T — nww‘?

People seldom improve when
they have no other model
but themselves to copy after.
—Oliver Goldsmith

Introduction

o The practical objective of program behavior studies is

to enhance program and system performance. On the
one hand, the knowledge resulting from these studies
may be useful in designing new programs and new
virtual memory systems that are capable of levels of
performance higher than those currently achievable. On
the other hand, such knowledge may often be employed

to increase the performance of existing programs and

systems.
The observation that the performance of a virtual

. memory system is very sensitive to the referencing be-

havior of the programs running on it was made very
early in the history of such systems. Interest in algo-
rithms which would automatically manage a memory
hierarchy, taking program behavior into explicit account,
arose quite early also (see, for example, Kilburn et al.!
and Belady?). Program locality® was recognized not only
as essential to the achievement of acceptable levels of
performance by a virtual memory system* but also as a
property which directly influences the performance of
both the program and the virtual memory system on
which the program runs. A “more local” program needs
relatively fewer system resources than a ‘less local”
one. This is especially true for those resources which
tend to be the most critical and the most scarce in a
virtual memory environment: primary memory space and
paging channel bandwidth. As a result, a ‘““‘more local”
program will be relatively faster and cheaper to execute,
and will positively contribute to the system’s overall
productivity as expressed, for instance, by the through-
put rate.

*A perfectly nonlocal program, which would reference the
addresses of its virtual space at random, would make the
access time of a memory hierarchy very close to the one of the
secondary memory, thereby degrading the system’s perform-
ance by several orders of magnitude,

November 1976

The Improvement
of Program Behavior

Domenico Ferrari
University of California, Berkeley

The interest in program behavior was originally caused
by the desire to devise memory management policies
which would best match the predominant referencing

habits exhibited by programs. The above remarks natur-

ally suggest that the outcomes of program behavior
investigations should also be used to determine methods

_for enhancing the locality of programs or, more gener-

ally, for making programs better suited to the virtual
memory environment they have to live in. This approach
is philosophically opposite to that of adapting the system
(through its memory policy) to the programs, since it
may be viewed as attempting to adapt the programs to
the system. However, the two approaches are not mutu-
ally exclusive. In fact, one could argue that a successful
virtual memory system can only result from the coupling
of a *‘program behavior oriented”” memory policy with a

‘workload composed of reasonably “policy oriented” pro-

grams. Since locality is an essential property in current
implementations of virtual memory concepts, and since

most memory policies base their decisions on the assump-

tion of local behavior, in the above statement the phrase
“program behavior oriented” may often be replaced by
“locality based,” and “policy oriented” by “local.”

When a program is to be designed, the programmer
can—and ought to—organize it so that its dynamic be-

havior is as local as possible. Some rules to be followed have

been proposed,* and some studies on programs implement-
ing specific algorithms, such as those for matrix manipula-
tion® or for sorting,® have been performed. However, it
is generally difficult or impossible for the human mind
to comprehend fully the dynamics of even a medium-
size, relatively simple program. Programmers cannot
therefore be expected to succeed very often in their at-
tempts to adapt the characteristics of programs to those of
systems. It is here that fully or partially mechanizable
methods for program referencing-behavior improvement
can really help programmers and installation managers.
Even programs written by an experienced, locality-
minded programimer can often be improved to a surprisingly
great extent by using automatic or semi-automatic tech-
niques. The purpose of this paper is to describe how some
of these methods, the ones called program restructuring
techniques, can be used. effectively to improve a pro-
gram’s dynamic behavior.

39




Program restructuring

What is program restructuring? Why can it improve
program behavior? A simple example will help us answer
these two questions. Consider, say, a Fortran program
consisting of one main routine MAIN and three sub-
routines SUB1, SUB2, and SUB3. Let us assume for sim-
plicity that the sizes of these four blocks, measured in
machine-language instruction words, are approximately
equal. All the variables and arrays the program works
on are stored in four COMMON areas, called COM1, COM2,
COMS3, and COM4, whose sizes are about the same as
those of the instruction blocks. To simplify our problem
further, we assume that the size of a page in the paged

_ virtual memory system on which the program has to run
is twice the size of an instruction or data block. Thus, if
we do not consider the library routines which the linker
usually appends to a program, the virtual space occupied
by the program will consist of four pages, each of which

* will contain two blocks. No restriction is imposed here

on the nature of the two blocks which share the same page,

so that it is possible to have an instruction block and a
. data block together. SRR AR :

The layout of the program in its virtual space, generally
decided by the linker, is influenced by the order in which

. the programmer inputs the instruction blocks and declares

the data blocks. Restructuring means modifying a pro-
gram’s layout in virtual memory. In our example, this

 modification only entails relinking the modules of the pro- -
- gram after having changed the order in which they are

presented to the linker. If the blocks had not been chosen
80 as to be relocatable with respect to each other, the pro-

by the system which éxecutes our program were a fixed- S

partitioning, demand-fetching policy with LRU ({least recently
used) replacement, the two page reference strings in Table
1, rows b and ¢, would generate the numbers of page faults
reported in Figure 2 as functions of the amount of primary
memory space allotted to the program. The two curves
in Figure 2 illustrate the main conclusion of this section:
that the layout has a non-negligible impact on the per-
formance of a program. This conclusion is intuitively
plausible since whether a memory reference causes a page
fault or not depends on whether the referenced block {or
part of block) is in primary memory or not, and the memory
contents at any given time differ for different layouts.

