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confused about enchmarking, though now more popular than ever before, remains
one of the more tumultuous areas in the field of performance metrics.

bench marks7 Accurate benchmarks help both users and system managers make

' crucial decisions about the systems they consider buying or upgrading. A

Y ,“ f ‘ ' PCusermaywanttofmdouthowlongrtwﬂltaketonmaeertmntypeof

ou ee more program. A mainframe system manager may want to know how many

g users can be placed on a given machine without havmg those users banging

confident if you on the door, complaining that the response time is terrible. Benchmarks, if

fo“ th properly designed, written, and performed can help both parties reach the
oW right decision.

ese‘ ' Frequently, however, users awept benchmark results without examining

guide“nes. the raw data, a condition that may leave them wondering what to believe.

‘These users may not be experienced enough in benchmarkmg techmque to
comfortably analyze the way the data was generated. .

Benchmarks are only useful to users if they fully understand what is
being measured. Users all too often assume that the person who ran the
& benchmark: : :

e fuIIy understood what was bemg benchmarked (As Eugene Miya com-
mented in a 1985 Usenet message, even if the benchmark is run under ideal
circumstances, veteran benchmarkers admit they are not always sure what
the machine is doing in response to their benchmark.)

® maintained adequate control of the enwronment under wh:ch the
benchmark was run, and .~

® performed a “’sanity check”’ to see that the generated benchmark data
is within the boundaries of reason. -

" “These are not always good assumptions. It is qurte possrble that a bench-
mark designed to evaluate a particular funcuon, if performed under the
wrong conditions, can generate raw data that is totally meaningless. In

" essence, the principles behind the scientific method—both empirical and

- analytical—must be applied if benchmark results are to have any merit at
~ all. When the scientific method is not followed, or when the benchmark

* data is misinterpreted, problems and confusion result.

‘ When the data reported cannot be replicated, or when the logic behind
BN . the benchmark is unclear, users who have trouble with the benchmark tend
——— 0 o iothmktheymustbedomssomethmswrons ‘They conclude without
David F. Hinnant - hesitation that benchmarkmg is an art and not a science. (In fact, some
. e SO SRR oomputer vendors engage in the “art” of creatrve benchmarkmg They
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Benchmarking

The work that has been done (in both the theoretical

~ and applied areas of performance metrics) has by and

large been performed on older mainframes in which
squeezing the most out of a costly machine was an im-
portant endeavor. Little work has been done on newer
architectures, especially those in microprocessor-based
Unix systems.

The forefront of benchmark technology continues
to reside with a few special-interest groups and engi-
neering groups of large corporations. Examples in-
clude the Association for Computing Machinery
SIGMETRICS group and Computer Measurement
Group, Inc. In the Unix community, the /usr/group
(which proclaims itself “‘a commercially oriented Unix
system users organization,’’®) began a performance
metrics working group. Ironically, no such counterpart
exists in the more technically oriented Usenix Associa-
tion. Perhaps commercial vendors have a vested inter-

est in evaluating customer benchmarks for flaws and
developing their own for marketing propaganda.

A primer in technique

It is difficult to arrive at an all-encompassing defini-
tion of benchmarking technique. I describe it here asan
a priori logic. The technique centers on the premise
that to predict accurately the performance of any given
system (in the broader noncomputer sensé of the
word), one must first be able to describe what con-
stitutes a system and which of the component parts of
the system effectively affect each other. Users do not
have to know in detail how the individual components
oof the system operate, nor how they relate quantitative-
ly, but just that they affect each other gualitatively.

S)Isth imark being used in the proper
1ext? A benchmark designed to evaluate one par-
cular area should not be used to evaluate another,

k results, For example, a benchmark that -
 read throughput and is run several
ging fesults) sequentially should -

buffer between each run. A
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Once users realize that a set of components in a sys-
tem can change its performance, they can vary one
component while holding the others constant to see
how that component quantitatively affects the system.
This approach—solving for the unknown in the sys-
tem, whatever it is—permeates benchmarking tech-
nique. Thus, we have a base rule: To generate valid
benchmark data, understand the computer system.
{See the accompanying box for other rules.)

