. o, A S i— G B

Jacob R. Lorch

and Alan

Jay Smith

The VTrace Tool

Building a System

Tracer for Windows N

and Windows 2000

Level of Difficulty)

SUMMARY This article describes the techniques used to
construct VTrace, a system tracer for Windows NT and
Windows 2000. VTrace collects data about processes, threads,
messages, disk operations, network operations, and devices.
The technique uses a DLL loaded into the address space of
every process to intercept Win32 system calls; establishes
hook functions for Windows NT kernel system calls; modifies
the context switch code in memory to log context switches;
and uses device filters to log accesses to devices.

For related articles see: Peering Inside the PE at http://msdn.micro-
soft.com/library/techart/msdn_ peeringpe.htm and Learn System-Level Win32
Coding Techniques by Writing an API Spy Program (MSJ, December
1994).

For background information see: Inside Windows NT (Microsoft
Press), Windows NT File System Internals (0'Reilly Associates),
and Programming the Microsoft Windows Driver Mode/ (Microsoft
Press).

86 msdnmagazine

riting a tracer for an operating system can beanight-
mare. The size and complexity of an operating sys-
tem complicates debugging, and it’s especially tricky
to debug code that runs before the system has fully
started up. Many runs require rebooting the com-
puter, and failed runs can require reinstalling the op-
erating system or even reformatting the hard drive. Writing a tracer

| for Windows NT" and Windows® 2000 is even more difficult because
. source code isnt available, descriptions of internal operations are

incomplete,and even the interface isn't always well documented.
In building VTrace, the tracer we created for Windows NT and
Windows 2000, we had to deal with all these problems. We needed
time-stamped traces of certainactivities inWindows NT and Win-
dows 2000 to study new energy management techniques for laptop
computers. Because we were studying the effects of varying the
CPU voltage and clock speed and of powering down various sys-
tem components, we needed to know when power-consuming
components (such as the CPU, the disk, and the network interface
card) were active and what they were doing at each instant. This

. required traces of many different types of system objects: pro-
| cesses, threads, messages, waitable objects, key presses, file sys-
. tems,disks,and the network. We wanted the tracer to be unintrusive
| and to respect the confidentiality of user data so that users would
' letustrace their systems. V'Trace contains over 30,000 lines of code
| inC,C++,and assembler.

o e

ight-
sys-
-icky
fully

2op-
racer
;ause
sare

"and
eded
Nin-
ptop
3 the
' sys-
ning
rface
This
pro-
sys-
asive
ould
code

How did we do it? We set up a debugging environment and
wrote what we call an initialization driver (which we'll explain
later) for VTrace and alogger driver that time-stamped and logged
all events. Then we modified the Windows keyboard filter to log
key presses, Russinovich and Cogswell’s Filemon filter driver (from
their SysInternals Web site at http://www.sysinternals.com) to monitor
file system activity, and a physical disk filter to log physical disk
activity, in addition to writing a network filter driver. Finally, we
wrote code tolog context switches, to log system calls to the Win32°
subsystem and the kernel, to monitor the file system, and to log the
beginning and end of all processes and threads.

We developed VTrace for Windows NT and later ported it to
Windows 2000. We'll explain the issues we encountered in that
exercise, and also discuss our performance benchmarks.

Creating a Debugging Environment

Because a tracer contains and interacts with a lot of code that
runs in kernel mode, we needed a kernel-mode debugger. Since
much of the code in a tracer is executed before the system has
completely started up, it runs before a debugger program can be
launched. To address this we used a two-system debugging envi-
ronment: the debugger runs on the host machine (the develop-
ment machine), and the software that is being tested runs on the
target machine. The debugger monitors and controls the target
machine through a serial cable connecting the two machines. This
setup was useful for another reason: if we did something thatled to
areboot or reinstallation of the operating system, the development
environment was unaffected.

Unfortunately, setting up kernel debugging with the DDK
debugger, WinDbg, is notoriously difficult. Some of the most diffi-
cult tasks include configuring the debugger program settings and
making the target machine communicate with a remote debugger.
Because the documentation included with the debugger is insuffi-
cient for these tasks, we checked the Web and Usenet for answers.
For example, when we found that Windows 2000 would inexplica-
bly hang while starting up with the debugger,a Usenet post had the
solution: use the Break command in WinDbg’s Debug menu.