‘ block ' :‘

page block page
A L MAN 1 ' LU
SuBl 2 COM3 |7
g | Sus2_|3 g |-SuB 2
| suB3 |4 suB2 |3
¢ LS _]s o |ocm s
~ coM2 |6 o CoMz |6
o L foM |7 p |- B3 |4
cCoM4 |8 ‘ COM4 |8

@ - - ~ (b)

Figure 1. Layouts of a program in virtual memory: (a) the
original arrangement; (b) a restructured version of
the program.

R Téﬁte 1. A blbék reference string and some page reference strings-
e T corresponding to it. .

a) - ',1‘7171356266256488483483535356262256117135252624883 »

()  ADADABCCACCACCBDDBDBBDBCBCBGCACAACCAADABCACACABDDB
() - AAAAABCGBCCBCCDDDDDBDDBCEBCBCCBCBBCCAAAABCBCBCBDDDS
()  AAAAABBCCCCCBCDDDDDBDDBBBBBBCCCCCBCAAAABBCCCCCDDDB

- gram could: still be restructured, but some changes to
the source code and the recompilation of some modules
would probably be required..

To show that the behavior of a program is sensitive to its

“layout in virtual memory, let us analyze the performance
of our program with two different layouts. Table 1, row a,
displays a short block reference string generated by our
program under certain input data. Each element in the
string is a reference issued by the program, but the virtual
address referenced has been replaced by the number of

_ the block to which that address belongs. The correspondence
between block numbers and block contents is given in
Figure 1. Note that the block reference string is a charac-
terization of program behavior (more precisely, of the

behavior of a program under a certain set of input data)-

independent of the progzam’s layout. It is just the charac-
terization at the symbolic level that is needed in the context
of our problem.

The two layouts we shall consider here are shown in
Figure 1. Different layouts generally produce different page
reference sirings from the same block reference string. An
example may be seen in Table 1, rows b and ¢, which show
the two page reference strings our program would generate
with the two layouts in Figure 1. If the memory policy used

40

- Number of
* page faulls

40

301

O i T 1 T v
0. I 2 3 -4
Memory space (pages)

Figure 2. Total number of page faults as functions of the
allotied space. Curve a shows those generated
under local LRU replacement strings in Table 1,
row b; curve b, row d.

COMPUTER
}

i
:
!




The influence of the layout was first experimentally
measured by Comeau.” Tsao and Margolin,® in their multi-
factor paging experiment on a Fortran compiler, found
the following breakdown of contributions to the total
variation of the logarithm of the number of page faults:

memory space allotted to the compiler 53.7%
length of the program to be compiled 25.2%
ordering of the subrotitines ] 12.5%
replacement algorithm 2.6%
interaction between memory space and subroutine

ordering - 4.0%

other mteractlons among factors 2.0%

Restructurang procedures

We have seen that the layout of the program has an

appreciable impact on the program’s paging performance

and that modifying the layout is always feasible—often
quite easy. What procedures should we follow to determine
a layout that is likely to produce as substantial a per-

. formance improvement as possible? -

" Ideally, we would like to obtain an optimum layout
one which would minimize the number of page faults, or

" the memory space demand (as measured by, for instance,

the mean working set size of the program), or some other
performance index. Finding such an optimum is a highly
combinatorial problem for which no efficient, practically

applicable solution exists in the general case. Often, how-’

ever relatively inexpensive procedures dre available which

produce layouts that are nearly optimal from any: prac-

tical standpoint. These layouts are usually characterized
by performances which can be improved further only by

- very small amounts and at costs which are often prohibitive

with respect to the. corresponding improvements. Fre-

‘quently, these small additional .improvements are not

worth seeking because of the influence that input data
have on the performance of most programs. Since a suc-

cessful reatructurmg is based on the dynamic behavior of

the program, which is always somewhat sensitive to the
input data, an excessive “tuning” of the layout to certain
data’ may be useless—even counterproductive—when
the program is executed with different inputs (which is
the normal case throughout the program’s lifetime).

- The above remarks have been made assuming that the
layout of a program in-its virtual space remains fixed
during execution:"If we allowed the layout to.change
dynamieally, these remarks would no longer apply. Such an
approach to restructuring would conceptually require an
additional, “metavirtual’” address space, and a dynamic
allocation and address mapping mechanism between this
space and the virtual memory of a prograr. The relation-
ships between prefetching memory policies and this type
of restructuring have been recognized by Baer and Sager,*
who proposed a scheme for dynamic layout modification.
Effective, practically implementable dynamic procedures
seem to be still beyond the state of the art, however. -

The other approaches, which modify the program’s lay-
out “‘off-line” but keep it fixed during execution, can be
classified into two categories. On one side, we have those
procedures which base their decisions on purely static
information abeut the program, that is, on its text. Since
such information is available to compilers and linkers,
these procedures can be applied at compiling time (for
intramodule restructuring) and at linking time (for inter-
module restructuring). The early interest in these ap-
proaches'® seems to have decreased considerably in recent
years, probably because of the relatively small, sometimes
even negative, improvements they produce and the much
more impressive performance, at acceptable costs, of the

November 1975

approaches in the second category. These approaches
utilize information about the dynamic behavior of the pro-
gram, gathered during one, or possibly a few, of its runs.
Since restructuring is convenient only for those programs
which are to be executed many times (actually, the more
times they are run, the better, as we shall see), the require-
ment that the program be executed once for information
gathering purposes is an acceptable one..

Most of the procedures in this category can be con-
ceptually described as consisting of the following steps.

