Benchmarking is older. Simulation is more popular.
But analytical queueing models may offer the most cost-effective
technique for computer system performance modeling.

Figure 1 illustrates the spectrum of techniques
that have been used for computer system perfor-
mance modeling. The leftmost technique, the use of
simple rules of thumb, is the easiest to apply and also
requires the smallest investment of resources, while
the rightmost technique, benchmarking, is the most
difficult and costly.

The rules of thumb range from simple, well-known
observations such as Murphy’s law and Parkinson’s
law to some laws cited by Dickson! which have ob-
vious applications to computer system performance
evaulation:

Evie Nef’s law. There is a solution to every prob-
lem; the only difficulty is finding it.

Unnamed law. 1f it happens, it must be possible.

Miller’s law. You can’t tell how deep a puddleis un-
til you step into it.

Uhlmann’s razor. When stupidity is a sufficient ex-
planation, there is no need to have recourse to any
other.

On a more prosaic level we have a few rules of
thumb developed by experience and recorded by
R. M. Schardt:

(1) Generally, channel utilization in direct access
storage devices should not exceed 35 percent
for on-line applications or 40 percent for batch
applications. :

(2) Individual DASD device utilizations should
not exceed 35 percent.

(3) Average arm seek time on a DASD device
should not exceed 50 cylinders.

{4) No block size for either tape or disk should be
less than 4K bytes. .

April 1980

Queueing
v Models of
Computer
Systems

Arnold O. Allen
IBM Systems
Science Institute

These rules of thumb were selected for computers
operating under control of the IBM MVS (multiple
virtual storages) operating system, but many perfor-
mance analysts would agree that they are good
general rules.

Rules of thumb are excellent for day-to-day opera-
tion of computer installations but are not much help
in predicting hardware and software upgrading re-
quirements. Linear projection of utilization and load
offers a more organized approach. It requires measur-
ing and tracking of such items as central processor
utilization, channel utilization, communication line
utilization, etc., to establish growth rates for ex-
trapolation. For reasonable effectiveness, the re-
source requirements of applications under develop-
ment must also be estimated. This technique is cer-
tainly an improvement upon the rules-of-thumb tech-
nique and, if properly implemented, can be a helpful
planning tool. A major problem, however, is that this
approach attempts to use linear prediction for sys-
tems that are inherently nonlinear.

Simulation has been a very popular form of com-
puter system modeling for years. It enables the

analyst tomodel the system at a much greater level of

LINEAR
R%LFES PROJECTION
. (UTILIZATION

ANALYTICAL

QUEUEING ;
THEORY SIMULATION

MODELS

AND LOAD)

0018-9i6218010400-0618800.75 © 1980 IEEE

Figure 2. A typical queueing system. (Reprinted by permission of Xyzyx In-
formation Corporation, Canoga Park, California.)

| SERVICE FACILITY.

| [seRver 1]~

1 serven 2|

- "1 SERVER ¢

1
4
el
4
o
+
=
wad
el
<A
b
1
1
el

ty, Statistics, and Queueing Theory with Computer Science Applications,
1978)

Figure 3. Elements of a queueing system. (© Academic Press, Probabili-

detail than is practicable with queueing theory
models. Unfortunately, simulation models are diffi-
cult and costly to construct, validate, and run.
Simulation projects tend to become large, long-term,
and very difficult to control.

In terms of cost and complexity there is no sharp

_ distinction between simulation and benchmarking.

Some simulation models are as complex and hard to
understand as the system being simulated! Likewise,
a benchmark effort may be of rather limited scope,
but if it is, it is probably nearly useless.

The benchmarking approach to performance evalu-
ation is probably the oldest and most widely used
technique, although its use has been primarily for
new hardware selection. Thus, it is not a promising
technique for deciding when a hardware update isre-
quired. The technique sounds disarmingly simple.
You simply collect a representative sample of your
workload, run it on the proposed machine, and mea-
sure the performance. Unfortunately, all three of
these tasks are very difficult in practice. Lucas? gives
an excellent discussion of these difficulties as well as
a good explanation of simulation.

One of the major benchmarking problems of recent

'vintage has been that of generating the on-line com-

ponent of the workload. In recent years this problem
has been greatly simplified by the emergence of the
type of program called a driver. This tool is ex-
emplified by the IBM Teleprocessing Network Simu-
lator.* |

A driver is a simulator which uses the actual or
planned user-specified data communication network
(terminals, lines, etc.) to model the network and to
generate and send messages to the computer system
under test, with a specific message mix and rate for
each terminal. Thus a driver can be used to approx-
imate system performance and response times,
evaluate communication network design, and test
new application programs. It may be less complex to

~1SERVER 1}

| SERVICE TIME.

TIME IN QUEUEING SYSTEM

Figure 4. Some random variables used in queueing theory models. (© Academic Press, Probability, Statistics, and Queueing Theory with

Computer Science Applications, 1978)

14

COMPUTER

anacy

use than some detailed simulation models but is ex-
pensive in terms of hardware required.

In the last two or three years the use of analytical
queueing models has become popular, although only
a few years ago simulation was the prevailing tech-
nique. In 1978 an entire issue of ACM Computing
Surveys® was devoted to queueing. Spragins®
discusses the problems of complex systems modeling
and cites a number of cases showing how analytical
queueing system models that are much simpler than
the system modeled can be used successfully. Thisar-
ticle considers some analytical queueing theory
models and shows how they can be used for perfor-
mance modeling of computer systems. Most of the
examples are drawn from another work,” where they
are discussed in greater depth.