When comparing an element of two different com-
puter systems, users must keep the systems identical ex-
cept for the component in question. therally inter-
preted, this is obviously impractical and is just the
theoretical best case as two different systems rarely dif-
fer in only one aspect. In fact, computer systems start
with two basic elements, hardware and software, with
an active system composed of the operating system
software and the application load (possibly a bench-

= ﬁle system the free hst wnotverysequennal atali

~This condition results in, for example, awriteofone

" block of data from a file to res:de in block 1234 and
“the next in block 5678. :
“Benchmarks that perform dlsk ‘input 1 and output

" should be run under similar conditions—either all

on a virgin file system, or all on a well-used file sys-

tem. ’Iheproblemmusmgonlypnsuncﬁlesystems

~ ““is that the measured performance is unrepresen-

tatively faster than that of a well-used file system.
‘ ﬂanmoughdmbegmmd:obemnmef

_fthe results? Can what the benchmark is attempting
*- to measure really be measured? In other words there

" should be a good signal-to-noise ratio. For example,

: 'mnnmgabcnchmaxkthatcomplctsmlessthana
" second may not give representative data since the

g?’_{sranulantyofusernmclsusuaﬂygwenmtmﬁsnr-
-~ a second. Here, a change in one tenth generates a ”{
.. 10-percent difference in the result. The real (clapsed) -
" ‘onstrated earlier, when a specific component is be-

» “time reported by fime(1) on many older Unix sys-
ularity‘ f

two seconds due to the gne-secondh

hme;ustbeforethencxtsystemcloc’knckand:hzn
activates fork(2)s and exec(2)s on the benchmark.
‘Here, at most one second of error has been intro-
ced. Next, fime(1) reads the system ¢
after a tick upon completion f jts child

) Is the ‘behchmark propérly designed
©oded? The benchmark shouldteteﬂsdmmake
:nre‘itxsmdeeddomgwhausdesnred .The integrity

' of the benchmark should be verified by some other

: »:tseemstoworkmthxsm?heretmnbeodsfrom;

: }j:ble?Aktﬂebnofoommonsmsegosalongway
If the disk throughput is measured at 500 Kbits per
- second, and the disk subsystem transfer rate is only
50 Kbps, something is wrong somewhere. 'With sys-
~ tems using different software clock rates, timing

- youtines that do not reconcile this fact i

- tems (versions 7 and 4.1 BSD) has a possibleerrorof -
i constantorxummwdnottoaffect&eoomponent

mark program). However, the systems under investiga-
tion should be kept as close as reasonably possible.

This requirement is particularly true for the tradi-
tional, single-threaded, single-task benchmarks most
users run. The importance of identical system con-
figuration decreases somewhat as the sophistication of
the benchmark increases. More sophisticated bench-
marks measure a “‘user’’—whatever that is. Then, the
configuration becomes a component that is measured
as a whole.

As an example, a compilation of a sample C pro-
gram on a IBM PC AT under quiescent conditions may
be faster than a compilation of the same program on a
DEC VAX 11/750 under similar conditions. Does this
niecessarily mean the PC is faster than the VAX? Ab-
solutely not. Not only are two entirely different classes
of systems being (incorrectly!) compared (the VAX

11/750 is a multiuser minicomputer and the AT is a _

means than supposing it works for all cases because

nim.nomermuesmmrmm
ing evaluated, all other variables must eitherbeheld
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Benchmarking

By varying only one
component in the system,
the performance of several

others may be affected.

single-user super-microcomputer), they are being com-
pared without regard for other elements in the systems.
Moreover, the “‘constant’ element used in the com-
parison (the compiler—here the application) differs
dramatically between the VAX and the AT. The VAX
C compiler (depending upon the operating system—
another unknown) may perform superior optimization
and emit higher quality code. The compiler probably
performs more passes, may need more memory to run,
and probably includes substantial debugging code for
use with adb(1), sdb(1), or dbx(1) (if runina Unix en-
vironment). Computer systems simply cannot be com-
pared without regard for variables; we achieve more of
a contrast than a comparison.

To further illustrate this point, I describe mathemat-
ically the possible relationships between the individual
components of the three basic elements by developinga
simple model. Assume there are n software compo-
nents (S; = 1, ..., ») and m hardware components (H;
=, ..., m)- Each software component may be affected
by other software components, and by each hardware
component. Each hardware component may be af-
fected by other hardware components. This is not an
unreasonable model. I say may affect because in some
cases the interaction between components is negligible,
and in other cases no interaction occurs at all.

