SYSTEMS PERFORMANCE EVALUATION COOPERATIVE

newsletter

Volume 2, Issue 4 Fall 1990
-
e System Level Benchmarking
page Krishna Dronamraju AT&T Bell Laboratories
System Level Benchmarking 1 Asif Naseem Naperville, Illinois
Letter From the President............. 2 Stvaram (Ram) Chelluri
Running the SPEC Suite 3))
: Release 1 of the SPEC Benchmark Suite has given the industry a more objective
Benchmark Resultscccococeveeen 8 and verifiable speed rating (SPECmark) than the old “mips” ratings, which has
Order FOrm wnnnns Back Cover been discredited through marketing exaggeration and hype. SPEC Release 1.1
introduced the SPECthruput metric, which is an enhanced SPECmark, prorated
according to the number of CPUs in a system.] Undoubtedly both these metrics
providealevel playing field for comparing CPU speeds of different systems, as the
workload of the benchmark suite on which they are defined is the same. This leads
=—=SPECIAL NOTE==== tothenextissue of setting up additional methodologies for measuring system level
gup 8 8 Sy

performance.

This issue of the spec newsletter L . o .

. Inthisarticle, an attempt is made to distinguish between the various throughput
aiso includes the .quarterly be_nCh' methodologies that are in vogue. We discuss the pros and cons of speed versus
mark results. This format will be 4, ghput methodologies, as well as fixed multi-threading versus peak-through-
used until Release 2.0 is published. put methodologies, in running a wide variety of benchmarks with significant1/O.

This discussion is in context of SPEC Release 2, for which a powerful array of good
and proven benchmarks is being considered by the SPEC Steering Committee.

~

RESULTS SUMMARIES Speed Versus Throughput

The Dhrystone, Whetstone, Linpack, and SPEC Release 1 benchmarks could all
be categorized as speed benchmarks. They all are single-threaded, CPU-intensive
page (with negligible I/O content) benchmarks. Performance on these benchmarks can
| SPECthruput Results be greatly affected by how:
HP Apolio 8 e compilers are used
Solbourne 1 ¢ the data/instruction caches are configured
e floating point is performed :
SPECmark Results e integer arithmetic (including single and double precision arithmetic) is performed
¢ logic is performed
Alacron 14
Control Data C " 45 The SPEC benchmarks are a decided improvement over the other speed metrics
nirol Lata LOrporation because they represent varied “real” application workloads. In addition, the SPEC
HP Apollo 18 suite provided a much larger (156,000 lines of code) and more complex workload,
intel 19 thereby making it difficult to write optimizing compilers for the entire SPEC
: Release 1 suite as was previously done for the Dhrystone benchmarks. The large,
MIPS Computer Systems 20 complex SPEC workload also stresses the memory subsystem in a more realistic
Solbourne 23 manner.
Sun Microsystems...........ccceeuvneene 24
Continued on page 4

Fall 1990

Volume 2, Issue 4

SPEC Newsletter

y

Running SPEC Release 1 Benchmarks

By George Fichter
Apollo Division of Hewlett-Packard Company

This article will describe the form in which the SPEC bench-
marks are distributed and briefly explain how to run them.

Step One: Loading the Tape

Tapes shipped by Waterside Associates (SPEC’s organiza-
tion arm) are in QIC-24 format on a 600 foot cartridge tape,
and they are written in tar format. To install the entire
suite, all that is required is an empty directory, which we
will call the spec home directory, on a disk with about 25
megabytes of disk space. The tar command (tar xv/ will
then read the tape and create all the necessary
subdirectories.

SPEC Directory Structure

The SPEC home directory contains some text files with
hints on running the benchmarks. There are two impor-
tant files which require your immediate attention: 1)
README explains in detail how to run the benchmarks; 2)
RUNRULES describes the conditions under which the
benchmarks must be run.

Several subdirectories are included on the tape, and
others are created during the life of the benchmarks. Only
two require your attention:

binsrc contains source programs for the tools used by
the SPEC benchmarks. These tools must be installed
before running any of the benchmarks.

benchspec is the directory containing the individual
benchmarks. This is where the benchmarks are run and
the results are generated.

Step Two: Set up SPEC System Variables

Whenever you work on SPEC benchmarks, it is neces-
sary to set certain system variables specific to SPEC. This
is done by executing

source cshre (for users of C-shell)

or
. shrc (for Bourne shell users)

Step Three: Installing the Tools

The next step is to create the SPEC tools. Starting in the
SPEC home directory, the tools will be automatically
compiled and installed with the following command:

make IDENT=vendor VERSION=yyy bindir

The tools thus installed will reside in a directory called
bin under the SPEC home directory.