Elements of queueing theory

A queueisa waiting line, and queueing theoryisthe
study of waiting-line phenomena. Figure 2 shows a
typical queueing system; the poor befuddled fellow in
the foreground has just discovered that the lady in
front of him is the proprietor of the Junque Shop and
is bringing in her weekly receipts. (He is waiting to
rob the bank.)

In Figure 3 we show the elements of an open queue-
ing system. There is a population or source of poten-
tial customers, where the term “customer’’ means an
entity desiring some type of service—the transmis-
sion of a message, the processing of an inquiry, or the
servicing of an I/O request—froma service facility. In
the service facility, there are one or more servers,
which are units that provide the required service for

- the customers. If all the servers are busy when a

customer enters the system, the customer joins a
queue until a server is available—if there is room in
the waiting room.

Some random variables used in studying queueing
systems are illustrated in Figure 4. (The reader will
probably recall that a random variable is a variable
that is not deterministic and thus must be described
in probabilistic terms; that is, it has an associated
probability distribution.) We use g to represent the
time an arbitrary customer spends in the queue wait-
ing for a server to become available (the queueing
time) and s for the time required for the server to pro-
vide service (the service time); thus, w, the total time
a customer spends in the queueing system, is given
by w = g + s. Table 1 summarizes the queueing
theory definitions used in this article. (With a few ex-
ceptions, the notations recommended in the Queue-
ing Standardization Conference Report of May 11,
1971, issued by representatives of ORSA, AIIE,
CORS, and TIMS, are followed.) '

Specification of a queueing system

A mathematical study of a queueing system re-
quires that we discuss the following queueing specifi-
cations.

April 1980

Source. The population source can be finite or in-
finite. A finite source system cannot have an ar-
bitrarily long queue for service, but the number of
customers in the system affects the arrival rate. For
an infinite source system the queue for service is
unlimited, but the arrival rate is unaffected by the
number of customers present in the system. If the
source is finite but large, we assume an infinite
customer population to simplify the mathematics.
Buzen and Goldberg?® offer some guidelines for choos-
ing between infinite and finite models; computation
is simpler for infinite models.

Arrival process. We assume that customers enter
the queueing system at times ¢, <, <t;<tp...f,
The random variables 1, = t;, —t;_, (Where k > 1) are
called interarrival times. We assume that the 7, form
asequenceof independent and identically distributed

Table 1.
Queueing theory notation and definitions.

C(c,u) Eriang’s C formula or the probability all ¢ servers are busy in an
M/M/c queueing system.

Els] “Expected (average or mean) service time for one customer.

13831 Expected (average or mean) interarrival time.

E[t] = 1/ where A is average arrivai rate.

L E[N], expected (average or mean) number in the queueing system
when the system is in the steady state.

L, E{N,], expected (average or mean) number in the queue, not
inciuding those in service, for steady state system.

A Average (mean) arrival rate to queueing system A =1/E[1]
where E[t] = average interarrival time.

Ay Average throughput of a computer system measured in jobs or
interactions per unit time.

u Average (mean) service rate per server. Average service rate u =
1/E[s], where E[s]is the average (mean) service time.

N Random variable describing number in queueing system when
system is in the steady state.

Ny Random variable describing number of customers in the steady
state queue.

Ny Random variable describing number of customers receiving
service when the system is in the steady state.

Pa Steady state probability that there are n customers in the queueing

. system.

ng(r).my(r) Symbol for rth percentile queueing time or waiting time; that is,
the queueing time or waiting time that r percent of the customers
do not exceed.

q.5.w Random variables describing the time a customer spends in the
queue (waiting line), in service, and in the system, respectively;
w=gQg+S.

e Server utilization = traffic intensity/c = AE[s}/c = (A/u)/¢.
The probability that any particular server is busy. .

T Random variable describing interarrival time.

Traffic intensity = E[s)/E[1] = AE{s] = A/p. Unit of measure
is the eriang.

w E[w], expected (average or mean) time in the steady state
system. W = W, + E[s].

W, E[q). expected (average or mean) time in the queue (waiting line),

excluding service time, for steady state system. W, = W - E[s].

15

16

s s e i b

random variables, and we use the symbol 7 for an ar-
bitrary interarrival time. The most common arrival
pattern in queueing theory terminology is the ran-
dom arrival pattern or Poisson arrival process. This
means the interarrival time distribution is exponen-
tial, that is, P[r < t] = 1 — e~* for each interarrival
time, and the probability of n arrivals in any time in-
tervaloflength t is e~*(At)*/n!, wheren =0,1,2,. . . .
Here 4 is the average arrival rate, and the number of
arrivals per unit time has a Poisson distribution.

Service time distribution. Let s, bethe servicetime
required by the k th arriving customer. In this article,
the s, are assumed to be independent, identically
distributed random variables. Therefore, we can refer
to an arbitrary service time as s. We also assume the
common distribution function W (t) = P[s < t]of ser-
vice time for all customers. The most common
service-time distribution in queueing theory is expo-
nential, which defines the service called random ser-
vice. The symbol u is reserved for average service

rate, and the distribution function for random service -

is given by W (t) = 1 —e~#, where t 2 0. Other com-
mon service time distributions are Erlang-k, hyper-
exponential, and constant. (See Allen” for a discus-
sion of the above probability distributions.)

A statistical parameter that is useful as a measure
of the character of probability distributions for in-
terarrival time and for service time is the squared
coefficient of variation C, which is defined for aran-
dom variable X by

, _ Var[x)
X7 E[Xp

If X is constant, then CZ = 0; if X has an Erlang-k
distribution, then CZ = 1/k; if X has an exponential
distribution, then C3 = 1; and if X has a hyperexpo-
nential distribution, then C§ 2 1. (These results are
shown in Allen.”) We conclude that, for C? nearly
equal to zero, the arrival process has a regular pat-
tern; if C2 is nearly equal to 1, the arrival process is
nearly random in character; and if C? is greater than
1, arrivals tend to cluster. Similar statements can be
made about the service time distribution, where
small values of C correspond to nearly constant ser-
vice times and large values correspond to great
variability in service times.

