Just prior to initial or continued execution of a pro-
gram, the "exchange sequence" process stores into the
LA register the upper 18 bits of that absolute address
one greater than allowed to be referenced by the
program. When program execution begins, each in-
struction referencing a memory location has the abso-
lute address for that reference (determined by summing
its address portion with the BA register contents)
checked against the LA register content. If the absolute

Communications January 1978
of Volume 21
the ACM Number 1

address equals or exceeds the LA register content, an
out-of-range error condition is flagged and program
execution terminates. This process supports the mem-
ory protection operat ion.

X A register ~ the 8-bit exchange address (XA) reg-
ister contains the upper eight bits of a 12-bit memory
address. The lower four bits of the address are consid-
ered zeros. Because only twelve bits are used, with the
lower four bits always being zeros, exchange addresses
can reference only every 16th memory address begin-
ning with address 0000 and concluding with address
4080. Each of these addresses designates the first
word of a 16-word set. Thus, 256 sets (of 16 memory
words each) can be specified. Prior to initiation or
continuation of a program's execution, the XA register
contains the first memory address of a particular 16-
word set or exchange package. The exchange package
contains certain operating and support registers ' con-
tents as required for operations following an interrupt.
The XA register supports the exchange sequence op-
eration and the contents of XA are stored in an
exchange package whenever an exchange sequence
occurs.

F register-the 9-bit F register contains flags that,
whenever set, indicate interrupt conditions causing
initiation of an exchange sequence. The interrupt con-
ditions are: normal exit, error exit, i/o interrupt, uncor-
rected memory error, program range error, operand
range error , floating-point overflow, real-t ime clock
interrupt, and console interrupt.

M register-the M (mode) register is a three-bit
register that contains part of the exchange package for
a currently active program. The three bits are selec-
tively set during an exchange sequence. Bit 37, the
floating-point error mode flag, can be set or cleared
during the execution interval for a program through
use of the 0021 and 0022 instructions. The other two
bits (bits 38 and 39) are not altered during the execu-
tion interval for the exchange package and can only be
altered when the exchange package is inactive in stor-
age. Bits are assigned as follows in word two of the
exchange package.

Bit 37 -F loa t i ng -po in t error mode flag. When this
bit is set, interrupts on floating-point errors are
enabled.

Bit 3 8 - U n c o r r e c t a b l e memory error mode flag.
When this bit is set, interrupts on uncorrectable
memory parity errors are enabled.

Bit 3 9 - M o n i t o r mode flag. When this bit is set, all
interrupts other than parity errors are inhibited.

Integer Arithmetic
All integer arithmetic is performed in 24-bit or 64-

bit 2's complement form.

Floating-Point Arithmetic
Floating-point numbers are represented in signed

magnitude form. The format is a packed signed binary

69

fraction and a biased binary integer exponent . The
fraction is a 49-bit signed magnitude value. The expo-
nent is 15-bit biased. The unbiased exponent range is:

2 -2°°°°s to 2 +177778,
or approximately

10 -25o0 to 10 +25o0

An exponent equal to or greater than 2 +2°°°°8 is recog-
nized by the floating-point functional units as an over-
flow condition, and causes an interrupt if floating point
interrupts are enabled.

Chaining
The chaining technique takes advantage of the

parallel operation of functional units. Parallel vector
operations may be processed in two ways: (a) using
different functional units and V registers, and (b)
chaining; that is, using the result s tream to one vector
register simultaneously as the operand set for another
operat ion in a different functional unit.

Parallel operations on vectors allow the generation
of two or more results per clock period. A vector
operat ion either uses two vector registers as sources of
operands or uses one scalar register and one vector
register as sources of operands. Vectors exceeding 64
elements are processed in 64-element segments.

Basically, chaining is a phenomenon that occurs
when results issuing from one functional unit (at a rate
of one/clock period) are immediately fed into another
functional unit and so on. In other words, intermediate
results do not have to be stored to memory and can be
used even before the vector operation that created
them runs to completion.