Step 1. The program to be restructured is divided into
blocks. From the example we discussed in the previous
section, it should be evident that blocks are to be sub-
stantially smaller than pages. The smaller the blocks, the
better the new layout is likely to be. On the other hand, the

complexity and cost of the procedure grow rather sharply _

with the number of blocks. Thus, a compromise solution
will have to be reached. As already mentioned, laysut modi-

fications will be easier if blocks -are relocatable with

respect to each other at the source level.

Step 2. The program is executed and the dynaxmc be— g
havior information gathered is used to construct a rion- o

directed graph, called the restructuring graph. The nodes
of such a graph represent blocks, and the numerical labels

of the edges represent the “desirability” that the nodes .

{blodks) they connect be laid out together within the same

- page. The algorithm which is used to compute these labels

from dynamic behavior information is called the restructur-
ing algorithm. The various approaches which follow the
procedure we are describing differ mostly in the restructur-

. ing algorithms they use to define and compute the de-

sn'ablhty of block palrmgs ‘
Step 3. A clustenng algorz thm is apphed to the restructur-

- ing graph in order to obtain a new layout for the program.

If, as in the example of the previous section, groups of
blocks fit exactly into pages so that no block resides (or is
allowed to reside) across page boundaries, the outcome of
this step may consist of the suggested partitioning of the

. set of blocks into pages, and the relative positions of the

pages in virtual memory are immaterial. In all other cases,
these positions are important and should be derived dur-
ing this step along with the composition of each page.
Alternatively, the clustermg algorithm may produce directly

the layout of the blocks in virtual memory. The problem -

is, loosely speaking, oné of determining a linear arrange-
ment {or a partltmmng) of blocks whzch maximizes the
vicinity of those pairs having the highest labels. More
precise statements of the problem, which can be described

in purely graph-theoretical terms, can of course be given. .

For instance, when the blocks are to be partitioned into
pages, a partition which maximizes the sum of all intra-
cluster labels, while satxsfymg the constraint that the
sum of the sizes of all nodes in a cluster be not greater
than the page size, is usually sought. Reasonably efficient
and good (although not optimal) algorithms for such prob-

- lems exist. A description of some of those used in restructur-

ing experiments can be found in several papers.'*** For
example, a very simple clustering algorithm for the block
partitioning problem described above entails iteratively
sorting the list of edge labels in decreasing order, clustering

together the admissible pair of blocks with the hxghest ‘

Iabel, replacing the clustered pair with a single node whose
size is the sum of the sizes, replacing the edges connecting
a node to the two nodes clustered together with a single
edge whose label is the sum of the labels, and updatmg
the list of edge labels accordingly.*

Step 4. The program is restructured accordmg to the
layout suggested by the previous step.

41

i .
B o i e



The rest of this paper will be primarily concerned with
the restructuring algorithms to be used in Step 2. Even
though there may be differences in the technique& em-
ployed to perform the other steps, the restructuring al-
gorithm is the main distinguishing feature of the ap-
proaches in the category we are examining. It should
also be noted that Step 3, as described above, is indepen-
dent of Step 2, in the sense that the same clustering
algorithm may be used in conjunction with a large number
of restructuring algorithms, and the same restructuring
algorithms may be followed by a number of different
clustering algorithms.

An example of a restructunng algorithm which follows
the procedure just described is the nearness method pro-
posed by Hatfield and Gerald." The nearness method

sets the value of the label of édge ij equal to the number
- of times block i is referenced immediately after j, or j im-
mediately after i, during the program’s execution in Step 2.
From an implementation viewpoint, the graph can be
very easily built by incrémenting the label of edge ij in the
block reference strmg every time a reference to blockj fol-
lows one to block i, or vice versa. Thus, the desirability of
p051t10nmg two blocks adjacent to one another in virtual
merhory is made proportional to the number of times the
referencing pattern of the prog!'am jumps directly from one
to the other or vice versa. -~

. The restmctlmng graph denved from the block reference
strmcr in Table 1, row a, is shown in Figure 3. The same
flgure also presents a partitioning of the graph suggested
by the clustering algorithm described in Step 3 above.
The corresponding page. reference string is shown in
Table 1, row d.

A restructuring algonthm which may be viewed as an
extension of the nearness method is the one propesed by
Masuda et al.i? The algorithm is based on an extended
definition of nearness: two blocks i and j are near not only
when they are consecutively referenced, but also when
references t;o them follow each other ata short dxstance in

- Figure 3 The restructuring graph generated by the nearness
algorithm for the string in Table 1, row a. The dashed
lines are boundaries of clusters, which contain the
blocks 1o be stored within the same page. The heavy
edges are the intracluster links.

42

time. A window T is defined, consisting of a time interval
or a certain number of references. At each new reference
{say, to block i) issued at virtual time ¢ by the program, the
labels of all the edges connecting i to the blocks which
have been referenced in the recent past; that is, during
the virtual-time interval {¢-T, ¢). are incremented by 1.
Generally this algorithm, to be discussed again below,
works better than the nearness method because of its

broader field of observation. Clusters of blocks which

are never consecutively referenced but often referenced
soon after each other are unlikely to be suggested by the
nearness algorithm, even though they would be as con-
venient as, and sometimes more convenient than, those
resulting from the application of this algorithm. With
only a minor increase in the cost of the restructuring pro-
cedure (processing the block reference string with a back-
ward window centaining more than one reference is slightly
more expensive than remembering only one, as the nearness
method does), the extended algorithm can generally achieve
a significant performance improvement. This is not the
case of our extremely simple example in Table 1, row a.

- The reader may in fact verify that, both with a window of

three references and with one of four, the partitioning

suggested by this algorithm coincides with the one in.