Once we had the debugger for Windows NT set up, it worked
very well, enabling us to easily set breakpoints in source code, step
through source code, examine and change runtime variable val-
ues, and even view operating system code (only in uncommented
assembler, of course). Be warned, though: we've found early ver-
sions of WinDbg for Windows 2000 to be buggy.

Filter Drivers

VTrace uses filter drivers. A filter driver implements a filter de-
vice, which is extremely helpful in tracing system events in Win-
dows NT and Windows 2000. (For more information on drivers,
see the sidebar “Drivers for Windows N'T and Windows 2000.”)
After a filter device attaches to an existing device, it starts inter-
cepting any requests sent to that device. Typically, it modifies the
request in some way, and then passes it on to the device. This lets it
add functionality to the device; for instance, it could turn a tradi-
tional file system into an encrypted file system. A filter can also

Figure 1 Driver Initialization Routine

NTSTATUS DriverEntry (IN PDRIVER_OBJECT DriverObject,
' IN PUNICODE_STRING RegistryPath)

NTSTATUS status;

int i;

// Read driver-shared state from initialization driver.
status = GetSharedState(sharedState);

if (INT_SUCCESS(status))
return status;

// Create dispatch points for ail routines that must be handled.
/1 A11 entry points are registered since we might filter a
// file system that processes all of them.

for (i = IRP_MJ_CREATE; i <= IRP_MJ_MAXIMUM FUNCTION; i++)
DriverObject->MajorFunction[i] = VTrcFSPassOnNormally;
DriverObject->MajorFunction[IRP_MJ_CREATE] = VTrcFSDispatchCreate;
DriverObject->MajorFunction[IRP_MJ_READ] = VTrcFSDispatchReadWrite;
DriverObject->MajorFunction[IRP_MJ_WRITE] = VTrcFSDispatchReadWrite;

// Set up the fast 1/0 dispatch table. (See the section on fast I/0
// for details.)

DriverObject->FastIoDispatch = &VTrcFSFastlioDispatchTable;

/7 Note: It would be unwise to unload this driver, so we don't set an
// unload routine. Otherwise, we would set DriverObject->DriverUnioad.

// Normally there would be code here to attach to some other device
1/ or devices, but in VTrace we do this elsewhere.

return STATUS_SUCCESS;

simply record information about requests, pass those requests un-
changed to the device they were meant for, then record informa-
tion about the results of those requests. This was the primary
manner in which we used filters.

Figure 1 shows the driver initialization routine that VTrace uses
to initialize the file system driver. This routine sets the MajorFunc-
tion entries in the driver

object so the appropriate .
dispatchroutinegetscalled [INRUCRICCIAA RIS CRY L

for each request type. logger, the piece of code
Figure 2 shows the dis- that collects trace records

patch routine that VTrace and writes them to the
uses to handle read and PSRN PRETIPPR RN RPN,
write requests. This rou- -

-serializes requests to add

tine logs the request initia- i
tion, sets a completion events to the in-memory

routine to be called when log, and periodically writes

therequest completes,then JERGTR[-8 LN H

calls the lower-level driver

to complete the request.
Figure 3 shows the completion routine that VTrace uses to log the

results of a file systern request that just completed.

Initialization Driver

Many of VTrace’s drivers have to start at boot time in order to
work. If they cause problems, there are several things that can
remove them: a recent emergency repair disk, the recovery console

october2000 87

PR msm———— PN

feature of Windows 2000, the NTFSDOS product sold at the

ing system. Unfortunately, these can be time-consuming. There-

fore, the ability to disable the drivers at startup is quite useful. To ;

achieve this, VTrace includes an initialization driver that starts
before all of its other components. This driver decides whether
VTrace should be disabled for this boot. When they start up, each

of the other drivers first sends the initialization driver’s device a

Figure 2 Dispatch Routine :

NTSTATUS VTrcFSDispatchReadirite (PDEVICE_OBJECT FilterDevice,

}

IN PIRP Irp)

PI0_STACK_LOCATION currentirpStack =
IoGetCurrentIrpStackLocation(Irp);