For example, an arithmetic coprocessor will favor-
ably affect CPU performance (a hardware term in the
equation) by offloading work to the coprocessor but
will do little to affect disk drive throughput (another
hardware term). (CPU refers to both central processing
units and microprocessing units.) Hard-disk through-
put is a function of both software (the driver in the
kernel, buffering algorithms, sizes—all software
terms) and hardware (controller transfer rate, track
seek time, track caching).

In summary, the performance of an applicationon a
system is a function of the performance of the compo-
nents of the system in which hardware components
may affect software components and other hardware
components, and software components may affect
other software components. In some cases software
may actually affect hardware performance. An in-
telligent disk controller may actually work against the
software driver, if the driver is improperly written, to
decrease overall performance. This effect can be dis-
regarded here, however, because the model is crude.
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Thus, the first-order approximation on component
interrelation is one in which software performance is a
function of the hardware and of other software com-
ponents, and hardware performance can be a function
of other hardware components. These hardware and
software performance parameters ultimately affect the
performance of the application load. Mathematically,
we express this as:

Pnp = Ss;mem(S»H) + HM(H)

where P, is the performance of the application, S;.
1em is the performance of the system software, and H ),
(em is the performance of the system hardware.

Since both the hardware and software functions are
actually comprised of many component terms, we €x-
press this more exactly as:

i=n

j=m
Zaz'.s;, szl.Hj)

i=n j=m
B,=S1(Tay,Si Loy Hj)+ 8251 +
==

i=2 Jj=1

i=2 i=n j=m
+ S3(Za3'.S,- + Ea3is,', Zbngj) + e
i=1 i=4 j=1

j=m j=m
+H1(Zb1jHj) +H2(Hl + zbZ,Hj)
j=2 j=3

j=2 j=m
+H3(Zb3ij+ zb3ij)+ oo
j=1 j=

We can reduce this to:

k=n i=k-1 i=n j=m
Pap= EakS,,( Z a,-S,-+ z a;S,-, EbIHJ)
k=1 i=l i=k+1 Jj=1

l=m j=i-1 j=m

+ zblHl( z ijj+ Z ijj)

I=1 j=1 j=l+

where P,, is the performance of the application, S; is
the performance of a software component, H; is the
performance of a hardware component, and a and b
are coefficients of interaction.

Granted this is a gross generalization, but the equa-
tion is sophisticated enough for the purposes of this
discussion. (For a more accurate and exhaustive treatise,
see Febish,® Grenlander,? or Silverman.10) However,
this simple mathematical relation illustrates an impor-
tant concept: By varying only one component in the
system, the performance of several others may be af-
fected. Therefore, the impact of a given component on
the system as a whole cannot be measured accurately
unless all other unknowns are either held constant or
are known not to affect the performance of the other
components in the system.




In any given benchmark, this interdependency rela-
tion simply cannot be ignored. For example, if an ap-
plication software product is under evaluation, the
hardware configuration and operating system con-
figuration must be held as constant as possible so that
the performance of the application is the only
unknown. Thus, we determine performance without
having to account for other changing conditions.
(Other methods can be used to solve systems of equa-
tions with several unknowns. However, since the
model is admittedly very crude, the value of this ap-
proach is dubious.) The converse is also true. When
comparing a hardware element, benchmarkers should
keep the remaining hardware and software terms (in-
cluding the application, which in this case is probably a
benchmark program) as similar as possible from run to
run.
We referred to several distinct components in com-
puter systems in passing. These and other components
may have a direct impact on benchmark results. Bench-
markers must be able to determine what effect (if any)
a component will have on a given benchmark. Hereisa
list of some of these basic hardware and software
elements and their functions in a generic Unix system.

Hardware components. A nonexclusive list of vari-
ables in the hardware factor of the last equation include:

CPU type. Architectural differences between CPUs
obviously affect benchmark performance. Some CPUs
inherently perform certain operations better than
others. Some CPUs have more general-purpose regis-
ters than others. Some have an internal 32-bit data bus,
and some have a 16-bit bus. The external address and
data bus width also varies widely. For example, the In-
tel 8088 has an 8-bit, external multiplexed data and ad-
dress bus. Internally it has a 16-bit bus. Thus, the CPU
requires two bus cycles to bring each operand for an
ADD instruction. Because the internal and external
buses differ in size, some people call the 8088 a 16-bit
microprocessor, and some call it an 8-bit. Both are
correct, but in different contexts. These and other archi-
tectural considerations can weigh heavily on benchmark
differences. RISC, or reduced instruction-set comput-
ing, architectures, for example, inherently have dif-
ferent characteristics than traditional microprocessors.