Chaining has been compared to the technique of
"data forwarding" used in the IBM 360/195. Like
data forwarding, chaining takes place automatically.
Data forwarding consists of hardware facilities within
the 195 floating-point processor communicating auto-
matically by transferring "name tags," or internal codes
between themselves [6]. Unlike the CRAY-1 , the user
has no access to the 195's data-forwarding buffers.
And, of course, the 195 can only forward scalar values,
not entire vectors.

Interrupts and Exchange Sequence
Interrupts are handled cleanly by the CRAY-1

hardware. Instruction issue is terminated by the hard-
ware upon detection of an interrupt condition. All
memory bank activity is allowed to complete as are
any vector instructions that are in execution, and then
an exchange sequence is activated. The Cray Operating
System (cos) is always one partner of any exchange
sequence. The cause of an interrupt is analyzed during
an exchange sequence and all interrupts are processed
until none remain.

Only the address and scalar registers are maintained
in a program's exchange package (Fig. 6). The user 's
B, T, and V registers are saved by the operating
system in the user 's Job Table Area.

Communications January 1978
of Volume 21
the ACM Number 1

Fig. 6. Exchange package.
0 2 10 12 16 18 2h 31 36 ~0

n El s IH.L , '
n,, eA ~ ~ 8A
° . , LA l .
. + , - I v < l ,
. . .

. . ,

n. " /Px
n . ,

SO n + e

h e 9

n + l o

n~,l l

n+12

I1÷ 13

n~14

n+15

63
AO

A I

A2

a$

A4

A5

Aa

A?

S I

$2

S3

S4

S5

S6

S?

M - Modes + Registers

36 Interrupt on correctable S Syndrome bits
memory error RAB Read address for error

37 Interrupt on floating point (where B is bank)
38 Interrupt on uncorrectable P Program address

memory error BA Base address
39 Monitor mode LA Limit address

F - Flags + XA Exchange address
VL Vector length 31 Console interrupt

32 RTC interrupt E - Error type (bits 0,1)
33 Floating point error 10 Uncorrectable memory
34 Operand range Ol Correctable memory
35 Program range
36 Memory error R - Read mode (bits 10,11)
37 I/O interrupt O0 Scalar
38 Error exit 01 I/O
39 Normal exi t I0 Vector

11 Fetch

i B i t position from l e f t of word

The C R A Y - I ' s exchange sequence will be familiar
to those who have had experience with the CDC 7600
and Cyber machines. One major benefit of the ex-
change sequence is the ease with which user jobs can
be relocated in memory by the operating system. On
the CRAY-1 , dynamic relocation of a user job is
facilitated by a base register that is t ransparent to the
user.

Evolution o f the C R A Y - 1
The CRAY-1 stems f rom a highly successful line of

computers which S. Cray either designed or was asso-
ciated with. Mr. Cray was one of the founders of
Control Data Corporat ion. While at CDC, Mr. Cray
was the principal architect of the CDC 1604, 6600,
and 7600 computer systems. While there are many
similarities with these earlier machines, two things
stand out about the CRAY-1 ; first it is a vector
machine, secondly, it utilizes semiconductor memories
and integrated circuits rather than magnetic cores and
discrete components . We classify the CRAY-1 as a
second generation vector processor. The CDC STAR
100A and the Texas Instruments ASC are first-gener-
ation vector processors.

70

Both the STAR 100 and the ASC are designed to
handle long vectors. Because of the startup time asso-
ciated with data streaming, vector length is of critical
importance. Vectors have to be long if the STAR 100
and the ASC vector processors are to be at all compet-
itive with a scalar processor [3]. Another disadvantage
of the STAR 100 architecture is that elements of a
"vec tor" are required to be in consecutive addresses.