PI0_STACK_LOCATION nextIrpStack = IoGetNextirpStackLocation(Irp);

PFILE_OBJECT fileObject = currentIrpStack->FileGbject;

PFS_HOOK_EXTENSION filterExtension = FilterDevice->DeviceExtension;

PDEVICE_OBJECT nextDevice - = filterExtension->attachedDevice;
PCHAR eventPosintog = NULL;

ULONG seq:

KIRQL oldirql;

// 1f the file has a name, 109 the read or write request.

if (fileObject->Fi1eName.Buffer) {
KeAcquireSpinLock(&sharedState-)mainMutex, holdirql);
eventPosInlog = (sharedState-)]ogEventFunctionPointer)(
(currentIrpStack->MajorFunction = IRP_MJ_READ ?
ENTRY_TYPE_FILE_READ : ENTRY_TYPE_FILE_WRITE), 24);
if (eventPosInlog) {
seq = Inter]ockedlncrement(&g]obalSequenceNumber);
RtlCopyMemory(&eventPosInLog[l], 4seq, 4);
Rt1CopyMemory(&eventPosInLog[S], 4filebbject, 4);
RtlCopyMemory(&eventPosInLog[9].
¤tlrpStack-)Parameters.Read.ByteOffset. 5);
RtlCopyMemory(&eventPosInLog[l4].
¤tlrpStack»)Parameters.Read.Length. 4);
Rt]CopyMemory(&eventPosInLog[lS], &lrp->Flags, 4);
eventPosInlog{22] = currentIrpStack->MinorFunction;
eventPosInLog[23] = currentIrpStack->Flags;
}
KeRe]easeSpinLock(&sharedState-)mainNutex. oldirgl);
}

if (leventPosInLog) {
// If we didn't enter the request into the log, we just pass this
// IRP on normally to the next lower device. We do this by backing
// up the IRP stack location to reuse the current Tocation for the
7/ next lower device. In Windows 2000, use the
// ToSkipCurrentIrpStackLocation macro for the following.

Irp->Currentlocationt+; .
Irp-)Tai].Overlay.CurrentStackLocation++;

}

else {
// Copy parameters to the next position in the stack for the next
/1 lower device. In Windows 2000, use the
1/ IoCopyCurrentIrpStackLocationToNext macro for the following.

*nextIrpStack = *currentIrpStacks
// Set a completion routine, passing the sequence number as the
/1 "context" parameter so that it can be used in the completion
/1 log entry.
ToSetCompletionRoutine(Irp, VTrcFSCompletionRoutine, (PVOID) seq.
TRUE, TRUE, TRUE);
}
// Pass the IRP on to the lower-level device.

return ToCallDriver(nextDevice, Irp);

88 msdnmagazine

Figure 3 Completion Routine

SysInternals Web site, and, as a last resort, reinstalling the operat-

NTSTATUS VTrcFSCompletionRoutine (PDEVICE_OBJECT DeviceObject, PIRP Irp,

{

PVOID Context)

ULONG seq = (ULONG) Context;
KIRQL oldirgl:
PCHAR eventPosInLog;

// Log the return values.

KeAcquireSpinLock(&sharedState-)mainMutex, &oldirgl):

eventPosInLog = (sharedState->logEventFunctionPointer)(
ENTRY_TYPE_FILE_COMPLETE_OPERATION, 13);

if (eventPosInlog) {
RtlCopyMemory(&eventPosInLog[l]. kseq, 4);
RtlCopyMemory(&eventPosInLog[S], &Irp->loStatus.Status, 4);
RtlCopyMemory(&eventPosInLog[Q]. &Irp-)IoStatus.Information, 4);

}
KeRe]easeSpinLock(&sharedState-)mainMutex, oldirgl);
/] Always do the following in a completion routine. (By the way, the
/] braces are necessary since ToMarkIrpPending is a macro that
// expands to multiple statements.)
if (Irp->PendingReturned) {
ToMarkIrpPending(Irp);
}

return Irp->IoStatus.Status:

_Figure 4 Calling a Driver from User Mode

void LogEvent (char *eventDescription, DHORD descriptionLength)
{

}

DWORD returnSizes;