Coprocessor support. When a floating-point copro-
cessor is available, benchmarks containing floating-
point arithmetic behave differently—hopefully much
faster. The performance of various arithmetic copro-
cessors also varies widely. In some cases floating-point
hardware generates different results from those gener-
ated with floating-point software. A related area con-
cerns the way and the degree of accuracy with which
floating-point hardware operations perform.!! Some
coprocessors have 64-bit precision, and some have
80-bit. Some chips conform to the IEEE-754 floating-

point standard. 12 Some floating-point chips may also
assist in long integer arithmetic.

Muiltiprocessor support. Systems with more than
one CPU are becoming more and more abundant.
These systems typically use either peer-to-peer or
master/slave CPU relationships. Any benchmark that
attempts to measure a single processor must assure that
the others are not available. However, in real-life situa-
tions since all processors are available, it makes more
sense to evaluate the efficiency of the entire multipro-
cessor system. The performance of an ideal system
with n processors is the sum of the performance of each
processor from 1 to n. In practice, each CPU spends
some cycles on the overhead associated with com-
municating with the other system CPUs, thereby
reducing the aggregate number of cycles available for
useful work. Multiprocessor systems are usually com-
pared by the percentage increase each additional CPU
provides, and the point at which adding additional
CPUs ceases to improve performance.

Memory wait states. Machines that claim to run with
zero states sometimes don’t. Some marketing literature
will mention the 64-Kbyte, zero-wait-state cache but
not the 16 Mbytes of two-wait-state RAM.

Quantity of memory. Memory is very important if a
multitasking benchmark is being run. Machines in
which all the tasks run without being swapped to disk
will outperform those that don’t. In nonpaging sys-
tems, thrashing can occur if there is insufficient mem-
ory for the number of active processes in the system
because the processes are constantly being swapped to
make way for other processes. In paging systems,
thrashing can occur when a very high page fault rate
occurs due to a process faulting and having to free
pages that will be needed again right away to satisfy the
current page fault.

Clock rate. This rate varies widely with hardware,
and numerically is misleading. Higher clock rates do
not necessarily mean higher performance when two
differing architectures are compared. CPUs with the
slower clock rates may actually perform more useful
work per clock or bus cycle than faster CPUs. More-
over, even fast CPUs may have to wait on memory due
to wait states.

CPU cache. Cache size, construction, and avail-
ability vary from CPU to CPU. Small, tightly looping
benchmarks may remain entirely in cache memory
throughout the life of the benchmark. This aspect can
make a wait-state-laden system (or a system with slow
input and output) seem very fast. In general, small
benchmarks should be avoided.
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Bus structure. Bus address width, data width, band-
width, transfer rate, and other variables vary widely
from machine to machine. These, of course, ultimately

affect the transfer capacity of everything from disksto

memory.

Swap or page device. When too little swap space is
provided in systems that only can swap, the system
panics. In paging systems when too little paging area is
provided, the system ‘‘thrashes’ much like it does
when it is out of memory. Swap space may also use a
different soft interleaving factor, and if this is not op-
timal, performance suffers. If the system has several
disk drives of dissimilar performance characteristics, is
the swapping or paging device the faster device?

Software components. Let’s consider the operating
system and the application program. Just as important
as the operating system itself is its configuration. Iden-
tical operating systems and identical underlying hard-
ware may perform benchmarks differently if not tuned
properly. In other words, there are several ways to in-
fluence the outcome of a benchmark since tuning can
also be used to favor certain types of benchmarks.

Operating system version. Different versions of
Unix implemented on identical hardware perform dif-
ferently. For example, ports of Berkeley Unix (4.x
BSD) support demand paging. Ports of System V may
or may not do the same depending on the version (or
release) implemented on the particular CPU. The file
system also differs dramatically between System V,
Releases 3 and 4.3 BSD, which are the two most impor-
tant basic releases of Unix today. The differences be-
tween System V and 4.x BSD do not end here.

Some differences between operating systems trans-
cend Unix versions. One of the more significant that
affects benchmarks is the software clock rate. Many
systems have the software clock interrupt the CPU 60
times a second; others interrupt 100 times a second.
Some (to decrease overhead) use much lower values.
Many time-oriented system calls and library routines
base their concept of time on these clock “ticks,”” and
the programs that use these routines must take this into
account. For example, utilities use the fimes(2) system
call return values in nth’s of a second where n is the
software clock rate.