About M.vendor Files

Most vendors have created “wrapper” files to assure
that benchmarks are run correctly on their machines.
Currently the following M.vendor files exist:

M.apollo Matt Mdec_risc Mdgc
Mhp M.mips M.motMP M.motorola
Mnew Msolbourne M.sun Msun.sc0

Msun34XX Muvax M.880

When running the benchmarks, select the “vendor” file
which is most appropriate for your machine. This might
require some trial and error.

Step Four: Run the Benchmarks

Once you complete the preceding steps, you are ready
to run the benchmarks. The easiest way to do this is with
the command: make IDENT=vendor VERSION=1.0

This command will execute all the benchmarks, compil-
ing them if necessary, and place the results in the
tests.results directory.

Results will be found in a directory called tests.results.

It will take several hours to compile and run all the
benchmarks, so be patient. On the reference machine, a
Vax 11/780, it takes 21 hours just to run them.

Step Five: Running Individual Benchmarks

For debugging purposes, another method of running the
benchmarks is quite convenient. This is done by moving to
the benchmark’s directory and using the make command.

For example, if you want to run spice on an HP machine,
execute: cd benchspec/013.spice2g6
make -f M.hp

Timing results will be displayed on the screen and saved
in a file called result/time.out.

Benchmarks in the SPEC suite are available to the general
public and can be ordered from Waterside Associates. An
order form is included in each SPEC newsletter.

George Fichter is in the performance analysis group at the
Apolio Division of Hewlett-Packard Company.

SPEC Newsletter Volume 2, Issue 4 Fall 1990

System Level Benchmarking

Continued from front page

After defining the SPECmark metric, SPEC developed a
new methodology in an attempt to measure performance for
multiprocessor systems. The result was the SPECthruput
methodology, whichis defined asa fixed load, multi-threaded
metric calculated as a geometric mean of elapsed time ratios.

Here the multi-threading is fixed arbitrarily as two copies
of a SPEC benchmark per CPU. Still both the SPECmark and
SPECthruput answer the question, “How fast can you run
one?” The SPECthruput methodology is still based on a
CPU-intensive fixed workload and does not cover all the
dimensions of a true throu ghput benchmark. The question
of “how many can I run at once?” still needs to be addressed
in a more comprehensive manner. SPEC is endeavoring to
solve this in a judicious manner in Release 2 and future
releases.

What is System Level Performance?

CPU performance, floating point speed, compiler effi-
ciency, cache size and speed (evaluated by the speed metrics)
do form a subset in a field of components that constitute
system performance. System performance more broadly
includes all of the following:

* Operating system (system calls & how fast they are executed)
* Memory (bandwidth) and management

* System bus (bandwidth)

* 1/O subsystem (I/0 bus bandwidth, latency, and throughput)
® Various I/0 control mechanisms (IOP’s)

* Disk/tty/network subsystems.

When considering a system throughput methodology,
both peak throughput and average response time are good
mmeasures of system performance.2 Peak throughput is of
interest to anyone who is attempting to buy a system and
wants to find out how much work it can handle.

Response time is of interest to a user of the system. Both
of these metrics are inter-dependent (inverse relation, i.e.,
more throughput results in less response time in a macro
sense).

In the view of a performance analyst/evaluator, both of
these approaches have equal significance, as they directly
answer the question, “How many workloads can you run at
once?” The difference is in the experimentation. The
throughput measurement involves simplebenchmark design
with an internal driver capable of running multi-threads of
the benchmark. The response time measurement involves
two systems (the system under test and an external remote
terminal emulator driver). Here the discussion is focused on
the merits of throughput methods only.

The delicate difference between a fixed load throughput
metric (as defined by the first SPEC Release 1 throughput
methodology) and a peak throughput metric (generated
through varying the workload until a maximum value is
obtained) is that the former measuresa singlepointinalinear
universe, and the latter gives all the points in the universe
and includes the best point in the same universe, as shown in
figure 1.2 Here increasing the benchmark load increases the
stress on the system progressively until all the system re-
sources are fully utilized and a bottleneck occurs, either with
CPU capacity, memory orI/O capabilities.2 Sucha workload,
which gradually and uniformly stresses the system, needs to
be defined.

Fig. 1: Throughput as a Performance Ihdgx :

T = g
: 2
<]
O : M
sl 5
o W 3] @
1 2 3 ** n
Increasing Workioad Offered Load
Determining Maximum Throughput

A Throughput Technique

Ingeneral, inan ideal throughput benchmark, the gradual
increase of workload on the system is achieved by increasing
the number of concurrent copies of the benchmark being
executed. Here each copy of the benchmark workload, called
a “script,” should stress all the layers of the system as
described above, balancing the utilization of systemresources.
For the purposes of this article, a script under execution is
referred to as a “process.”