HANDLE hDevice = CreateFile("\\\\.\\VTrcLog",
GENERIC_READ | GENERIC_WRITE, O,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
NULL);

if (hDevice i= INVALID_HANDLE_VALUE) {

DeviceloControl(hDevice, // Handle to device
VTRACE_LOG_EVENT, // Device 1/0 control code
eventDescription, - // Outbound communication buffer
descriptionlength, // Length of outbound buffer
NULL, // Inbound communication buffer
0, // Length of inbound buffer
4returnSize,

// Bytes returned in inbound buffer
NULL); // Unused (for async communication)
CloseHandle(hDevice):

}

. special 1/0 control request. If VTrace is disabled, the device re-
turns null; otherwise, it returns a pointer to a structure it allocated
. from non-paged memory for all the VTrace drivers to share.

To decide if it should disable VTrace, the initialization driver
. needs user-provided information to be available early in the boot
| process. About the only state information the user can provide at

that time is which boot configuration to use. For instance, the user

. can choose to use the “Jast known good” configuration. So, the
' initialization driver opens the registry key HKEY_LOCAL_MA-

CHINE\System\Select and reads the Current and LastKnown-

. Good values. Each of these is an index into the list of registry

. configurations. If they are the same, it means that the user chose
. the last known good configuration, so the driver disables V'Trace.

— [B

L B A e]

w

Logger Driver

The heart of VTrace is the logger, the piece of code that collects
trace records and writes them to the trace file. It accepts and serial-
izes requests to add events to the in-memory log, and periodically
writes the log to disk. We implemented the logger as a device so its
code could run in kernel mode. This lets other kernel-mode code
(most of the tracer) call it efficiently. It also lets user-mode code
call it without a context switch. (A kernel trap is still needed,
though.) The logger driver implements several specialized device
control 1/0 request types, including some to start logging, stop
logging, add an event to the log, and flush the log to disk. User-
mode code makes these requests using code like that shown in
Figure 4. This function, which logs an event, illustrates how user-
mode code communicates with a kernel-mode driver. Kernel-mode
code communicates with the logger driver more efficiently by call-
ing functions in the driver directly. The logger driver puts pointers
to these functions in the memory region shared by VTraces drivers.

Filters

To log key presses, we made simple modifications to the key-
board filter driver, Ctrl2cap, whose code is available from the SysIn-

* Drivers for Windows NT and Windows 2000

ternals Web site. Its original purpose was to make the Caps Lock
key function as an extra Control key. We just made it encrypt and
log the key presses instead of modifying them.

To log file system activity, we made a few modifications to
Filemon, another filter driver whose source code can be found on
the SysInternals Web site. This filter driver logs and displays file
system activity.

Our most important modification changed the way in which
the code selects devices to filter. Filemon allows the user to choose
specific file systems, but we wanted to filter all file systems. We
couldn’t simply find all the file systems at system startup and filter
those, because some—like floppy disks and CDs—may be added
dynamically. Instead, we hook the Windows NT or Windows 2000
system call that opens files (discussed in more detail later), check
in that hook whether we've already filtered the file system contain-
ing that file,and start filtering it if we haven't. To determine whether
we're already filtering the file system containing that file, the filter
increments a counter whenever it filters a file open request. So, if
the counter remains unchanged throughout an open system call,
we know we haven't filtered that file system. Keep in mind, how-
ever, that some file open calls go directly to the disk device and skip

In Windows NT and Windows
2000, a device is a software ob-
ject that can receive I/O requests,
representing things like a disk drive,
afile system, or akeyboard. Devices
can be layered, meaning that the
top-level device processesits /O re-
quests by sending I/O requests to
the lower-level device. For example,
a device for a file system will typi-
cally be layered over a physical disk
device so that file requests can be
translated into disk requests. Some
devices create file objects, which are
pieces of data with state carried over
between I/O requests. Despite the
name, file objects can represent
more than just open files—they can
be network connection endpoints, -

Operating System Allocates IRP

|
File System Passes IRP to Disk Device

Disk Device Reads from Physical Disk

level device, it pushes onto the stack
a new stack location describing the
1/O request in a form that the lower-
level device understands. When that
device finishes processing the IRP,
the extra stack location is popped
from the stack. Thus, when the top-
level device gets the IRP back to
complete its own processing, the top
location of the stack is still the one
relevant to that device. The most
important fields of an I/O stack lo-
cation are the major function code,
describing the general request type;
the minor function code, describ-
ing the request type more specifi-
cally; and the 16-byte parameters
field, whose meaning depends on
the function codes.