Operating system utilities. Separate from kernel con-
siderations, the performance of the so-called standard
Unix utilities varies between versions—just as the syn-
tax does. Commands such as grep(1), Is(1), sort(1), and
even cat(1) are good examples of this variance.

Operating system configuration. Therearea number
of tunable parameters in the Unix kernel. Most are
specified in configuration files at kernel compile time
and are thus compiled into the kernel itself. The
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average benchmarker finds it difficult (though not im-
possible) to determine what these values really mean.
The easiest way to be sure what the values are is to
recompile the kernel. This compilation is possible even
with binary-only systems as usually one file is compiled
and then linked with the rest of the kernel, which is
already in binary form. Here are some of the more im-
portant tunable parameters from a benchmarking

perspective:

e The Unix file system’s block-oriented interface
buffers disk blocks. The number of disk blocks can
dramatically affect benchmark performance. The
more disk-intensive the benchmark, the more impact
this factor has on performance (provided the bench- -
mark isn’t so large as to saturate memory so swapping
or paging occurs). However, the more blocks in the
cache, the less memory is available for user programs.

e The size of the i-node table determines how many
files can be active at any one time in the system. The
larger the table, the less memory is available. Likewise
for the open file table in which one table entry exists for
every open call: More entries imply less memory is
available for user programs. Both of these values are
secondary considerations compared with the number
of disk buffers mentioned above. However, on a micro-
computer with a limited quantity of memory this can
become an important consideration. The tables must
be of reasonable size to enable multiuser benchmarks
to run as expected.

¢ Each process occupies a slot in the system process
table. Some benchmarks use lots of processes and
when this value is too low, the benchmarks report er-
roneous results because no more processes can be
created. For example, the Unix C compiler, cc, prints
““Try again®’ when this occurs, because it cannot fork
or create a child process to continue the compilation. If
too many benchmarks are run concurrently under the
same login, the per-user process limit is reached and
again forks fail. Because the per-user process limit is
usually much lower than the total number of process
table slots in the system, this limit is normally reached
first. In general, benchmark programs that use system
calls (most do) should check the return code of every
call and report an abnormal return as a fatal error.
System calls that seldom fail under normal operating
conditions often fail when benchmarks are run.

o Different Unix versions cause different things to
happen when a system runs out of swapping/paging
space. Many systems panic and cease operation entire-
ly. Some try to avoid system death by terminating the
process needing to swap. Swap space and paging area
should be guaranteed to be adequate for the bench-
marks to be run.

® Other important tunable parameters include the
number of clists (small buffers used mainly in terminal
1/0 buffering), and in System V systems, the number




of semaphores, message queues, and shared-memory
segments.

® When floating-point software is available, Unix
usually supports it by one of two methods, kernel traps
or libraries. Kernel traps are usually used when
floating-point hardware is possible, but may or may
not be available in a particular system. Kernel traps to
floating-point routines may take somewhat longer to
perform because of the overhead in taking the kernel
trap. This overhead is avoided by using a library that is
loaded in at link time by the Unix linker /d(1). The
trade-off is that the code size of the resulting binary is
substantially larger. Although not really a tunable
kernel parameter, some Unix implementations do
allow the system administrator to choose the method
of software floating-point support.

Also of major concern is the accuracy of the floating-
point routines.!! Many systems that support floating-
point hardware conforming to the IEEE standard also
provide identical software floating-point routines so
systems with either hardware or software floating-
point operations generate indistinguishable results.
Various Intel 80X86 implementations, for example,
often accomplish this by emulating the 8087, 80287, or
80387 in software.

Some floating-point software routines generate re-
sults that conform to the IEEE standard format but do
not always follow all IEEE rules when performing the
operation. Here, the result is obtained faster, but at the
cost of accuracy.

Use of operating system. Do all software packages
being compared utilize Unix resources in the same
way? The answer to this question may not be as ob-
vious as it seems. Database management systems in
particular may operate differently depending upon
their internal design. For example, they may want their
own disk partition on which to operate, bypassing the
Unix file system altogether. They may use their own
database functions or use the routines provided by the
system, for example, the 4.x BSD dbm(3) routines.