Figure 3, which was obtamed by applymg the nearness

algorithm.

Program tailoring algorithms

. The restructuring algorithms described in the previous

section are implicitly based on observations concerning

" - the relationships between program behavior and program

performance in a virtual memory environment. For instance,
the philosophy underlying the nearness algorithmn is that
performance can be improved by increasing the number
of consecutive references to the same page. This would

algorithm proposed by Masuda et al.* recognizes that a
program generally has more space in memory, and that
consecutive references to pages within the current locality
are not less desirable than those to the same page. The
better results that this algorithm usually obtains are to be
attributed to the greater amount of information it pro-

vides about equally desirable, alternative block combinations.:
" . A different philosophy for restructuring algorithms has

been proposed.'~* This philosophy, called program tailoring
or strategy-oriented restructuring, consists of taking ex-

plicitly into account, when designing the restructuring

‘always be true if only one page of each program were al-
 lowed to be in primary memory at any given time. The

algorithm, the memory management strategy under whmh.

the programs to be restructured will have torun.

Program taﬂonng is apphcable if the strategy is unique -

and known; it is much easier to apply if the stretegy is
such that the behavior of a program under it does not

depend on the other programs with which the program =

shares the primary memory. Whereas the former assump-

tion is a realistic one in most practical cases, the latteris -

satisfied only in some systems. However, the class of
strategies which satisfy this assumption includes all the

_ fixed-partitioning policies with local replacement algorithms

and the working set policies. Many of the strategies used
in present day virtual memory systems do not belong to,
but can be considered approximations of policies in, these
classes.

How can one take the memory policy into account in
restructuring a program? One way of describing how to
proceed is to say that one has to identify the “‘ideal be-
havior” {or, in other terms, the model of program behavior}

which the policy assumes, and devise an algorithm which

COMPUTER




5 i

thanm, are ignored. - -

tries to tailor the behavior of the program to be restructured
to the ideal one. Although all, or almost all, memory
policies use the notion of locality to predict the behavior of
a program in the near future, each policy makes a different
use of it. In other words, each policy assumes a different
model of ideal program behavior, which may be thought
of as the behavior of a program for which all the pre-
dictions made by the pdlicy are correct. Thus, program
tailoring consists of exploiting our knowledge of the pre-
diction mechanisms of a memory policy to make a pro-
gram’s behavior as predictable as possible by that policy.
And it clearly identifies a model which, as Oliver. Gold-
smith said, is highly desirable in any improvement effort.

A few examples will hopefully clarify the principles
expressed above. Assume that the system on which the
program is to run manages its memory according to a
fixed-partitioning, local LRU replacement strategy. This
means that each program receives a fixed and con-
stant amount of space, in which pages are replaced,

- when necessary, following the LRU order. If a program is

given m page frames in primary memory, they will contain,
whenever the partition is full, the m most recently
referenced pages of the program, which this policy con-
siders the most likely to be referenced in the near future.

- In restructuring the program, we can try to approach

this goal by removing as many references to new pages as
possible. We know that at any given time the primary
memory - will certainly contain the m most recently
referenced blocks (if a block can lie across page boundaries,
some blocks may be in memory only partially). The identity
of those blocks which are certainly going to be in memory
at any given virtual-time instant of a run may be easily

_obtained from the block reference to string corresponding

to that run. If the next reference is to one of these blocks,
that reference will never generate a page fault. If, on the
other hand, it is a critical reference—that is, a reference

- t0 a different block—then clustering this block with any
~of the blocks in memory will also prevent a page fault

from occurring. A simple restructuring algorithm.(the
critical LRU, or CLRU, algorithm) therefore consists of
increasing by one the labels of the edges connecting the
block which causes the critical reference to all of the
blocks occupying the first m positions of the LRU block
stack. Noncritical references, which involve blocks whose
distance from the top of the block stack is not greater

The same principles can be appllievd; to all local replace-

. ment policies, since it is always possible with such policies

to derive from a block reference string the sets of blocks
which are certainly going to be in memory at any given
time. We thus have, for instance, the CFIFO, the CLFU,
the CMRU, and even the CMIN restructuring algorithms,
whose objectives are to tailor programs to the first-in-first-
out, least-frequently-used, most-recently-used, and MIN?
replacement policies, respectively. All of these restructur-

ing algorithms belong to the class of critical algorithms, a

term which alludes to the distinction they make between
critical and noncritical references.

Critical algorithms are not confined to the domain of
fixed partitioning strategies. They can be applied whenever
the portion of a program contained in memory at any
instant can be derived or estimated from the behavior of
a single program and the index to be minimized is the
page fault rate. An example is the critical working set
(CWS) algorithm,”* whose objective is to tailor programs

~ to the pure working set policy. This policy gives each

program a time-variant amount of space coinciding at
any instant ¢ with the size of the program’s working set
at t. In a multiprogramming environment, if the space
available in primary memory is not sufficient to hold the
working set of a program, the program is not run. Thus,