= S

open directories, and so on.

The way in which I/O requests
are handled allows device layering
to be accomplished. A device receives a structure called an 1/0
request packet (IRP), which represents an 1/0 request and con-

tainsa stack of I/O stack locations. (See Figure A for an example of
- the dispatch routine table. The operating system uses the dis-
. patch routine table, indexed by major function code, to deter-
- mine which routine handles a given IRP.

how layered devices use an IRP stack.) This stack’s top location
contains a description of the request in a form that the device
understands. Before the device passes the I/O request to a lower-

Figure A How Layered Devices Use an IRP Stack

A driver is the code implement-
ing a class of devices. For instance,
all NTES file system devices use the

- NTFS driver code. This code includes a driver entry routine and
- several dispatch routines. The driver entry routine performs per-

driver initialization, including entering the dispatch routines into

october2000 89

Figure 5 Fast 1/0 Routine

't BOOLEAN MyFastloRead (PFILE_OBJECT FileObject, PLARGE_INTEGER File0ffset, { RtlZeroHemory(&eventPosInLog[lB]. 4); /1 no IRP flags
;k ULONG Length, BOOLEAN Wait, ULONG LockKey, ! eventPosInLog[22] = TRP_MN_NORMAL;
pvoID Buffer, P10_STATUS_BLOCK ToStatus, i eventPosInLog[23] = "o's 1/ no stack flags
l PDEVICE OBJECT DeviceObject) i }
{ ! KeReTeaseSpinLock(&sharedState->mainMutex, oldirgl);
\ PFS_HOOK_EXTENSION filterExtension = Deviceﬁbject->neviceExtension; { 3}
PDEVICE_OBJECT nextDevice B fi1terExtension-)attachedbevice; i

! PFAST_I0_DISPATCH nextFastloTable = nextDevice->0river0bject-> 1 // Call the real fast 1/0 routine, recording the return value

! , FastloDispateh; !

. PCHAR eventPosInlog = NULL; % retval = nextFastIoTab]e-)FastloRead(File0bject. FileOffset, Length,
‘E BOOLEAN retval; i Wait, LockKey, Buffer, ToStatus,

i ULONG seq: i nextDevice);
KIRQL oldirals

/] 1f the call completed successfully, and we logged the call, log
/1 the return. i

/! 1f the next lower driver has no fast 1/0 routine, return FALSE.

‘i if ((ULONG) &nextFastIoTab]e-)FastIoRead - (ULONG) anextFastloTable >= i if (retval &k eventPosInLog) {
\ nextFastloTable—>SizeOfFastIoDispatch I i KeAcquireSpinank(&sharedState->mainMutex. &oldirql)s
N nextFastloTable->FastloRead = NULL) ! eventPosInlog = (sharedState->1ogEventFunctionPointer)(
i return FALSE; i ENTRY_TYPE_FILE#ﬁOMPLETE_OPERATXON. 13);
i i if (eventPosInLog) {
; // 1f there is a £ile name, record this call. 1 Rt\CopyMemory(&eventPosInLog[I]. 4seq, 4);
i % RtlCopyMemory(&eventPoslnLog[S], sloStatus->Status, 4);
: if (FileObject~>Fi1eName.Buffer 1= NULL) { ' i RtlCopyMemcry(&eventPosInLog[9], &loStatus-)Informatinn. 4);
! KeAcquireSpinLock(&sharedState-)mainMutex, &oldirql): i }
13 eventPosInlog = (sharedState—>1ogEventFunctionPointer)(; KeReleaseSpinLock(&sharedState—)mainMutex. oldirgl);
0 ENTRY_TYPE_FILE_READ, 243 }

if (eventPosInLog) {
seq = Inter\ockedlncrement(&globalSequenceNumber):
. Rt\CopyMemory(&eventPosInLog[l], seq, 4):
t RtlCopyMemory(&eventPoslnch[S]. 4FileObject, 4);
: RtlCopyMemory(&eventPosInLog[9}, FileOffset, 5);
B Rt]CopyMemory(&eventPosInLog[14]. slength, 4);

/] Return the rea} routine's return value.

return retval;
}

H

the file system altogether, so the counter will be unchanged during calls that reference a file without a name we found that we could
‘ that call, even if the associated file system is already filtered. Fortu- avoid this case.