In contrast with these earlier designs, the CRAY-1
can be termed a short vector machine. Whereas the
others require vector lengths of a 100 or more to be
competi t ive with scalar processors, the cross-over point
between choosing scalar ra ther than vector mode on
the CRAY-1 is between 2 and 4 elements. This is
demonstra ted by a comparison of scalar/vector timings
for some mathematical library routines shown in Figure
1 [7].

Also, the C R A Y - I ' s addressing scheme allows
complete flexibility. When accessing a vector, the user
simply specifies the starting location and an increment.
Arrays can be accessed by column, row, or diagonal;
they can be s tepped through with nonunary increments;
and, there are no restrictions on addressing, except
that the increment must be a constant.

Vector Star+up Times
To be efficient at processing short vectors, vector

startup times must be small. On the CRAY-1 , vector
instructions may issue at a rate of one instruction
parcel per clock period. All vector instructions are one
parcel instructions (parcel size = 16 bits). Vector
instructions place a reservation on whichever functional
unit they use, including memory , and on the input
operand registers. In some cases, issue of a vector
instruction may be delayed by a t ime (in clock periods)
equal to vector length of the preceding vector operat ion
+ 4 .

Functional unit t imes are shown in Table II . Vector
operat ions that depend on the result of a previous
vector operat ion can usually "chain" with them and
are delayed for a maximum "chain slot" t ime in clock
periods of functional unit t ime + 2.

Once issued, a vector instruction produces its first
result after a delay in clock periods equal to functional
unit t ime. Subsequent results continue to be produced
at a rate of 1 per clock period. Results must be stored
in a vector register. A separate instruction is required
to store the final result vector to memory . Vector
register capacity is 64-elements. Vectors longer than
64 are processed in 64-element segments.

Some sample timings for both scalar and vector are
shown in Table I I I [8]. Note that there is no vector
ASIN routine and so a reference to ASIN within a
vectorized loop generates repetitive calls to the scalar
ASIN routine. This involves a performance degradation
but does allow the rest of the loop to vectorize (in a
case where there are more statements than in this
example) . Simple loops 14, 15, and 16 show the

Communications January 1978
of Volume 21
the ACM Number 1

Table 111.

Execution time in clock periods per result for various simple DO loops of the form
DO 10 1 = 1.N
I0 A(1) = B(1)

1000 Loop Body N = 1 10 100 1000 Scalar

1. A (I) = 1. 41.0 5.5 2.6 2.5 22.5
2. A(1) = B(I) 44.0 5.8 2.7 2.5 31.0
3. A(I) = B(I) + 10. 55.0 6.9 2.9 2.6 37.0
4. A(I) = B(I) + C(I) 59.0 8.2 3.9 3.7 41.0
5. A(I) = B(/)*10. 56.0 7.0 2.9 2.6 38.0
6. A (I) = B(I)*C(I) 60.0 8.3 4.0 3.7 42.0
7. A(I) = B(I) /IO. 94.0 10.8 4.1 3.7 52.0
8. A (I) = B(I) /C(I) 89.0 13.3 7.6 7.2 60.0
9. A(1) = SIN(B(I)) 462.0 61.0 33.3 31.4 198.1

10. A(1) = A S I N (B (I)) 430.0 209.5 189.5 188.3 169.1
11. A(I) = ABS(B(I)) 61.0 7.5 2.9 2.6
12. A(1) = A M A X I (B (I) , C(I)) 80.0 11.2 5.2 4.8

[C(I) = A (I))
13. /A(/) = a(I)~ 90.0 12'.7 6.3 518 47.0

LB(/) = CClJ
14. A(I) = B(I)*C(I) + D(I)*E(I) 110.0 16.0 7.7 7.1 57.0
15. A(I) = B(I)*C(I) + (D(I)*E(I)) 113.0 14.7 6.6 6.0 63.0
16. A(I) = B(I) 'C(I) + D(I) 95.0 12.7 5.5 5.0 52.0