November 1976 ' \

the information contained in a block reference string and
the knowledge of the window size T allow us to identify
the blocks which will certainly be in memory at each vir-
tual-time instant. These blocks are the members of the
block working set Wy, {¢, T'), that is, those blocks which
are referenced between ¢ — T and ¢ The CWS algorithm
increments by 1 all the labels of the edges connecting a
critically referenced block to all the members of W}, at
the time the critical reference is issued. The layout in
Figure 1b is the one suggested by the CWS algorithm
for the string in Table 1, row a, with 7 = 3 references.
. Restructuring algorithms may be designed taking into
account many policy implementation details. An example
we shall mention is the one of the eritical sample working
set {CSWS) algorithm, which was called the A algorithm
in a previous paper.'® For convenience of implementation,
the pure working set policy may be approximated by
measuring the working set periodically instead of at every
reference. To simplify the discussion, let the virtual-time
sampling period coincide with the window size 7. At measure-
ment. time, those pages which have been referenced at
least once during the last window are considered members
of the working set and kept in memory. Those which have
not been referenced drop out of the working set, and the
frames they occupied are merged into the free list. Any
page fault causes the space allocated to the faulting pro-
gram to grow by one frame. The CSWS algorithm samples
a block reference string at the same frequency as the sys-
tem, measures the block working set Wy, and, during the
subsequent window, detects all critical references. For
each one of them, it increments by 1 the labels of the édges
h’fnlnw']ng the critically referenced block to the members
o be. : : -

When the memory policy used by the system is of the
global type, it is still possible to devise critical algorithms or,
more generally, tailoring algorithms if an approximate way
is kmown of determining the portion of a program which is
going to be present in primary memory at any instant of
virtual time. Several systems use variations of the
global LRU algorithm as their memory policy.!* Bard!”
has proposed an approach to the estimation of a single
program’s behavior in such an environment. The ap-
proach is based on a very simple characterization of the
rest of the load on the system in terms of only one param- -
eter, the page survival index (PSI). In spite of its erudeness,
this characterization has produced good results and could,
be used as the basis of a tailoring algorithm if the range
of values the PSI is expected to take during the execu-
tions of the program is known. Another tailoring algorithm
for the global LRU policy has been proposed* but not
tested. g : L

When the main objective of restructuring is not the
minimization of the page fault rate, other tailoring -al-
gorithms, not belonging to the class of critical algorithms,
can be devised. Suppose that, in a pure working set environ-
ment, our foremost concern is to reduce as much as we can
the mean working set size of a program (this may be the
case if, for instance, the installation’s charging algorithm
penalizes large working sets more than high fault rates).
Then, we can apply the algorithm described by Masuda
et al.,** which has been outlined at the end of the previous
section. There is, however, a conceptually important dif-
ference between Masuda’s application of this algorithm®?
and the one proposed here. In Masuda’s proposal, the -
window size had to be selected according te convenience .
and reasonableness, and programs would be restructured
for any policy. Here, the window size coincides with that
used by the working set policy. Thus, while the former is
niot a tailoring algorithm, the latter, called the minimum
working set (MWS) algorithm, is.

.43




For the string in Table 1, row a, the MWS algorithm
with T = 3 references suggests the same layout as the
nearness algorithm (see Figure 3). It is easy to verify in
Table 1, row d, that this layout would produce 13 page
faults and a mean working set size of 1.85 pages under a
pure working set policy with T = 3 references. The CWS
layout (see Figure 1b and Table 1, row c) would on the
other hand produce produce only 10 page faults, but the
mean working set size would be 2.10 pages. Under the
same policy and the same input, the nonrestructured
program (see Figure 1a and Table 1, row b) would generate
13 page faults and have a mean working set size of 2.44

pages.

Discussion of the results

A number of experiments have been performed to eval-
uate the restructuring procedure described above and
several restructuring algorithms. Some results have been
published, others have not. We shall now attempt to sum-
marize what we consider the most important results avail-
able to us in four areas: performance improvement, data

dependence, portability, and cost. - o

. Performance imprbvemeﬁt. A variéty of programs have

been restructured (in most cases, restructuring has only
been simulated). Most of them were of the systems pro-

*~ gramming type {(compilers, assemblers, editors, operating

system modules), but also some simulators and other ap-
plication programs have been experimented with, as shown
in Table 2. Programs purposely designed for virtual
" memory systems™ as well as programs written for other
types of systems® were included. Their authors ranged

from the nonprofessional, occasional computer user to

the experienced, locality-minded systems programmer. In
almost all cases and with almost all restructuring algorithms,
significant performance improvements were obtained (see
- _Table 2). Page fault rates were reduced in certain cases
by one order of magnitude or even more. Mean working

set sizes were almost halved in some experiments. Their

coefficient of variation (not reported in Table 2) was also
reduced, or not increased, by such algorithms as CWS
and MWS. In general, the magnitude of the improvement
depends on the quality of the layout of the original programs.
A near-optimal program (an endangered species in the
realm of nonrestructured programs, a flourishing one
among restructured programs) cannot be appreciably
improved by restructuring. L . o
An interesting question. is the one of how close to the
optimum is a layout suggested by a restructuring algorithm.
The answer depends, of course, on the algorithm, on the
program, and on the memory policy. Not surprisingly,
tailoring algorithms .usually outperform others by non-
negligible amounts. This can be clearly seen in the com-
parisons of the nearness and CWS algorithms reported -
in Table 2; row c, and in those of CWS and CSWS in a
sampled working set environment (Table 2, row d). The
reader will notice that in some of the latter comparisons
CWS is more effective than CSWS in reducing the mean
working set size. However, the objective of both algorithms
is to minimize the number of page faults, not the working
set size (which in some cases turned out to be bigger than
in the nonrestructured program). e
The restructuring procedure dealt with in this paper
is by its nature suboptimal, since it reduces all the informa-
tion contained in the string to that contained in. the re-

- structuring graph, where only relationships between pairs

of blocks can be represented. Only if no page contains
more than two blocks may the information in the graph
be sufficient to determine an optimum layout. In fact it
can be shown that, under this assumption, the CWS al-
gorithm is optimum, in the sense that the layout it would
recommend if an optimum clustering algorithm were
employed would produce the minimum page fault rate. .
In the general case, optimum layouts are unknown and
can only be determined by a prohibitively expensive,
exhaustive search. There are, however, two arguments
suggesting that the tailoring algorithms of the type de-
scribed in the previous section tend to'produce near-
optimum layouts. First, some attempts at improving the
performance of tailored programs further by more

e Table 2. Results of program restructuring experiments.

