Pretzel: Email encryption and provider-supplied functions are compatible

Presenter: Jianan Lu
Email Services Today

The email server becomes a central point of attack:
- Malicious insiders
- Hacks
- Government agencies
What About End-To-End Encryption?

• Some suitable contexts:
 - Secure Messaging: WhatsApp, Signal
 - Network communication: TLS protocol

• What encryption scheme for emails have you seen in this class?
 - PGP: trusted key server + web of trust
 - Challenge: how to perform valuable services (functions) on encrypted emails such as spam filter, search, and a lot more?
What About End-To-End Encryption?

- Possible Solutions:
 - Fully Homomorphic Encryption
 - Searchable Encryption
 - ...

- Motivation: Can we do better?
System Overview

• Assumption:
key management (CONIKS etc.) and end-to-end encryption scheme (PGP etc.)

• Security Guarantee:
Both the email provider and the user cannot directly see the other’s private data

• System Architecture:

How to implement secure email functions in an efficient way?

Figure 1: Pretzel’s architecture. e denotes plaintext email; e' denotes encrypted email. The sender’s provider is not depicted.
Building Blocks

• Secure Dot Product
 - Use GLLM in Pretzel

• Additive Homomorphic Encryption (AHE)
 - For any two messages m_1, m_2, $\text{Enc}(m_1) \times \text{Enc}(m_2) = \text{Enc}(m_1 + m_2)$.

• Yao’s Garbled Circuits
Multinomial Naïve Bayes Linear Classifier

• Linear classification can be used to build more feature-rich services: spam filtering, topic extraction and etc.

• Informal Definition
 - For j=1….B, denote C_j as the j-th category/label.
 - The input data x (feature vector) is N-dimensional. Denote x_i as its i-th entry and it is Boolean value (0/1) indicating the presence/absence of this i-th feature.
 - Given an input data x, output the j*-th category with maximum conditional probability. That is,

 \[j^* = \arg\max_j p(C_j | \vec{x}) \]
Multinomial Naïve Bayes Linear Classifier

• With some derivation, it is equivalent to find the category C_j^* with $j^* = j$ that maximizes the equation below:

$$p(t_i \mid C_j)$$ is the probability that i-th feature is present given the data, x, belongs to category C_j.

$$\left(\sum_{i=1}^{i=N} x_i \cdot \log p(t_i \mid C_j) \right) + 1 \cdot \log p(C_j).$$ \hspace{1cm} (2)

Dot Product

Comparison that outputs the category with highest probability

Apply the building blocks
Overview of Yao+GLLM

Model Structure
Feature Extraction Methods

Model Parameters
Party X (email provider)

Secure Dot Product
Additive Homomorphic Encryption
Yao’s Garbled Circuits

Setup
Computation

Data (emails)
Party Y (email user)
Construction of Yao+GLLM

• On board
• Q: why does the user add noise?
• Revisit the security guarantee:

Both the email provider and the user cannot directly see the other’s private data
Conclusion

• Security: E2E Encryption
• Functionality and Performance: Yao + GLLM