Fig. 7. Scalar/vector timing.
COST (CLOCK PERIODS/RESULT)

3401t
3201[
300 11
2801[
260" m
240~n
220"IU
2001111
180 4111
160 " ~ cosALOG
140, SQRT
120,

EXP

- SCALAr'
80 ' VECTOR ~I 6?/
; (o ~ L ~ COS ALOG

SQRT
EXP

1 10 20 30 40 50 60 64
VECTOR LENGTH

influence of chaining. For a long vector, the number
of clock periods per result is approximately the number
of memory references + 1. In loop 14, an extra clock
period is consumed because the present cFr compiler
will load all four operands before doing computation.
This problem is overcome in loop 15 by helping the
compiler with an extra set of parentheses.

Software
At the time of this writing, first releases of the

CRAY Operating System (cos) and CRAY Fortran
Compiler (cFr) have been delivered to user sites, cos
is a batch operating system capable of supporting up
to 63 jobs in a multiprogramming environment, cos is
designed to be the recipient of job requests and data
files from front-end computers. Output from jobs is
normally staged back to the front-ends upon job com-
pletion.

cFr is an optimizing Fortran compiler designed to
compile ANSI 66 Fortran IV to take best advantage of
the CRAY-I ' s vector processing architecture. In its
present form, CFT will not attempt to vectorize certain

Fig. 8. Front-end system interface.
PHASE MODULATED LONG LINE

i

70Xt06bps 64X106 bps IBM 370/168
datar te •
24X10~bp$

90 METERS

loops which, due to dependence conditions, appear at
first sight, unvectorizable.

However , future versions of cFr will be designed
to eliminate as many dependency conditions as possible
increasing the amount of vectorizable code. Basically,
to be vectorizable, a DO loop should manipulate arrays
and store the results of computations in arrays. Loops
that contain branches such as GO TO's, IF's, or CALL
statements are not currently vectorized. Loops may
contain function references if the function is known to
the compiler to have a vector version. Most of the
mathematical functions in the CRAY library are vec-
torizable. By using the vector mask and vector merge
features of the CRAY-1, future versions of the com-
piler will be able to vectorize loops containing IF and
GO TO statements.

Early experience with c ~ has shown that most
Fortran loops will not run as fast as optimally hand-
coded machine language equivalents. Future versions
of c ~ will show improved loop timings due mainly to
improved instruction scheduling.

Other CRAY-1 software includes Cray Assembler
Language (CAL) which is a powerful macro assembler,
an overlay loader, a full range of utilities including a
text editor, and some debug aids.

Front-End Computer Interface
The CRAY-1 was not designed for stand-alone

operation. At the very minimum a minicomputer is
required to act as a conduit between the CRAY-1 and
the everyday world. Cray Research software develop-
ment is currently being done using a Data General
Eclipse computer in this category. The Cray Research
" A " processor, a 16-bit, 80 MIPS minicomputer is
scheduled to replace the Eclipse in early 1978. Front-
end computers can be attached to any of the CRAY-
l ' s 12 i/o channels.

The physical connection between a front-end com-
puter and the C R A y o l is shown in Figure 8. In this
example an IBM 370/168 is assumed in the front-end
role. Note that each computer requires a channel
adapter between its own channel and a Cray Research
phase-modulated long line. The link can only be driven
at the speed of its slowest component . In this example
it is the IBM block multiplexer channel speed of 3
megabytes/second. The discipline of the link is gov-
erned by the Cray Link Interface Protocol.

71 Communications January 1978
of Volume 21
the ACM Number I

CRAY-1 Development Problems
Two of the most significant problems [9] encoun-

tered on the way to the CRAY-1 were building the
first cold bar and designing circuits with a completely
balanced dynamic load.