. s R L T R - MEAN WORKING-
. ! RESTRUCTURED RESTRUCTURING MEMORY PAGE FAULT RATE SET SIZE
REFERENCE - PROGRAM "7 ALGORITHM _ POLICY REDUCTION FACTOR REDUCTION FACTOR
(& 11 . AED compiler Nearness LRU, FIFO, Random - 24 14125
(by 12 Fortran compiler S (MWS). — = 1518
(©) 13 Interactive editor Nearness  Pure working set 156 ' o=
) ‘ ' Ccws Pure working set s 1.86 R —
File system - Nearness Pure working set ) 232 -
) S N “CWS. Pure working set - -3.60 ~ -
' (d) 15 Fortran compiler - - . CWS Samﬁled working set 2.1-55 1.15-1.42
- CSWS Sampled working set 3.2-12 1.08-1.34
Application program CWS Sampled working set 1.4-16.2 0.79-0.98
o CSWS Sampled working set 3.8-20.8 0.85-1.21
(e) 18 Pascal compiler CSWS Sampled working set 1.2-2.4 118122 ;
H — Fortran compiler ~ CLRU ~ LRU 1119 : - Iy
CFIFO FIFO 1.1-20 : - 3
@ — Simulator - CWS Pure working set 1732 1.06-1.42
: MWS Pure working set 1.1-1.75 T 1.22-1.54
hy — Fortran éompiler MWS Pure working set 1.16-1.32 1.3-1.65
Application program MWS Pure working set 1-3 1.13-1.80
44 {

7 _ COMPUTER

{
i




sophisticated algorithms have resulted in negligible dif-
ferences obtained at high cost. Second, while both the
page fault rate and the mean working set size of a pro-
gram are usually decreased by restructuring, there seems
to be a tradeoff between these two indices for tailored

- programs. Any attempt at decreasing the page fault rate
of a tailored program is likely to increase its mean work-
ing set size and vice versa. For instance, the CWS algorithm
normally suggests layouts having lower fault rates and
larger working set sizes than those suggested by MWS (see
Table 2, row g).

The performance improvement obtainable by restructur-
ing depends also on the relative sizes of blocks and pages.
In general, the smaller the blocks with respect to the
pages, the better the improvement. The larger page sizes
have in fact been found to increase the effectiveness of
restructuring. ‘1> : :

Data dependence. During Step 2 of the restructuring
procedure the program to be restructured is run so that
information on its dynamic behavior can be gathered.
This information is necessarily dependent on the input
" data used in that run. The program is then restructured

according to this information, but will be executed under
a variety of different sets of input data. How sensitive to
the various inputs is the improvement due to the restructur-
ing procedure? .

Most of the programs for which restructuring is con-
venient are not very data-dependent, and for them the
effectiveness of restructuring algorithms should not be
expected to be data-dependent either. That this had been
‘true of their programs was reported by Hatfield and

“ Gerald." A statistically designed experiment on a Pascal

compiler'® has confirmed these conclusions quantitatively.
~Some of the results of the latter study are summarized in
- Table 3. Also, the CWS algorithm was shown to keep,
under a variety of inputs, its superiority over the nearness
method in the cases of an editor and a file-system module,"
which are probably more sensitive than compilers to their
input data. To the writer’s knowledge, experiments with
more data-sensitive programs—for example, sort-merge
packages—have not been performed yet.

* Table 2. Results of an experiment on input-dat
: . - dependence.? ' . .

PAGE-FAULT RATE [faults/second]

~ "UNDERINPUT
USEDTO UNDER
LAYOUT? DETERMINE LAYOUT = OTHERINPUTS

0 34.05-37.54

1 2359 19.60-24.29
2 14.67 17.50-28.71

3 15.54 : 15.54-27.85

4 17.93 19.00-24.93

5

14.25 21.66-23.50

8From D. Ferrari and E. Lau, “An Experiment in Program Restructuring
for Performance Enhancement,” Proc. 2nd int. Conf. Software Engi-
neering, San Francisco, California, October 1976.

bLayout 0 is the original laycut of the Pascal compile experimented
vg;th. Layouts 1-5 were obtained by restructuring the compiler using
five block reference strings generated by it under five different inputs.

November 1978

Portability. That a program whose behavior has been
tailored to a memory policy should perform better than
its nontailored versions under that policy is not sur-
prising. But what happens when the policy changes, for
instance when the program is transported to another
system? Does not tailoring exceed in “‘tuning” a program
to a policy, so that a variation in the policy may cause
serious performance degradations?

Some previously unpublished experiments performed
by the author have shown that this is not the case, at
least for the programs and tailoring algorithms consid-
ered (see Table 4). The approaches to restructuring taken
by the tailoring algorithms described in this paper are
more sophisticated than others but still quite primitive.
Most of their efforts, we might say, are spent improving
the locality of the program and produce fully portable
gains. Thus, the results resemble those we would obtain
if only the extra improvements due to the tailoring
could be taken away by a change of policy, and the
performance could be degraded, at worst, to the level of
that produced by restructuring algorithms of the non-
tailoring type.