P nately, all such calls reference a file with no name, so by ignoring Another way to find all file systems is to call ToRegisterFs-
RegistrationChange, partof the Microsoft
Installable File System (IFS) Kit. This call
registers a function to be called whenever

i
i
i
i
i
i
i

Figure 6 1DI Internal Device Control Reguests

Function Description il b . i ”
i TDl_ASSOCIATE_ADDRESS Associates a connection endpoint with a network address afile system ecomes active of Inactive.

. i))) Our method has two advantages over

; TDI_DISASSOC!ATE,ADDRESS Disassociates a connection endpoint from the network the IFS thod. First tall Ficati

¢ address it was previously associated with the me koﬁl. rst, 1t }cl)ws ?)Otl cation

! TDI_CONNECT Establishes a connection between a local connection . at networ .esystems ave become ac-
tive. Second, since you open and create

endpoint and @ specified remote address ; -
network objects using the same system call

P TDI_LISTEN Listens for requests from any of a set of remote) /

! addresses to a local connection endpoint used for file objects, you can easily extend
b TDI_ACCEPT Accepts a connection request made by a remote address our method t'o allow nouﬁcat}on when a
b to a local connection endpoint network device becomes active. VTrace

i 5‘ TDI_DISCONNECT Terminates the connection in which a connection endpoint uses this method to ensure its network fil-

L is participating ter (described shortly) hooks all the net-
: ‘ 1‘ TDI_SEND Sends an ordered packet over a connection work transport devices in the system.

' TDI_RECEIVE Receives an ordered packet over @ connection The fast 1/0 path optimization in Win-
A TDI_SEND_DATAGRAM Sends a datagram over a connection dows. NT and Wmdows 2009 can make
i TDI_RECENE_DATAGRAM Receives a datagram over a connection gﬂltenng file Zymfm devm;s a};llt tricky.Ifa
! ', ; TDI_SET_EVENT_HANDLER Establishes a routine for handling a certain type of event, 1 .e systerp eV1.ce can handie a requfest
N cuch as the arrival of a datagram without involving a lower-level device
o TDl_QUERY_lNFORMATION Gets information about some network object, such as its (such as during cache hit) its 3 .waste to
i network address create an IRP. A file system driver can
"\ TDI_SET_INFORMATION Sets information about some network object specify atable of fast dispatch routines (one

\ i TDI_ACTION Performs some transport-specific action for each 1/O request type) that can handle
H ~_ requests not packaged in IRPs. If the fast
i

|

i

90 msdnmagazine

dispatch routine can’t handle the request, such as when it misses
the cache, it returns an error value, forcing the operating system to
send an IRP to the regular dispatch routine. To filter accesses that
use fast I/O, we had to make a set of fast dispatch routines for our
filter driver. These routines log each time they get called, and pass
calls on to the fast dispatch routines of the lower-level driver. Figure
5 shows the fast I/O routine that VTrace uses to handle fast-path
read requests. Also, the sample driver initialization code shown in
Figure 1 includes a command to set up the fast I/O dispatch table.

To log activity at the physical disk level, we modified a physical
disk filter driver, DiskPerf, whose source code is in the DDK. This
driver collects and reports statistics about raw disk access, so it was
easy to retool it for our purposes.

Network Filter

Unlike the other filter drivers we needed, we found no source
code for a network transport layer filter driver. This meant we had
to write one essentially from scratch.

In Windows NT and Windows 2000, all transport protocols
must use the same programming interface: the transport driver
interface (TDI). Figure 6 shows the minor function codes of some
useful TDI internal device control requests (from the Windows
NT DDK help). 1/O requests passed to the transport layer all
conform to the single format described in the DDK help and the
DDK files TDI.H and TDIKRNL. H. It seems this would make our
job easy, but building a filter for these requests still presented us
with a challenge.