Maximum gqueueing system capacity. In some
queueing systems, the queue capacity is assumed to
be infinite. That is, every arriving customer is al-
lowed to wait until service can be provided. Other
systems, called loss systems, have zero waiting line
capacity. That is, if a customer arrives when the ser-
vice facility is fully utilized, the customer is turned
away. Still other queueing systems have a positive
{but not infinite) capacity.

Number of servers. The simplest queueing system
is the single-server system, which can serve only one
customer at a time. A multiserver system has c iden-
tical servers and can serve as many as ¢ customers
simultaneously.

et i ki o b e S e -

Queue discipline. The queue discipline, sometimes
called service discipline, is the rule for selecting the
next customer to receive service. The most common
queue discipline is ‘‘first come, first served,” abbre-
viated as FCFS. (Among the whimsical queue disci-
plines are BIFO for “‘biggest in first out” and FISH
for ““first in still here.” The reader is probably aware
of installations which utilize these queue disciplines.)

A shorthand notation, called the Kendall notation,
has been developed to specify queueing systems and
has the form A/B/c/K/m/Z. Here A specifies the in-
terarrival time distribution, B the service time
distribution, ¢ the number of servers, K the system
capacity, m the number in the source, and Z the queue
discipline. More often a shorter notation, A/B/c, is
used when there is no limit on the waiting line, the
source is infinite, and the queue discipline is FCFS.
The symbols used for A and B are GI, general in-
dependent interarrival time; G, general service time;
E,, Erlang-k interarrival or service time distribution;
M, exponential interarrival or service time distribu-
tion; D, deterministic (constant) interarrival or ser-
vice time distribution; and H,, hyperexponential
{with k stages) interarrival or service time distribu-
tion.

Traffic intensity. Traffic intensity u is the ratio of
the mean service time F[s] and the mean interarrival
time E[r]. This ratio is an important parameter of a
queueing system and is defined by

_ Els]
"~ El1]

= |>

u = AE[s] =

The traffic intensity u determines the minimum
number of servers that are required to keep up with
the incoming stream of customers. Thus, for exam-
ple, if E{s]is 15 seconds and E[r]is 10 seconds, u =
1.5 and at least two servers are required. The unit of
traffic intensity is the erlang, named after A. K.
Erlang, a pioneer in queueing theory.

Server utilization. Another important parameter is
the traffic intensity per server or u/, called server
utilization ¢ when the traffic is evenly divided among
the servers. Server utilization is the probability that
any given server is busy, and thus, by the Law of
Large Numbers, ¢ is the approximate fraction of time
that every server is busy. For single-server systems
note that ¢ = u = traffic intensity.

Probability that n customers are in the system at
time ¢. This probability, p, (), depends not only on ¢,
but also on the initial conditions of the queueing sys-
tem—that is, the number of customers present when
the service facility starts up—and on the other
distributions and parameters listed above. For the
most useful queueing systems, as t increases, p, (t)
approaches a steady-state value p,,, which is indepen-
dent of both ¢ and the initial conditions. The systemis
then said to be in a steady-state condition. This arti-
cle considers only steady-state solutions to queueing
problems because time-dependent or transient solu-

COMPUTER

U

b 2

tions are usually too complex for practical use and from Table 2 for the M/M/c model with ¢ = 1, we can
because the preferred steady-state solution exists in compute the standard performance measures.

most cases of interest. See Giffin® for the transient
solutions for some simple queueing models.

Queueing theory provides statistical measures of
queueing system performance. Some useful statis-
tical measures (see Table 1) include W, W, L, and
L—the mean queueing time, system time, num%er in
the queue, and number in the system, respectively.

The following formulas, both of which are called
Little’s law, are quite useful in relating the four pri-
mary performance measures:

L, =W,
L= W

Another useful performance measurement is the.
90th percentile value of the time in the system,
n,(90), which is defined as the amount of time such
that 90 percent of all arriving customers spend not
more than this amount of time in the system. Expressed
symbolically, m,,(90) is defined by the equation Plw <
n,(90)] = 0.9. The 90th percentile value of time in
queue, 1,(90), is similarly defined.

Applications of a simple open queueing model

The M/M/c queueing system is a simple, open,
queueing model that can be used tomodel, at least ap-
proximately, many computer systems. It is con-
sidered open because customers enter the system
from outside, receive service, and leave the system.
Closed systems, in which customers never leave the
system, will be considered later. The equations for
the M/M/c queueing system are shown in Table 2.
(More extensive equations for this system are given
in Reference 7.)

