Contributions . . .

Computer Architecture Hews, 10, 6,

December, 1962.
On the Use of Benchmarks for Measuring System Performance

Henry M. Levy and Douglas W. Clark
Digital Equipment Corporation
Littleton, Mass. 01460

=Two recent CAN articles {[1,2] have presented the results of experiments to
measure the performance of wvarious conputer systems, including the Motorola
68000, the DEC VAX-~11/780 and the Intei 432, 8086, and 80286. Comparisons of
the systems were based on the execution time of four small benchmarks coded in
the C and Pascal languages. The findings were summarized by a graph comparing
the average performance of the benchmarks on each system relative to their
average performance using VAX/VMS Pascal on the VAX-11/780.

Al though Hansen et al[1] state that "...a high-level language system
consists of the compiler and the machine, so we are not measuring just the
architecture and hardware implementation”, this observation is lost as the paper
moves from results to conclusions. Comparison of architectures through the use
of benchmarks requires careful attribution of performance to the contributions
of many factors, including architecture, compiler quality, technology, memory
speed, language semantics, and benchmark implementation. The benchmarks wused
for these measurements raise a number of significant questions, some of which
are addressed below.

1. The benchmarks. What do these benchmarks measure? Overall, the benchmarks
used in the Berkeley measurements are extremely simple and test only a small
set of 16-bit integer arithmetic, compare, and branch instructions. In
programs this small, the addition of one instruction within a loop can make
a difference of 30% in performance. There are no programs to exercise large
integer arithmetic, floating point, memory addressing of large arrays,
input/output capabilities, etc. Features of more sophisticated
architectures, such as the VAX and 432, are not exercised at all.

2. The implementations. What is the effect of the benchmark implementation on
the results? Benchmarks were written in both Pascal and C languages. The
Pascal and C implementations are sufficiently different in some cases to
make the comparison not meaningful. For example, the Pascal string search
program includes a procedure call to a search routine within an inner loop,
while the C implementation does not. Seemingly small implementation
differences can have dramatic effects. Steve Hobbs has demonstrated that
the addition of local pointer variables to one of the C string search
routines can reduce the VAX execution time by 50%.

3. The language semantics. How do the semantics of the languages used bias the
results of the measurement? For example, the C string search uses pointers
to access characters while the Pascal program wuses arrays and index
variables. On any compilers that implement a substring function, such as
PL/! or Bliss, the 70-line Pascal and 35-1line C programs could be replaced
by a program only several lines long. On VAX, such a program would generate
the MATCHC instruction to perform the search (our test benchmark in Bliss
using the substring function ran almost 5 times faster than the VMS C
benchmark).




The compilers. What is the effect of compiler quality? The two VAX
compilers used by the authors of [1,2] (VMS Pascal Version 1 and Unix C)
were both ported to VAX from other architectures. Neither was originally
intended for VAX. If we rerun the benchmarks using the VAX/VMS C, Pascal
Version 2, and Bliss compilers we get significantly different results.
These compilers were developed specifically for the VAX; the C compiler
uses a code generator originally written for the VAX PL/l compiler [3].
Fable 1 shows the performance of the Berkeley benchmarks on the VAX-11/780
when run with the various compilers. The difference in performance between
WS C and Unix C, for example, is as high as a factor of 2.3 on these
benchmarks, while WS Pascal V2 programs run about 1.6 times faster than
Pascal V1 programs.

Table 1. VAX-11/780 Execution Times

Word Benchmark Time (milliseconds)
Language Size Search Sieve Puzzle Acker
Bliss(see note) 32 .12 3128
Bliss (VMS) 32 .49 184 5818 4222
C (VMS) 32 61 116 4625 5048
C (Unix) 32 1.4 250 9400 4600
Pascal (Unix) 32 1.6 220 11900 7800
Pascal V1 (VMS) 32 1.4 259 11530 9850
Pascal V2 (WMS) 32 .88 144 6130 6135

note: Fast Bliss version of Search uses Bliss substring
function (MATCHC instruction). Fast Bliss version of Acker
uses fast routine linkage (JSB instruction). Unix C and
Pascal, and VMS Pascal V1 numbers were taken from [1].

The measurement methodology. What is the effect of measurement methodology
in the reported results? In the measurements cited in [1,2], some programs
were run on an operating system, some on a hardware simulator, and some were
measured through use of a logic analyzer to count the number of cycles.
Programs run on an operating system may incur the costs of program loading,
including accessing the program file, initializing the memory environment,
etc.

The use of averages. How are the results dependent on the statistics

chosen? In the measurements cited, the statistical mean of the relative
performance of the four benchmarks is used to compare the systems. One
unusually small or large value can cause the mean to be unrepresentative,

particularly with a small sample size. This problem is illustrated in
Figure 1, which shows mean performance of the benchmarks relative to the
per formance on VAX-11/780 Pascal Version 2. The solid bars show mean
relative performance of Search, Sieve, and Puzzle benchmarks. The dotted
lines show the mean relative performance when the Acker benchmark, which
measures only procedure call cost, is averaged with the other three. In
several of the machines measured in [1,2], the relative performance of the
Acker program is two or three times greater than the relative per formance of
any of the other benchmarks.



1.4

1.2

Figure 1 - Mean Relative Performance

solid bars = mean performance relative
to VAX-11/780 Pascal V2 of SEARCH,
SIEVE, and PUZZLE benchmarks

dotted bars = mean performance relative
to VAX-11/780 Pascal V2 of SEARCH,
SIEVE, PUZZLE, and ACKER benchmarks

SYSTEM

LANGUAGE

BENCHMARK
WORD SIZE
(bits)

note:

L]
‘
i
!
1
t
]
'

Intel Motorola Motorola Digital Intel
432 68000 68000 VAX-11/780 80286
8MHz 8MHz 16MHz 8MHz
Ada : c Pascal Pascal Pascal

16 32 32 32 16

Benchmark times for the 432, 68000, and 80286 are taken
from the Berkeley measurements (1,2).

P A L

[
{

Intel
80286
10MHz

Pascal

16

N )
" o .




In conclusion, we believe that one should be extremely cautious in using
benchmarks such as these to compare the performance of computer systems,
hardware or software. It is nearly impossible to attribute the performance of
these benchmarks to any one factor. Of the factors involved, however, the
effect of architecture is probably one of the smallest for these benchmarks.
Finally, it is especially misleading, although certainly tempting, to use a
single scalar measure of performance such as the average execution time of a set
of befichmarks to compare computer systems.

Acknowledgments

We would like to thank Bob Supnik who measured the per formance of these
benchmarks using several VAX compilers. Steve Hobbs provided a detailed
analysis of the benchmarks, pointing out numerous difficulties in using them to
compare compiler quality. Dave Patterson supplied copies of the benchmarks used
in the Berkeley measurements.

References

[1] P.M. Hansen, M.A. Linto, R.N. Mayo, M. Murphy, and D.A. Patterson, "A
Per formance Evaluation of the Intel {iAPX 432", Computer Architecture News,

10(4), June 1982, pages 17-26.

[2] D.A. Patterson, "A Performance Evaluation of the Inte! 80286", Computer
Architecture News, 10(5), September 1982, pages 16-18.

[3] P. Anklam, D. Cutler, R. Heinen, Jr., and M.D. Maclaren, Engineering a
Compiler: VAX-11 Code Generation and Optimization, Digital Press, 1982.