Cost. Is restructuring economically convenient? An
analysis of the costs of the restructuring procedure we

" have described shows them to concentrate mostly in the

areas of block selection, program-behavior data collec-
tion, restructuring-graph construction, and clustering.

Data collection is perhaps the most difficult operation
in the procedure. Generally, today’s. systems are not,
and cannot easily be, instrumented to permit the gather-
ing of referencing-behavior informaticn. Instrumenting
the code portions of programs for this purpose is rela-
tively easy, but tracing data references is usually much
more difficult and expensive. Interpretive execution of
the program to be restructured requires an instrumented
interpreter and large amounts of computer time. The
problem can certainly be solved, as has been done
within several research environments and in the de-
sign of the restructuring tools now available on the
market, However, the designers of the next generation
of systems could substantially help the collection of
trace data (if they wanted to) with relatively little effort.

The partitioning of the program into blocks is usually
done by the programmer but could be automatically
performed by the linker in most practical cases.

The restructuring algorithm has a cost in terms of
computer time which varies roughly linearly with the
number of references to be examined, that is, with the
duration of the program. A typical figure for the cost

of the MWS algorithm, which is one of the most expen- -

sive among the algorithms described in this paper, is
about 4 seconds of CDC 6400 CPU time for a string of
1,000,000 references.

The cost of the clustering algorithm described earlier
has been found to increase slightly less than quadrati-
cally with the number of blocks in the program; a typical
clustering time for a program partitioned into 45 blocks
is about 1 second of CDC 6400 CPU time and becomes
slightly more than 3 seconds for 90 blocks.

If we weigh these costs against the expected improve-
ments and the savings they will bring about, we will
easily convince ourselves that, for programs to be exe-
cuted a large number of times, restructuring is very
likely to be convenient even from an economical stand-
point. Since a program is restructured only once (or a
few times, when its users suspect that the program’s
usage patterns have significantly changed), there is a
number of executions at which the cost of restructuring
is compensated for by the savings obtained. Beyond that

45




Table 4. Some results of a portability experiment.

NUMBER OF PAGE FAULTS
NO CLRU CFIFO CWS
MEMORY POLICY RESTRUCTURING NEARNESS (8 page frames) (8 page frames) (T = 4000 refs)

Fixed partitioning

LRU replacement

7 page frames 1610 ! 1028

8 page frames ) 1034 835

9 page frames ] 785 ‘ 696
FIFO replacement ‘

7 page frames o - 2481 1657

8 page frames i 1803 1335

9 page frames ‘ 1384 . 1116

Variable partitioning

Purs working set

3000references . 1670 ~ 1551
4000 references 12 ' 1143
5000 references i 980 1103

801 904 1345

899 786 795
596 666 552
1502 , 1377 2159
1296 . 1114 1251
1081 - - 985 985

. 1434 1400 - - 1250
1066 1078 790 -

1037 1007 741

number of executions, all the advantages due to restruc-
turing are free. This threshold depends on many factors
" and cannot-be easily determined a priori. However, our
feeling is that the thresholds for all the programs we
" have experimented with would be quite low.

It has aiready been mentioned that tailoring algo-
rithms are more expensive, being more . sophisticated,
than other restructuring algorithms such as the nearness
methoed. Is their additional cost worth their better per-
formance? A general answer cannot be given. We observe,

however, that a tailoring algorithm’s cost is higher in

the construction of the restructuring graph and possibly,

" but by a very minor amount, in the collection of the

data (storing nearness data may be less expensive).
Since the cost of restructuring-graph construction has

- been found to be quite reasonable even for the MWS

algorithm, and is only a fraction of the total cost any-
way, there does not seem to be any general reason to

- . give up the substantially greater improvements produced

by tailoring algorithms. Because of what has been said

" earlier about the near optimality of these algorithms,

using the same arguments to advocate the introduction

- of more sophisticated algorithms does not seem wise, and

.. some of our experiments have confirmed the validity of
* this feeling.

Conc!usion

Restructuring has proved to be a viable, effective, and
economical way of improving the performance of pro-
grams in virtual memory systems. In particular, the
procedure outlined in this paper and those restructuring

_ algorithms which try to tailor the behavior of a program
to the ideal behavioral model assumed by the memory
policy have been quite successful in a number of experi-
ments, and constitute the basis of some commercial
restructuring teols which have recently appeared on the
market.

48

Several avenues of research remain to be explored.
One of the most important, in our opinion, is the study
of procedures and algorithms which can be completely
automated. The goal of such research could be the
implementation of “intelligent” memory hierarchies which
would restructure programs and data bases without re-
quiring any human intervention. '

Another topic to be investigated is the relationship -

between prefetching policies and restructuring, which is
particularly interesting when data base systems are to
be restructured. These systems exhibit a peculiar refer-
encing behavior, for which prefetching policies seem to be
sometimes more convenient than demand-fetching ones.

The development of restructuring algorithms for systems

managed by prefetching policies and the incorporation
of prefetching mechanisms into the intelligent memory
hierarchies mentioned above could contribute to the solu-
tion of the severe performance problems which several
data base systems encounter.

Even when (or if) software design methods are so

sophisticated as to allow a programmer to write pro-

grams exhibiting a preassigned referencing behavior,
restructuring procedures are likely to be useful as per-
formance debuggmg and testmg tools. B

: Acknowledgments

The support of the National Science Foundation (grant
DCR74-18373) is gratefully acknowledged. The author
is also indebted for many of the above ideas and results
to the students who have participated in the PROGRES
project—Miguel Borges, Chung Chan, David Ching,
Connie Chung, Makoto Kobayashi, Edwin Lau, Mark
Liu, Jehan Paris, and Michael Pompa—and to Ruth
Suzuki for her typings of the manuscript. :

Domenico Ferrari is the guest editor of this issue of Computer.