Operating system environment. The operating sys-
tem environment under which the benchmarks are run
must be well known and tightly controlled. For exam-
ple, depending on the component being evaluated, the
benchmark may need to be run in either a normal frag-
mented file system or a well-organized virgin file
system.

The operating system should also be in a steady-state
condition. Just after booting, kernel data structures
and buffer pools are in their most pristine state. Under
normal system use, the linked lists controlling these
structures and buffer pools become disordered and
complex. Also, the disk buffer cache may still have
unused blocks, and if a small disk 1/0 benchmark is
run, the operating system may not have to flush any
buffers at all. Therefore, benchmarks run just after a

The operating system
environment
must be well known and
tightly controlled.

system is booted may not give accurate results, depend-
ing upon what is being evaluated.

Application elements. The application element can
be any normal application program, a combination of
programs, or a benchmark that is intended to evaluate
some function of either the hardware or the software.
Often this combination is deemed to represent a user
load.

In Unix one special application element is the C com-
piler. Since most Unix benchmarks are written in C,
and since most of the Unix kernel is as well, the effi-
ciency of the code generated by the C compiler can af-
fect not only benchmark performance but total operat-
ing system performance as well.

Implementations of the portable C compiler often
sacrifice efficiency for portability. In other words, the
portable C compiler may give misleading results if the
results are interpreted as a system metric. For example,
the portable C compiler, which is standard on nearly
every Unix system, may compile a database benchmark
so that it runs poorly. A highly optimized Pascal com-
piler may compile the equivalent code so that the
benchmark runs much more efficiently. If a bench-
mark is being developed to evaluate various systems
for a given application, the benchmark should be writ-
ten in the same language and compiled by the same
compiler that the application uses.

Now that the potential effect of varying one compo-
nent of the system on the application has been shown,
we examine other portions of benchmarking technique.

Observing the obvious. Because benchmarks are
widely used to substantiate claims of product superiori-
ty, one would hope that vendors would have in-depth
experience with benchmarking. This is not always the
case. Vendors of software products often claim that
their Unix product outperforms others running under
Unix (a DBMS for lack of a better example). Given the
hardware and software variable components and the
previous examples, we now see that this claim can easi-
ly be made vague and meaningless.

The vendor may have benchmarked a package on
the best performing machine it could find in the range
of similar machines, and a competitor’s on the worst.
That is, a DBMS running on a ‘“‘Megawonga 5°’ witha
16-MHz Motorola 68020 CPU, a 68881 math copro-
cessor, 4 Mbytes of zero-wait-state RAM, and using
demand-paging virtual memory undoubtedly has a
npatural architectural advantage over a “Blitz 9000
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with a 6-MHz Intel 80286 with 0.5 Mbytes of two-
wait-state RAM with floating-point libraries. This out-
come is true even though the “‘systems’’ may both be
classified as super-microcomputers. The vendor may
have referred to the machines only as Megawonga 5
and Blitz 9000. What would happen if the Blitz 9000
-used a zero-wait-state, 16-Kbyte cache, an 80287 math
coprocessor, and 80186 1/0 processors?

The results could have very well been the exact op-
posite. Moreover, what if the normal Megawonga 5
came with an 8-MHz 68000 and 1 Mbyte of RAM? The
results would very likely have been different here as
well. To reiterate, the configuration of the machine
must be taken into account when running the bench-
mark, and should be clearly reported in the results of
the benchmark. It is essentially invalid to compare
competing components—whether disk drives or ap-
plication programs—unless they are run in similar
hardware and software environments or unless you can
be sure that the remainder of the environment has no
effect on the component under test.

For example, comparing a totally CPU-bound,
nonfloating-point application on a DEC VAX 11/780
to a microcomputer has some merit if one is contem-
plating purchasing a microcomputer to run this task. If
the application uses floating-point operations and the
VAX has floating-point hardware but the micro-
computer doesn’t, this is still a valid comparison
because one may be interested in just how slow the ap-
plication will be if run on the microcomputer. Compar-
ing differing components beyond this is unreasonable
because the expected performance differences are sub-
stantial. Application-oriented benchmarks are meant
to compare similar machines. Using them to compare
unlike machines will likely lead to invalid conclusions.