Building the Cold Bar
It took a year and a half of trial and error before

the first good cold bar was built. The work was done
by a small Minnesota company. A major problem was
the discovery, quite early, that aluminum castings are
porous. I f there is a crack in the stainless steel tubing
at the bond between the tubing and the elbow then the
Freon leaks through the aluminum casing. The loss of
the Freon is not itself a problem, but mixed with the
Freon is a little oil, and the oil can cause problems if it
is deposited on the modules. Aluminum also tends to
get bubbles in it when it is cast, requiring a long process
of tempera ture cycling, preheating of the stainless steel
tube, and so on.

Designing the Circuits
CRAY-1 modules are 6 inches wide. The distance

across the board is about a nanosecond which is just
about the edge time of the electrical signals. Unless
due precautions are taken, when electric signals run
around a board, standing waves can be induced in the
ground plane. Part of the solution is to make all signal
paths in the machine the same length. This is done by
padding out paths with foil runs and integrated circuit
packages. All told, between 10 and 20 per cent of the
IC packages in the machine are there simply to pad out
a signal line. The other part of the solution was to use
only simple gates and make sure that both sides of
every gate are always terminated. This means that
there is no dynamic component presented to the power
supply. This is the principal reason why simple gates
are used in the CRAY-1 . I f a more complex integrated
circuit package is used, it is impossible to terminate
both sides of every gate. So all of the C R A Y - I ' s
circuits are perfectly balanced. Five layer boards have
one ground layer, two voltage layers, and then the two
logic layers on the outside. Twisted pairs which inter-
connect the modules are balanced and there are equal
and opposite signals on both sides of the pairs. The
final result is that there is just a purely resistive load to
the power supply!

fast as the CDC 7600. Such good scalar performance
is required in what is often an unvectorizable world.

At the time of this writing, Cray Research has
shipped CRAY-1 systems to three customers (Los
Alamos Scientific Labora tory , National Center for
Atmospher ic Research, and the European Center for
Medium Range Weather Forecasts) and has contracts
to supply three more systems, two to the Depar tment
of Defense, and one to United Computing Systems
(UCS). Production plans already anticipate shipping
one CRAY-1 per quarter . As the populat ion o~
CRAY-1 computers expands, it will become clear that
the CRAY-1 has made a significant step on the way to
the general-purpose computers in the future.

Received February 1977; revised September 1977

Acknowledgments. Acknowledgments are due to
my colleagues at Cray Research. G. Grenander , R.
Hendrickson, M. Huber , C. Jewett , P. Johnson, A.
La Bounty, and J. Robidoux, without whose contribu-
tions, this paper could not have been written.

References
1. CRAY-1 Final Evaluation by T. W. Keller, LASL, LA-
6456-MS.
2. CRAY-1 Report, Auerbach Computer Technology Report,
Auerbach Publisher's, 6560 North Park Drive, Pennsauken, N. J.
08109.
3. Preliminary Report on Results of Matrix Benchmarks on
Vector Processors: Calahan, Joy, Orbits, System Engineering
Laboratory, University of Michigan, Ann Arbor, Michigan 48109.
4. Computer Architecture Issues in Large-Scale Systems, 9th
Asilomar Conference, Naval Postgraduate School, Monterey,
California.
5. Computer World, August 1976.
6. The IBM 360/195 by Jesse O'Murphy and Robert M. Wade,
Datamation, April 1970.
7. Work done by Paul Johnson, Cray Research.
8. Work done by Richard Hendrickson, Cray Research.
9. The section on CRAY-1 development problems is based on
remarks made by Seymour Cray in a speech to prospective CRAY-1
users in 1975.

Summary

The design of the CRAY-1 stems f rom user experi-
ence with first generation vector processors and is to
some extent, evolved f rom the 7600 [2]. The CRAY-1
is particularly effective at processing short vectors. Its
architecture exhibits a balanced approach to both scalar
and vector processing. In [1], the conclusion is drawn
that the CRAY-1 in scalar mode is more than twice as

72 Communications January 1978
of Volume 21
the ACM Number 1