Example 1. A branch office of Endearing Engineer-
ing, an engineering consulting firm, has one on-line
terminal connected to a central computer system for
eight hours each day. Engineers, who work through-
out the city, drive to the branch office to makeroutine
calculations. Their arrival pattern is random
{(Poisson) with an average of 10 persons per day using
the terminal. The distribution of time spent by an
engineer at the terminal is approximately exponen-
tial with an average value of half an hour. Thus the
terminal is 5/8 utilized (10 X 1/2 = 5 hours out of 8
hours available). The branch manager receives com-
plaints from the staff about the length of time many
of them have to wait to use the terminal. It does not
seem reasonable to the manager to procure another
terminal when the present one is used only five-
eighths of the time, on the average. How can queue-
ing theory help this manager? o

Solution. The M/M/1 queueing system is a
reasonable model of this system witho = 5/8 as com-
puted above. (There actually are only a finite number
of engineers but the infinite population assumption
seems reasonable here.) Then, using the equations

April 1980

_ oEls]

q 1 - e
= 50 minutes

Els]
" T—e
= 80 minutes

n,(90) = Wln(10c)

= 146.61 minutes

Average time an
engineer spends in
the queue

Average time an en-
gineer spends at the
branch office
waiting for and us-
ing the terminal

90th percentile
queueing time

Also, since 1 is 10 engineers per eight-hour day, which

is
0 __1 engineers per minute
(8 X60) 48

we can use Little’s law to calculate

L, =W, Average number of
= 1.0417 engineers in the
: queue
and
. Average number of
_ engineers in the
L =W branch office to use
= 1.667 engineers the terminals
Table 2.
Steady-state formulas for M/M/c queueing system.
= Mu = AE[s] Tratfic intensity
e =U/k Server utilization
C(c,u) The probability all ¢ servers are
busy so that an arriving
customer must wait; can be
calculated by Erlang’s C formula
(below)
uc
Cle,w) = c! Erlang’s C formula
3 1 Ci1 un
c! *(-e) n=0 !
w. = Clcu)Els]
—5(1_—6)—— Mean queueing time
W= Wq+E[s] Mean time in the system
Els] 90th percentile time in the
n,(90)= {10 Clc,u)) queus

c(1-e)
When ¢ = 1, the M/M/1 formulas
C(c,u) = @ = AE[s]

efls]
=T
Els]
W=t

and
,(90) = Win(10¢).

simplify to

17

18

These statistics show that slightly more than one
engineer-day is being lost by engineers queueing up
to use the terminal, In the next example we will see
how the M/M/c queueing system model can beused to
make an informed decision on how to solve the prob-
lem. y

Example 2. In Example 1 we discovered a puzzling
situation at Endearing Engineering. Although their
remote terminal was only 62.5 percent utilized, the
average time an engineer had to queue for the ter-
minal was 50 minutes with 10 percent of them having
to wait for over 146.61 minutes. A committee of
engirieers met with the branch manager and showed
how queueing theory could explain what was happen-
ing. They decided the problem could not be solved by
scheduling terminal time; one or more additional ter-
minals should be provided. They specified that the
mean queueing time should not exceed 10 minutes
with the 90th percentile value of queueing time not to
exceed 15 minutes. The branch manager then had sec-
ond thoughts; he reasoned that, if the average queue-
ing time is 50 minutes with one terminal, then it must
be 25 minutes with two terminals, and thus five ter-
minals would be required to make W, < 10 minutes.
How many terminals are required?

Solution. The solution, of course, depends upon
whether all the terminals are installed at the branch
office, giving one M/M/c queueing system, or are
distributed to several customer locations, thus pro-
viding multiple single-server (M/M/1) queueing sys-
tems. Let us consider the former case first, by trying c
= 2, that is, providing two terminals in the branch of-
fice. (We are motivated, in part, by the fact that the
equations are much easier to solve for ¢ = 2 than forc
=5)

e = 0.625/2 Server utilization
= 0.3125 :
C2.u) = C(2,0.625) Probability both
= (.1488 servers are busy
& E
= M Mean time in the
¢ c(l —e) queue
= 3.247 minutes
Els] .
n,(90) = — In(10 C(c,u)) 90th percentile
c(l—¢) queueing time

= 8.67 minutes

Thus one additional terminal in the branch office will
satisfy all the requirements.

If the additional terminal is placed at a custoiner
location and the traffic to the two terminals is evenly
split, there wonld be two M/M/1 queueing systems,
each with o = 0.3125. Then, by the formulas of Table
2, for ¢ = 1, we calculate

eEls]
=
q 1- e
= 18.64 minutes

Mean queueing time

o R s e il Sxin WIRREA <3

Els
m,(90) = In(100) 90th percentile
. 1-e queueing time

= 49.72 minutes.

Thus two distributed terminals will not meet either of
the criteria.

Table 3 shows the results for various numbers of
terminals. Some, rising above principle, might decide
to settle for four distributed terminals; however, the
stated criteria mean that, if the terminals are dis-
persed, five are required. Thus the branch manager is
right. (It’s not nice to fool your manager!) We have
not, of course, considered the travel time for
engineers to reach a terminal. Using queueing theory
models and cost information concerning travel time
to the terminals, it is possible to determine the most
cost effective solution to the problem. (For an exam-
ple, see Reference 7, Chapter 5, Exercise 13.)

Finite population queueing models of
interactive computer systems

In the two previous examples we used an open
queueing system model with an infinite number of
customers. Actually, there are few, if any, real-life
queueing systems that are truly open and infinite;
however, many systems can be reasonably approx-
imated by such models as explained by Buzen and
Goldberg.® We will now consider a more realistic
queueing model which is closed (no customer enters
or leaves the system) and has a finite customer popu-
lation.