Personal computers are frequently compared in
magazines, and often the benchmark results are quite
meaningless. Perhaps it’s nice to know that an IBM PC
clone can format a disk faster than an Apple II, but of
what practical use is this information? It’s not surpris-
ing that the PC clone outperforms the Apple II, and
not many people will rush out and purchase a clone
because of this. How often are disks formatted with
respect to total system usage? Here the invalidity of the
comparison is obvious. In other cases it may not be
quite so obvious. What is of practical use is comparing
an IBM PC clone to a real IBM PC and perhaps other
clones as well. Here it makes much more sense to say
that “‘copying files on X is twice as fast as on Y.”

To simulate multiple users, some benchmarks in-
voke multiple copies of the same test. These tests would
more or less run concurrently. While this approach is
reasonable at first glance, real users rarely do the same
things at the same times. The results would be mislead-
ing since some resources would become saturated pre-
maturely while others would be underutilized.

As a first check on validity when reviewing bench-
marks performed by others, one need only ask if data
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describing the operating environment under which the
benchmarks were run are presented in a concise and
readable form. If information about the way the
benchmarks were run is not present, it may indicate
that sufficient care was not taken to control the en-
vironment when performing the benchmarks.

Even if proper benchmarking procedure is followed,
mistakes can still occur. These mistakes often include
human experimental error and statistical error. The
two make a deadly combination. In any field, compil-
ing statistical data can be a source of possible error.
Benchmarking is no exception.” However, if proper
scientific method is applied here, the problems can be
avoided or at least mmnmzed

Exaniples

Since we’ve discussed proper benchmarking tech-
nique, it is now in order to offer examples of poor
benchmarking technique.

Vendor benchmarks. As a general rule, benchmark
results touted by vendors should be viewed with skep-
ticism-—particularly those resuits not produced by an
impartial third party. Unfortunately, ‘‘bench-market-
ing’’ often replaces objective benchmarking. Here are
several examples.

Two well-known microprocessor vendors have long
been comparing their microprocessor families, and
both companies have long proclaimed architectural
and performance superiority. In 1985, both companies
published reports using several independently devel-
oped benchmarks6.!3:14 to compare their microproces-
sors in a Unix environment. Using the same bench-
marks, each company seemed to prove its product was
superior in this environment. Clearly, both companies
cannot be correct, and actually neither claim can be
sustained because both reports violate many of the
benchmarking rules just discussed.

Recently some vendors, of both operating system
software alone and complete computer systems, have
elevated the level of deception in benchmarks run on
their systems by changing the way certain system func-
tions behave. For example, Figure 1 shows a simple,
popular benchmark that exercises system calls.

This benchmark can be, and has been, easily com-
promised by replacing the getpid(2) call with a library
call by the same name that performs the actual system
call only once (i = 1) and simply returns the same value
for all subsequent calls (i = 2to i = LOOPS).

Such efforts at deception have become even more
elegant. Because the Dhrystone is such a well-known
and well-distributed user-mode, CPU-intensive bench-
mark, some compilers have been ‘‘hacked” to recog-
nize the Dhrystone and to optimize for it. This is
perhaps done by optimizing code fragments when cer-
tain variable names or constructs are encountered.




#define LOOPS 25000
main ()
{

register int i, 3;

for (i = 0; i < LOOPS; i++#)
j = getpid():;
¥

—
Figure 1. Getpid benchmark.

These efforts defeat the objective of benchmarks
entirely.

User benchmarks. Because of the state of perfor-
mance metrics in the user community, it’s just as easy
for users with good intentions to generate invalid
benchmarks or benchmark data.

Figure 2 shows the C source for a simple benchmark
that reads the first 100 blocks of a file to evaluate se-
quential disk access. Although simple enough at first
glance, there are several serious problems with this
benchmark.

o Is it really measuring sequential disk access or isit
measuring sequential file access? Because of normal

#include <stdio.h>
main ()
{
char buffer[BUFSIZ];
register int i;
int fildes;

file system disorder, the physical blocks for a_file are
probably not consecutive. Therefore the disk heads
may be moving back and forth as the benchmark reads
(logical) blocks 1 through n sequentially. Guidelines 4
and § were violated. (Refer to the earlier box.)

e In Unix the kernel may attempt disk *‘read ahead”’
to anticipate the requests of the user program and bring
the next few (logical) blocks of the file into the disk
buffer cache. Under other operating systems this may
or may not be the case. Guideline 8 was violated.

e If the benchmark is run in a pristine file system,
the physical blocks associated with a_file may actually
be very sequential so that the entire 100-block file may
be read from disk in only a few disk accesses. Guideline
8 was violated.