His biography appears on p. 8.

COMPUTER

o




References

1,

T. Kilburn, D,B,G. Edwards, M. J, Lanigan, and F, H.
Sumner, “One-Level Storage System,” IRE Trans, on

FElectronic Computers, Vol, EC-11 (4), April 1962, pp,

223-235,

L. A. Belady, “A Study of Replacement Algorithms for a
Virtual Storage Computer,” IBM Systems Journal, Vol. 5
{2), 1966, pp. 78-101, ‘

P. J. Denning, “The Working Set Model for Program
Behavior,” CACM, Val. 11 (5), May 1968, Pp. 323-333,

J. E, Morrison, “User Pregram Performance in Virtual
Starage Systems,”” IBM Systems Journal Vol, 12 (3)
1973, pp. 216-237, :

A, C. McKellar and E. G, Coffman, Jr., “Organizing
Matrices and Matrix Operations for Paged Memory Sys-

~tems,” CACM, Vol. 12 (3), March 1969, pp. 153-164.

B. 8. Brown, F, G. Gustavson, aﬁd E. ‘S. Mankin, “‘Sorting
in a Paging Environment,”" CACM, Vol. 13 {8), August
1970, pp. 438-494, e L

‘L. W. Comeau, “A Study of the Effect of User Program

Optimization in a Paging System,” Proc. ACM Symp. on

' Operating Systems Principles, Gatlinburg, Tenn., 1967.

R. F. Tsao and B, H. Margolin, “A Multi'factor Paging

- Experiment; I1. Statistical Methodology,” in W. Freiberger,

ed., Statistical Computer Performance Evaluation, Aca-

- demic Press, New York, 1972, pp. 135-158.

- J. L. Baer and G. R. Sager, “Dynamic Improvement of
- Locality in Virtual Memory Systems,” IEEE Trans. on

. Software Engineering, Vol. SE-2 (1), March 1978, Pp. 54-62.

10
1.

12.

18.

C. V. Ramamoorthy, “The Analytic‘ljeysign of a Dynémic

" Look Ahead and Program Segmenting System for Multi-

programmed Computers,” Proc. ACM National Conference,
New York, 19686, pp. 229-239. L ) .

D. J. Hatfield and J. Gerald, “Program Restructuring:

for Virtual Memory,” IBM Systems Journal, Vol. 10 {3),
1971, pp. 168-192. . ; o .

T. Masuda, H. Shiota, K. Noguchi, and T. Ohki, “Optimi-
zation of Program Organization by Cluster Analysis,”’
Information Processing 74 (Proc. IFIP Congress 74), North-
Holiand, Amsterdam, 1974, pp. 261-265.

D. Ferrari, “improving Locality by Critical Working
Sets,” CACM, Vol. 17 (11), November 1974, pp. 614-620.

D. Ferrari, “Improving Program Locality by Strategy-
Oriented Restructuring,” Information Processing 74 (Proc.
IFIP Congress 74), North-Holland, Amsterdam, 1974,
Pp. 266-270. .

D. Ferrari, “Tailoring Prografhs to. Models of Program
Behavior,” IBM Journal of Research and Development,
Vol. 19 (3), May 1975, pp. 244-251.

N. A. Oliver, “Experimental Data on Page Replacement
Algorithm,” AFIPS Conf Proc, Vol. 43 {(NCC 1974),
pp. 179-184, - )

Y. Bard, “Characterization of Program Paging in a Time-
Sharing Environment,” IBM Journal of -Research and
Development, Vol. 17 (5), September 1973, pp. 387-393.

D. Ferrari and E. Lau, “An Experiment in Program Re-
structuring for Performance Enhancement,” Proc. 2nd Int.
Conf. on Software Engineering, San Francisco, Calif.,
October 1976. ,

November 1976 ‘

a

SOFTWARE
RELIABILITY
ENGINEERS

Intel Corporation, the world’s foremost manufacturer
of microcomputers, has openings far software engineers
who want ta advance the art and science of making
software reliable,

If software engineering means more to you than glimj-
nating GO TQ's —if the joy of writing structured code
no longer satisfies your concern for quality —then con-
sidar software product enginsering at Intsl. Successfyl
apghcants will analyze and approve software spacifi-
cauons, review the intarnal design of software products,
manage testing projects, consult with devslopment
enginesrs to propose qualrty‘assurancs strategies, and
develop tools for the evaluation and guarantes of soft-
ware refiability in all its aspects. ,

Candidates must have the technical understanding to
implement software of superior quality and the experience
10 evaluate the economic consequencas of reliabiiity.
Familiarity with recent software reliability theory is de-
sired, together with an MS or PhD in Computar Sclencs,

For immediate and confidential consideration, please
send your resume, including salary history, to
Intet Employment, 3065 Bowers Ave., Santa
Clara, CA 95051, An Equal Opportunity
Employer M/F. v

e

~N

R ! - 13-15 October 1976
*San Francisco, California:

z 1ESE Cratop Mo, FICHI VIS4 O

Proceedings of the 2nd International Conference on
October 13-15, 1976 (700 pages)

Topics covered in this proceedings include software
requirements and specifications, program synthesis,

operating systems, education, performance evaluation,

networks, design and development, programming
languages, modeling, testing, tools, and case studies.

Members — $15 /

K& Non-members — $20