Figure 5 portrays what is commonly known as a
finite population queueing model of an interactive
computer system (see Muntz!® and Allen’). The cen-
tral processor system consists of (possibly) a queue
for the central processor system, a CPU, (perhaps)

- some I/0 devices, and an associated system of queues

for these service features. The customers (users) in-
teract with the central processor system through N
terminals. Each customer (user) is assumed to be in
exactly one of three states at any instant of time:
(1) “thinking” at the terminal (this time is called
“think time, t”), (2) queueing for some type of ser-
vice, or (3) receiving service. Think time, ¢, includes
all the elapsed time between the completion of service
at the central processor system for an interaction un-
til a request is submitted for another interaction.
Kobayashi,!! who provides an excellent discussion of
this system, uses the name “‘user time” for what we
call “think time.’’ A user at a terminal cannot submit
a new request for CPU service until the previous re-
quest has been satisfied. In Figure 5 the customer
(user) can be represented as a token which circulates
around the system and which at any instant is either
at a terminal, at the CPU, or at a queue in the central
processor system. The particular queueing network
we study is determined by the model we select for the
central processor system. The equations valid for all
models of the type shown in Figure 5 are given in
Table 4; they describe the model under very general

COMPUTER

B

C W ey e

S

conditions (see Kobayashi!!). The value of p, usually

depends upon the distributional form of both the
think time and the CPU service time. Thus the values
of W and Ay are determined by the model we use for
the central processor system.

For studying timesharing systems one useful
model of the central processor system is that where
the CPU service time is general and the processor-
sharing queue discipline is employed. This model is
discussed in considerable detail by Kleinrock,!? who
played a significant role in developing it. The
processor-sharing queue discipline assumes the pro-
cessing power of the CPU is divided equally among
all requests for service. Thus, if there are n interac-
tions pending for CPU service, each of them is in-
stantly served at the rate of wn customers per unit
time, where u is the CPU processing rate. This queue
discipline is derived as the limiting case of a round-
robin timesharing system as the quantum of service
provided each user approaches zero. In practice it
gives good results for quantized service times with
finite quanta which are short compared with the
usual service time requirement. If the central pro-
cessor system of Figure 5 is replaced by a single CPU
utilizing the processor-sharing queue discipline, then
the equations of Table 4 apply with p, calculated by
the formula

N NI Eis] V1
@ po=|2 N7 \Em

We also can calculate the foﬂowiﬂg:

(B) ¢ =1—p, CPUutilization

- e Throughput in interactions
] ™= E[s] per unit time

Example 3. We consider one of the examples used
by Martin Reiser!? in his interesting article explain-
ing how a sophisticated APL program called QNET4,
which was developed at the IBM Research Division,
can be used to model computer systems. A finite
processor-sharing interactive computer system has
20 active terminals, a mean think time of 3 seconds, a
CPU average service rate of 500,000 instructions per
second (0.5 MIPS), and an average interaction re-
quirement of 100,000 instructions. It is desired to
find the mean response time, W; the average through-
put, A; the CPU utilization; and the average number
of interactions pending in the CPU system. We would
also like to know how this would change if we added
10 more terminals so there would be 30 in all.

Solution. Since each interaction requires the execu-
tion of an average of 100,000 CPU instructions, we
have » ,

Els) = 100,000/500,000 = 0.2 seconds

By Equation (A) above, p,, the probability the CPU
isidle, is given by

April 1980

N N! Els V!
Po=z (S)

= (N—n) E[t]

=0.045593216

Then Equation (1) of Table 4 yields the mean response
time W as
NE|s]

1-p,

- — E[t] = 1.191 seconds

The CPU utilization, g, is given (by Equation (B)
above) as
e=1—p,=0.9544

Table 3. -
Summary of Example 2 calculations.
* {All times in minutes)

TERMINALS ~ SYSTEM 0 W, my(90)
1 M/M/1 062500 50.00 146.61
1 M/M2 03125 3.25 8.67
2 M/MA's 031250 1364 49.72
4 M/M/'s 015625 556 15.87
5 M/M/'s 012500 4.29 7.65

centRAL |
»{PROCESSOR |
| SYsTEm

Figure 5. Finite population queueing model of interactive
computer system. (© Academic Press, Probability, Statistics,
and Queueing Theory with Computer Science Applications,
1978)

) Table 4.
Finite population queueing model of interactive
computer system depicted in Figure 5.

The equations which describe this mode! are

NE[s] .
(YW= —— - Et] Mean response time
1-pg
2)r;= — Throughput in interactions per
W+E[t] unit time
In the equations

E[s] = mean CPU service time per interaction,
p, = probability the system is idle, and

E[t] = mean ‘““think time’’ (the mean time between successive
requests at a terminal).

19

SV VU VORI T RPN VO RICUI SR

This yields the average throughput, 7, given (by

Equation (C) above) as
e .
Ap = ——— = 4.722 interactions
Els] per second
By Little’s law, the average number of interactions
pending in the CPU is
- L = i;W=5.68interactions

If the number of terminals is raised to 30, then, by the '

equations we used before, we get the following

results:
pe = 0.00022118
o = 0.99977882
W = 3.00 seconds
Ar = 5 interactions per second
L = 15 interactions

Thus a 50 percent increase in number of terminals in-
creased the throughput only 4.78 percent while in-
creasing the response time by 151.9 percent!

ASYMPTOTE W = NE[s]

\ SLOPE £[s]

 NUMBER OF TERMINALS N __

Figure 6. Mean response time, W, versus N, the number of terminals,
for the finite population queueing model of an interactive computer
system. (© Academic Press, Probability, Statistics, and Queueing Theory
with Computer Science Applications, 1978) :

RCULATING MARKERS (PROGRAMS) -
o DEvVCES

Figure 7. Central server model of multiprogramming. (© Academic
Press, Probability, Statistics, and Queueing Theory with Computer Science
Applications, 1978)

20

EE S UGSt S SE - I M T

This example illustrates the concept of system
saturation. Consider Figure 6, the graph of the mean
response time

versus N.For N = 1 thereisno queueing so W = E|[s].
For small values of N the customers interfere with
each other very little; that is, when one person wants
a CPU interaction, the others are usually in think
mode so little queueing occurs. Thus the curve is
asymptoticat N = 1 totheline W= E[s]. AsN—>»,
Po— 0 since the likelihood of the CPU being idle must
go to 0. Hence the curve is asymptotic to the line
NE[s] — E[t] as N = «. The two asymptotes in-
tersect where ’ :