e Most microcomputer Unix implementations have
over 100 disk buffers. Thus, unless the buffer cache is
flushed between invocations, benchmark data col-
lected after the initial run will be misleading. Guide-
lines 9 and 10 were violated.

e Bufsiz is a relative quantity. On some systems it
may be 512 bytes and on others it may be 1,024. De-
pending on other variables, including internal disk sec-
tor size, more work may occur whena 1,024-byte block
is-read than when a 512-byte block is read. Guideline 6
was violated.

e Some file systems use a logical disk block size of up
to 8,192 bytes, thus satisfying many subsequent Bufsiz
requests (usually 512 or 1,024 bytes) from the disk buf-
fer cache after the driver has performed only one read
operation. Guideline 6 was violated.

if ((fildes = open(™a_file", 0)) < 0) {
fprintf (stderr, "Cannot open the file.\n"):;

exit (1)
}

‘for (i = 0; i < 100; i++)

if (read(fildes, buffer, BUFSIZ) <= 0) {
fprintf (stderr, "Error reading block %d.\n", i);

exit(l);
}
exit (0);
}

’

Figure 2. Disk read benchmark.

October 1988 73




Benchmarking

/* define the granularity of your times(2) function (when used) */

/*#define HZ 50
#define H2Z 60
/*#define HZ 100

Figure 3. times{2) defines for the Dhrystone benchmark.

#define TIMES 50000

main ()

/* times(2) returns 1/50 second (europe?) */
/* times(2) returns 1/60 second (most) */
/* times(2) returns 1/100 second (WECo) */

/* The first way of doing things -- use a function call */

#ifdef EMPTY
{

register unsigned int i, j;

for (i=0; i < TIMES; i++)
j = empty(i);
}

/* the empty function */
empty (k)
register unsigned int k;

{
return(k);
}
#endif
#ifdef ASSIGN

{
register unsigned int i, j;

for (i = 0; i < TIMES; i++)
o= 4;

}

#endif

/* The second way of doing things -- without a function call */

“

Figure 4. scall.c code fragment.

Benchmark developers are not immune from prob-
lems either. In particular, they need to take sufficient
precautions to ensure that the users running the bench-
mark understand the benchmark and how to configure
it to be run on various systems. An example appears in
Figure 3, which displays a code fragment from a widely
circulated C-language version of the popular Dhry-
stone benchmark.

Defining Hz to be 100 on a 60-Hz system would
make the results substantially faster. Users must take
care to include the correct defining construct, but how
do they determine the proper Hertz value for a given
system? A statement to reference users to the fimes(3)
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manual page for the system in question would enable
them to readily determine the correct value. Guideline
10 was violated.

- Lastly, Figure 4 shows a code fragment from Byte
magazine’s Unix benchmark suite that purports to
measure function call overhead.!¥ The benchmark is
compiled and run with Assign defined and then with
Empty defined. User times from these runs are sub-
tracted, and the difference is supposed to be the func-
tion call overhead.

The function call overhead for most systems mea-
sured is less than two seconds with several systems
having less than 0.5 seconds of overhead. User time




reported by time(1) has a granularity of 0.1 seconds. In
other words, a maximum possible random error of 0.1
seconds exists due to the output formatting of the Time
command alone. Therefore a data point of 0.5 seconds
has an uncertainty of 20 percent.

There will be other error factors as well that are not
as easily calculated; in particular, process scheduling
variability. Moreover, the code fragment provides no
information as to the variance and standard deviation
of the data. Therefore, these samples are hardly statis-
tically significant. Guidelines 7 and 12 were violated.

ccurate benchmarking seems to fall midway be-

tween science and art. As a science it involves the

precise monitoring and measurement of com-
puter systems. Yet, it is as much an art as is program-
ming, and the goal of the artist is to create the perfect
benchmark. Unfortunately, the perfect benchmark re-
mains elusive. Whether developing benchmarks, run-
ning benchmarks, or examining the data produced by
others, benchmarkers should ask themselves the ques-
tions posed by the unwritten rules of benchmarking.

While Unix was used as a case study here, most (if
not all) of the unwritten rules generally apply to other
operating system environments.

I hope that the perspective of benchmarking tech-
nique presented here helps dispel the aura of mystique
that surrounds accurate benchmarking. I also hope
that this perspective will stimulate further interest in
the Unix user community and will enable all of us to
take vendor claims with a grain of salt. &
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