1. Randomization of Workload Scripts

Running concurrent workloads may lead to misleading
results or conclusions. If multiple identical copies of a
benchmark are executed, each one of them will obviously
access the same resource at approximately the same time.
This will not yield a realistic picture of the system perfor-
mance. So, ideally each instance of the benchmark should be
executing a different workload. At the same time the overall
content of the workload should be the same. Thus, ideal
workload scripts should consist of a random mixture of a set
of basic workload modules.

Continued on page 5

Fali 1990

Volume 2, Issue 4

SPEC Newsletter

’

For example, in the case of the well-known TP1 bench-
mark, though each teller is executing identical transactions,
the randomness is achieved through the random account
and branch numbers accessed by each teller. Inthe case of the
SPEC throughput benchmark, sdet, a candidate for Release?2,
the randomnessis achieved through mixing 21 basicmodules
in a random manner to constitute a workload script.

2. Throughput Metrics

Throughput is broadly defined as the total amount of
work done in a given time. The work done can be enumer-
ated in several ways.

a. Quantifying the Work Done

(1) Total number of instructions or commands executed
by the scripts (as in the case of the sdet benchmark, a SPEC
Release 2 candidate).

(2) The number of scripts (as done by the kenbusl
benchmark, a SPEC Release 2 candidate).

(3) Thenumberofoperationscompleted, if the workload
consists of operations performed and each operation is either
identical or the total operations executed by each script
contain the same mix of different size operations (as in the
case of iobenchp, another SPEC Release 2 candidate).

b. Timing the Benchmark Runs

The way a benchmark is timed may cover or uncover
certain inherent problems in the systems. Here the three
timing mechanisms in vogue are mentioned.

(1) Wall-clock timing. This is the benchmark’s elapsed
time.

Fig. 2: Wall Clock-timing-Elapsed Time

process 1 e | t1 mins.
process 2 e | t2 mins.
process 3 | | t3 mins.
process n] | tn mins.
wall clock-time | | t3 mins.

TIME = wall clock-time

Assuming that all the scripts are synchronized to start at
the same time, this method clearly shows a tail-end effect.
Here the tail-end effect is defined as present when discrepan-
cies exist in the run times of different copies of the benchmark
when they are executed concurrently, after they areall started
at the same time. These discrepancies in run time do occur

due to scheduler behavior, context-switching, or when con-
siderable number of tasks are waiting for the same resource.
The performance data from this throughput metric, affected
by this tail effect, will be less than the true optimal through-
put of the system.

(2) Timing Each Process (script-run):

Another alternative would be to measure the individual
process time and to consider the AVERAGE time.

Fig. 3: Wall Clock-timing-Average Time

process 1 | | tt mins.
process 2 | memeee—| t2 mins.
process 3] | t3 mins.
process n | | tn mins.

TIME = [t1 +12+13...+tn}/n

In this method, the accuracy is improved but still the final
throughput metric does not reflect the optimal throughput
the system is capable of, due to the same tail effect. This
measurement definitely exposes scheduler problems when
compared with the elapsed timeabove. (If the wall clock time
for a 10 user run is approximately equal to the sum of the 10
individual timings, then certainly we are dealing with a
primitive scheduler!)

Regarding tail effects, the optimistic way is to measure the
minimum time, and the pessimistic way is taking the wall
clock-time (maximum) time. The first one tends to give
higher throughput result, and the second one gives the least.
The average value gives the in-between result, nearer to the
system capability. On the other hand, averaging may hide
the scheduler problems.

(3) Fixed Time Runs

In this run all the processes are started at a synchronized
instant, and all are terminated after the lapse of a predeter-
mined time, say 15 minutes or 30 minutes. The amount of
work done by each script is measured and conveyed to the
parent process.

Alternately, as recommended by the Transaction Pro-
cessing Performance Council (TPC), the timing (or workload
count) is started after a steady state of resource consumption
rate is achieved in a benchmark run and stopped after a
predetermined interval without actually stopping the pro-
cesses (i.e., a window snap shot).

Continued on page 6

SPEC Newsletter

Volume 2, Issue 4

Fall 1990

—

System Level Benchmarking

Continued from page 5
Fig. 4: Workload Count
process 1 | -w--—eee——mex| t1 mins. Work done = W1
process 2 | =e<m=eemeeeme——e—-| {2 mins. Work done = W2
process 3 | --mmemeeeme -—| 3 mins. Work done = W3
process N | ==<-=-e-e—e—ee-| tn mins. Work done = Wn
TOTAL WORKDONE =W1 + W2 +W3...+Wn

Ideally, this yields the maximum system throughput; the
method, however, may be suitable only for operation ori-
ented workloads, where the time taken for completion of a
single operation is negligible when compared to the total run
time chosen.