E[s]+E[t]

— L
N=N Els]
Kleinrock!2 calls N* the system saturation point. He
points out that, if each interaction required exactly
E[s]}units of CPU service time and exactly E[t] units
of think time, then N* is the maximum number of ter-
minals that could be scheduled in such a way as to
cause no mutual interference. For N << N* there is
almost no mutual interference and Wis approximate-
ly E[s). For N >> N*, users “totally interfere” with
each other; that is, the addition of a terminal raises
everyone’s average response time by E[s]. In Exam-
ple 3, N* = 3.2/0.2 = 16 terminals, and the increasein
W due to the change from 20 terminals to 30 ter-
minals was close to 10 X 0.2 = 2 seconds. (Actually it
was 1.809 seconds.)

The central server model of multiprogramming

A number of models have been formulated to repre-
gent the central processor system in Figure 5. One
that has had a great deal of success in practice is the
central server model. It also has been used to model
batch multiprogramming systems. It is more com-
plex (and thereby more realistic) than any of the
previous models we have considered.

This model, shown in Figure 7, is a closed model
since it contains a fixed number of programs K which
can be thought of as markers which cycle around the
system interminably. However, each time a marker
(program) makes the cycle from the CPU directly
back to the CPU, we assume a program execution has
been completed and a new program enters the sys-
tem. It is sometimes convenient to consider the
model of Figure 7 to represent the central processor
system of a more complex system such as that in
Figure 5, but we must then assume the users at the

_terminals are sufficiently active to guarantee a pend-

ing interaction. Otherwise the two models are incom-
patible.

There are M—1 I/O devices, each with its own
queue and each having exponentially distributed ser-

COMPUTER

BB

Cw v s w o @

vice times with average service rate y; (i =
2.3,...,M). The CPU also is assumed to provide ex-
ponential service (with averagerate u,). Upon comple-
tion of a CPU execution, the job returns to the CPU
{completes execution) with probability p, or requires
service at I/0O device i with probability p, i =
2,3,...,M. Upon completion of I/O service the job
returns to the CPU queue for another cycle. If welet k
= (ky,ks, . . ., ky) represent the state of the system,
where £, is the number of jobs (markers) at the ith
queue (queueing or in service), then Buzen 415 shows
the probability p (k;,k,, . . . k) that the systemisin
state k is given by

1 M (pi \hi
Mn
G(K) =2 \ H; /
for any (k,.ks, . . .,y) such that
M
2 k=K
i=1

p(kl,kZ,A . ,kM) =

and each k; > 0, where G(K) is defined so as to make
the probabilities sum to 1. (In Figure 7 the rectangles
represent queues and the circles represent service
facilities.) A technique developed by Buzen for
calculating G(0) = 1, G(1), G(2),. . .,G(K) is given in
Table 5. The equations to describe the central server
model are given in Table 6.

Example 4. Mr. G. Nee Uss, the senior computer
system performance analyst at Saggin Waggin, a
subsidiary of Admiral Motors, decides to model their
main on-line computer system using the finite
population queueing system mode! of Figure 5 with
the central processor system represented by the cen-
tral server model. During the busiest period of the
day they have an average of 100 active terminals with
a mean think time of 13 seconds. Their observed
mean response timeis 6.41 seconds. By Formula (2) of
Table 4, we see that

N
Ap= ——— =515
W+ E(t)

so that, by Little’s law,

interactions are pending, on the average. Thus the ac-
tivity at the terminalsis certainly great enough toen-
sure compatibility of the finite population and cen-
tral server models. The parameters of the central

server part of their model are
M=3 One CPUandtwo 1/0O devices
K=4 Multiprogramming level is four
u; = 100
My = 25 Service rates
Hy = 40
p; =01
p; =02 Branching probabilities
p3 =0.7

April 1980

Table 5.
Buzen’s algorithm.

Given the parameters of the central server mode! of Figure 7 (that is, u,,p; for
i =1,2,...,M), this algorithm will generate G(K) as well as G(K-1),
G(K-2),...,6(1),6(0) = 1.

Step 1, assign values to x;:
Set x; = 1and then set x; = uyp;/p; fori = 2,3,.. ..M.

Step 2, set initial values:
Setg(k,1) = 1fork =0,1...,Kandsetg(0,m) = tform=12,....M

Step 3, initialize k:

Setkto1.

Step 4, calculate kth row:

Set g(k,m) = glk,m=1) + Xpg(k-1.m), m =2.3,... .M.
Step 5, increase k:

Setktok + 1.

Step 6, algorithm complete?
If k< K, return to Step 4. Otherwise, terminate the algorithm.
Then g(n,M) = G(n)forn =0,1,.. K.

Observed values of the respective utilizations are

.CPU utilization

0, =0.521

e, = 0.409 First 1/0 device utilization

gz = 0.911 Second 1/0 device utilization

Ap=5.18 inter- Mean throughput
actions/sec

W = 6.41 sec Mean response time

If the proposed model seems to fit reasonably well,
Mr. Uss wants to use it to investigate the effects of
two possible hardware upgrades. The first upgrade
considered is the procurement of enough additional
main memory to allow the multiprogramming level,
K, to be increased from 4 to 15. The second possible

Table 6.
Sieady-state equations of central server model
of multiprogramming (see main text for
model assumptions).

Calculate 6(0),6(1), . . . ,G(K) by Buzen's algorithm.
Thén the server utilizations are given by

G(K=1)/6(K), i=1
(1) e=
! #1919;‘} i=23,...M

Hi

The average throughput, A;, is given by
(2) Ar = pi@ePy-

If the central server mode! is the central processor mode! for the
interactive computing system of Figure 5, then the average
response time, W, is calculated by -

N
@) W=—- -f]t] = - E1].

Ar M104P1

22

upgrade is to make hardware and software changes
which will effectively speed up both 1/0 devices by 25
percent while keeping the multiprogramming level at
four.

Solution. Applying Buzen’s Algorithm we calcu-
late

x; =1,x; =y polp; = 0.8
and
X3 = py p3lus = 1.75

Continuing with Buzen’s algorithm yields the follow-
ing table for the original model:

X2 X3

0.8 1.75

1 1 = G(0)
1.8 3.55 = G(1)

2.44 8.6525 = G{(2)
2952 18.093875 = G(3)
3.3616 35.02588125 = G(4) = G(K)

N O
bbb ek et e et B
-

Then, by the equations of Table 6,

e, = G(3)/G(4)=0.51658586 CPU utilization'
Q2 = M101D2/uy Utilization of first
= 0.413268688 1/0 device
€3 = 1,0, P3/u3 Utilization of sec-
= 0.904025256 ond 1/0O device
Ar = w010y Mean throughput
= 5.1658586 interactions
per second
N
= — — Eft] Mean response
Ap time
= 6.357866 seconds

These values are certainly close enough to the
measured values to validate the model. Mr. Uss
should proceed.

Similar calculations show that if the multiprogram-
ming level is increased to 15 from 4, then

0; = 0.571282414

e, = 0.457025931

03 = 0.999744225 :
Ar = 5.71282 interactions per second

and

W = 4.505 seconds

Thus, there hasbeen a 10.6 percent improvement in
mean throughput, A7, and a 29.2 percent decrease in

mean response time, W. :
If the multiprogramming level is kept at four but

the 1/0 devices are 25 percent faster, Mr. Uss’s
calculations show similarly that

e; = 0.616300129

e; = 0.394432082

03 = 0.86282018

Ay = 6.163 interactions per second

and
W = 38.226 seconds

This upgrade seems to be much more favorable than
increasing the multiprogramming level to 15. It im-
proves mean throughput by 19.3 percent and de-
creases the mean response time by 49.3 percent. It
also does not overload the 1/0 devices as heavily as
the first upgrade option. :

Similar calculations can also show Mr. Uss the im-
provement to expect if both of the upgrades are done
simultaneously, that is, if we get faster 1/0 devices
and enough main memory to raise the multiprogram-
ming level to 15. This would give a great deal of im-
provement. Mr. Uss calculates that

Ar = 7.123 interactions per second
and
W = 1.039 seconds

This is a 15.6 percent improvement in mean through-
put and a 67.8 percent decrease in the mean response
time over the system with faster 1/0 devices but with
the multiprogramming level kept at four. Compared
to the original system it shows a 24.7 percent increase
in Arand a 76.9 percent decrease in W.

The reader should note that what we have glibly
represented as an 1/0 device may very well be repre-

.sented in physical hardware by a block multiplexer

channel with several attached disk drives in the case
of the first I1/0 device, and by such a channel with
several drums in the case of the second 1/0 device.

If the first 1/O device on the original system is re-
placed by one with the same speed as the second 1/0
device, and the load on the two devices is balanced so
that the branching probability to each is 0.45, then
we would have

Ar=6.14 interactions per second
and

W = 3.285 seconds

The central server model is one of the most success-
ful analytic queueing models in use for modeling
multiprogramming computer systems. Price!®
describes how it was successfully used to model an
IBM System/360-91 at the Stanford Linear Ac-
celerator Center. Buzen!”!® describes a number of
successful modeling efforts which utilized the central
server model.

COMPUTER

Some useful approximations

Many computer systems can be modeled as a ‘‘net-
work of queues,” that is, a network of simple queue-
ing systemsin which the input(s) to one queueing sys-
tem may be output(s) from one or more other queue-
ing system(s). Unfortunately little can be done,
analytically, with general queueing networks, except
in the simple case covered by Jackson’s theorem (see
Allen’) in which all elements of the network are
M/M/c queueing systems and all arrival patterns are
random (Poisson). However, there are some simple
approximations which can be used to model fairly
complex queueing networks.

One useful approximation noted by the author and
his colleague, John Cunneen, can be stated (modest-
ly) as the Allen-Cunneen approximation formula: For
any G1/G/c queueing system it is approximately true
that

Clcu)E[s] | C:+C?
e(l—p) 2

D) W,

In this formula, Clc,u) is Erlang’s C formula (shown
in Table 2); C2 C? is the squared coefficient of vari-
ation for the interarrival time and service time,
respectively; and gis the server utilization. A similar,
but slightly more complex formula for the single
server case has been given by Kuehn.!® The approx-
imation formula above is exact for M/M/c and M/G/1
queueing systems and gives a reasonably good ap-
proximation for many others. Examples of its use are
givenin Allen.” It is easy to compute, and the further
approximation

Cleu) _ &
cl—o) 1—¢°

(E)

can be used to make the computation even easier.
Equation (E) is exact for ¢ = 1,2 but is a little low for
other values of c.

Sevcik et al.?® give the approximations shown in
Figure 8 for computing the A and C?values for de-
partures, splits, and merges in a queueing network.
Then the Allen-Cunneen approximation can be used
to calculate values of W, and thereby W, L,, and L.
We illustrate in the following example.