Comments

Whatever method is chosen for quantifying work done
and measuring time, the tail effects can be made negligible,
if sufficiently longer-running workloads (longer compared
to the tail-end differences) are considered.

With clearly defined workload and time measurements, a
complete throughput curve (see figure 5), speaks volumes
about the performance of a system. Sometimes comparing
one system with another using this two dimensional metric
may not be sufficient, unless a third dimension of price/
performance is added.

Typical Analysis of System Throughput

The general system behavior is described by the complete
throughput curve from a balanced workload throughput
benchmark. The following analysis can be deduced from the
shape of the curve (shown in Figure 2, where curves Band C
are taken from the same machine, before and after tuning,
and curve A is derived from a different machine).

For an ideal machine, the curve should remain flat after
reaching a maximum value. But in reality, the curve may be
flat for a short interval and then trail off with increase in the
“offered” workload. How fast the curve rises indicates good
response time, as shown in curve A of Figure 5.

A slow-rising curve (as in curve C) indicates a poorly
tuned system. This could be caused by the disk subsystem,
kernel disk buffer management routines, memory manage-
ment, or scheduling policies.

Fig. 5: Throughput Improvements for System

100
7 90+
H
2 804
3
£ 704
L=
5 60- , A
I
& %07 B
8 404
K]
g 30-
3
N 20 4 c
B
g 10+
7]
0..
I !) 1 i 1 I 1 i 4 '
1 5 10 15 20 25 30 35 40 45 50
Number of Concurrently Executing Scripts

In comparing throughput curves of different systems:

* The system with a high one script value (curve A) would
indicate better response time.

* The system with a higher throughput value (curve A)
would indicate better multitasking capability. The peak
throughput is the most obvious metric, and it indicates the
ideal match of work and system behavior for the particular
configuration being measured.

* The width of the flat area around and after the peak value
indicates how well the system responds to demands beyond
its optimal capacity. It shows whether the system gives good
and consistent response to an increasingly stressful workload,
as indicated in the flatness of curve B.

* A steep drop in throughput after reaching the peak indi-
cates that the system has reached a bottleneck; for example,
this applies to the scheduler operation or interrupt service
times on other sources, as shown in curve C.

* Depending on where the system bottleneck is, the peak
throughput may improve for a given configuration by add-
ing more CPU power or overlapped disk, I/O, or memory.
The system activity data can be used to identify changes
required for achieving the above optimum.

Continued on page 7

AR M

Fall 1990

Volume 2, Issue 4

SPEC Newsletter

/

Conclusion

System throughput benchmarks, in order to compare a wide
range of systems, must have scaled workloads. By using
throughput curves as the measure, the scaling is automatic.
Each system will run a workload which is appropriate for its
peak throughput capability. Comparison of systems is ac-
complished by analyzing the throughput curveforeachsystem.

Note:

1) Valid comparisons between two systems’ throughput
capability cannot be accomplished without considering the
price of the configurations measured.

2) Also, it should not be interpreted that there is a direct
correlation between the number of scripts and the actual
number of users supported by the system under test.

Footnotes:

1. Greenfield, Mike et al 1990: “SPEC Adopts New
Methodology for Measuring System Throughput,” SPEC
Newsletter, Spring 1990.

2. Gaede, S.L. 1982: “A Scaling Technique for Comparing
Interactive System Capacities,” Proceedings of the Computer
Measurement Group conference, Dec. 14-17, 1982.

3. Hennessy,].L., and Patterson, D.A. 1990: Computer
Architecture: A Quantitative Approach, Morgan Kauffman,
2929 Campus Drive, San Mateo, CA 94403.

4. TPC Benchmark™ B Specification, 1990: contact
Waterside Associates, Fremont, CA for copies.

Krishna Dronamraju, Asif Naseem, and Sivaram (Ram)
Chelluri are engineering managers in the Performance and
Competitive Analysis Group at AT&T Bell Laboratories in
Naperville, lllinois. (Contributed Article)

SPEC Member Companies

Digital Equipment Corporation

E\J{Du’Pdnt D? "‘Nemaurs &Co., *flhc;

 Fujtsuld. o
s

~ intel Cbrpofrc'aﬁon‘

| w‘intérig"“raph c°l'P ,
| MIPS Computer Systems

uotoroia f»

 Prime Computer

: S"’c"“Graph;cs % 5
Solbourne Computer
 Stardent Computer

~Sun Microsystems

e "Unisys‘ Corbékation

*&‘;{ g SR O,