Example 5. Consider the computer system model of
Figure 9, taken from Sevcik et al.2® We solve this
model iteratively by assuming starting values for C?
at each queueing facility. Then we solve for 1, and A,
= Ag = 4,/2 by using Little’s law

3
=fam
where each
W, =W, +Els;]

and the Allen-Cunneen approximation is used to
calculate each W, . The formulas in Figure 8 are then

April 1980

Figure 8. Approximations for queueing networks.

Figure 9. Queueing network of Example 5.

24

Table 7.
Results of Example 5.
FACILITY.
1 2 3

A 0.1037 0.0518 0.0518
e 0.4147 0.5184 0.5184
w, 4.6300 17.2200 22.6000
w 8.6300 27.2200 32.6000
Ly - 0.4804 0.8827 1.1716
L 0.8951 1.4111 1.6900
c? 1.2700 1.2000 1.2000

used to recompute the C?values and the process is
repeated. Four iterations of this procedure with in-
itial C2values of 2.5, 1.6, and 1.6 for the first, second,
and third facility, respectively, gave the results in
Table 7. (The numbers given in Sevcik et al. 20 are fora
model representing the entire system by a single com-
posite queue and are not directly comparable with the
values given here.) i

‘We have now shown, through a brief explanation
and several examples, -how queueing theory can be
used to create analytic models of computer systems.
The models thus obtained are efficient and easy to
use, requiring little effort to obtain reasonably ac-
curate predictions of system performance. R

Acknowledgments

I would like to thank John Spragins for much
valuable help with this paper. Thanks also are due to
the referees for their excellent comments and sugges-
tions. John Cunneen verified the solution to Example
5. Finally, I want to thank my manager, J. Perry Free,
who made it possible for me to complete this work.

References

1. P. Dickson, The Official Rules, Delacorte Press, New
York, 1978.

2. R. M. Schardt, “An MVS Tuning Perspective,” IBM
Washington Systems Center Technical Bulletin,
GG22-9023, March 1979.

3. H. C. Lucas, Jr., “Performance Evalua‘tion and
Monitoring,” ACM Computing Surveys, Vol. 3, No. 3,
Sept. 1971, pp. 79-91.

4.. TPNS General Information Manual, Form Number
GH20-1907, IBM Data Processmg Division, White
Plains, New York." .

5. ACM Computing Surveys, Vol 10, No. 3, Sept. 1978.

6. J. Spragins, “Approximate Techniques for Modeling
the Performance of Complex Systems,” Computer Lan-
guages, Vol. 4, No. 2, 1979, pp. 99-129.

7. A. O. Allen, Probability, Statistics, and Queueing
Theory With Computer Science Applications, Aca-
demic Press, New York, 1978,

8. J. P. Buzen and P. S. Goldberg, ““Guidelines for the
Use of Infinite Source Queueing Models in the
Analysis of Computer System Performance, AFIPS
Conf. Proc., 1974 NCC, pp. 371-374.

9. W. C. Giffin, Queueing, Grid, Inc., Columbus, Ohio,
1978.

10. R. Muntz, “Analytic Modeling of Interactive Sys-
tems,” Proc. IEEE, Vol. 63, No. 6, June 1975, pp.
946-953.

11. H. Kobayashi, Modeling and Analysis: An Introduc-
tion to System Performance Evaluation Methodology,
Addison-Wesley, Reading, Mass., 1978.

12. L. Kleinrock, Queueing Systems Volume 2: Computer
Applications, John Wiley, New York, 1976.

13. M. Reiser, “Interactive Modeling of Computer Sys-
tems,” IBM Systems J., Vol. 15, No. 4, 1976, pp.
309-327.

14. J. P. Buzen, “Computational Algorithms for Closed
Queueing Networks with Exponential Servers,”
Comm. ACM, Vol. 16, No. 9, Sept. 1973, pp. 527-531.

15. J. P. Buzen, Queueing Network Models of Multipro-
gramming, PhD Thesis, Division of Engineering and
Applied Physics (NTIS AD 731 575, August 1971),
Harvard University, Cambridge, Mass., May 1971.

16. T.G. Price, Jr., ‘A Comparison of Queueing Network
Models and Measurements of a Multiprogrammed
Computer System,” ACM Performance Evaluation
Review, Vol. 5, No. 4, Fall 1976, pp. 39-62.

17. J. P. Buzen, “Modelling Computer System Perfor-
mance,” CMGVII Conf. Proc., Atlanta, Georgia, Nov.
1976.

18. J. P. Buzen, “A Queueing Network Model of MVS,”
ACM Computing Surveys, Vol. 10, No. 3, Sept. 1978,
pp. 319-331.

19. P. J. Kuehn, “Approximate Analysis of General
Queueing Networks by Decomposition,”” IEEE Trans.
Comm., Vol. COM-27, No. 1, Jan. 1979, pp. 113-126.

20. K.C.Sevcik, A.I. Levy,S.K. Tripathi,and J. L. Zahor-
jan, “Improving Approximations of Aggregated
Queueing Network Subsystems,” in Computer Perfor-

. mance, K. M. Chandy and M. Reiser, eds., North
Holland, New York, 1977, pp. 1-22.

Arnold O. Allen is a senior instructor at
the Los Angeles IBM Systems Science
Institute where he is responsible for a
customer class in computer system per-
formance evaluation and capacity plan-
ning; he also teaches other data pro-
cessing management classes. Previous
assig'nments at IBM include program-
ming, system engineering, marketing,
and recruiting.
He is a member of Phi Beta Kappa, Sigma Xi, ACM,

1IEEE, SIAM, ASA, and ORSA. He holds MA and PhD de-
grees in mathematics from UCLA.

COMPUTER

Rt e e s e —