One problem we encountered is that some IRPs have the major
function code “device control,” but we couldn’t find anything de-
scribing their parameter format. However, we learned from the
DDK help that the first thing a device does when it receives such a
request is call the function TdiMapUserRequest to convert it to
one with a major function code of “internal device control” (which
we know how to interpret). So, in our filter driver dispatch routine
for device control requests, we first call TdiMapUserRequest.

Another problem is an apparent bug in the way Windows NT
handles network filter devices. When Windows NT constructs an
IRP, it must allocate enough stack space in it to account for the
maximum depth of the device stack that the IRP will pass through.
To allow this, each device object has a stack count field indicating
how large the stack must be in IRPs it receives. Unfortunately,
Windows NT sometimes brazenly ignores the stack count field in
our filter device objects and sends it an IRP with insufficient stack
space. If we push a new location onto this stack and pass it on,
eventually the stack overflows and we see the blue screen. We solve
the stack problem by checking for insufficient stack space, and
creating a new IRP to pass to the lower-level driver when needed.

Yet another problem is that not all network I/0O uses IRPs. If 1/0
must happen in response to some event, such as a datagram ar-
rival, the system invokes an event handler function rather than a
dispatch routine. This is unfortunate, since while Windows NT
and Windows 2000 provide the elegant, well-supported filter driver
approach for intercepting IRPs sent to dispatch routines, it gives
no such help in intercepting calls to event handlers.

Figure 7 Hooking the Context Switch Routine

/1 Before the context swap hook is in place, SwapContext looks Tike:
/! SwapContext:

1 mov byte ptr es:[esi+2Dh],2
1/ or cl,cl

/1 mov ecx,dword ptr [ebx]

/1 pushfd

1" ...oete. ...

// After the context swap hook is in place, Swaplontext looks like:
1/ SwapContext:

/1 Jmp <the address 6 bytes into NewSwapContext>
1 or cl,cl

/1 mov ecx,dword ptr [ebx]

/1 pushfd

1/ ...ete. ...

/1 (The 6-byte offset is to skip over the compiler-inserted stack set-up
// stuff at the beginning of NewSwapContext.)

// NewSwapContext logs the context switch, executes the overwritten

// instruction from the old context swap routine, then jumps to the point
// in the old swap routine past that instruction.

void FASTCALL NewSwapContext (void)
{

_asm {
/1 Save registers we may overwrite.
push eax
push ecx
// Save interrupt mask and stop all interrupts. Since context-swaps
// can't occur on a uniprocessor while a spinlock is held, we know no
// one else has the spinlock.
pushfd
cli
// eventPosInLog = LogEvent(ENTRY_TYPE_THREAD_SWITCH [OxE], 5);
push 5
push OEh
call LogEvent
/1 if (eventPosInLog)
cmp eax, 0
je Donelogging
// Save eventPosInLog on stack for later use.
push eax
/1 * (DWORD *) &eventPosInLog[1] = PsGetCurrentThreadId();
call PsGetCurrentThreadld
pop ecx // Pop eventPosInLog from stack to use now.
mov dword ptr [ecx+l], eax

DoneLogging:
/1 Restore the interrupt mask.
popfd
/1 Restore saved registers.
pop ecx
pop eax
/1 Execute overwritten instruction from original swap routine.
mov byte ptr es:[esi+2dh],2
// Jump to point in original swap routine past overwritten part.
Jmp dword ptr globals.nonOverwrittenPart0fOrigSwapRoutine

We overcame this with our own technique for intercepting calls
to event handlers. The key is our ability—thanks to filter devices—
to intercept and change any request that sets a new event handler
for a file object. (These are the requests with minor function code
TDI_SET_HANDLER.) Each of these requests contains the loca-
tion of the event-handling function, the type of event it handles,
and a four-byte context value to pass to that function. All the
driver must do, then, is allocate a structure to store this informa-
tion, then modify the request so that instead of containing the
location of the real event-handling function and the real four-byte
context value, it contains the location of a special logging event-
handling function and the four-byte address of the allocated struc-
ture. So whenever an event of the given type happens, our special

octoberz000 93

Ppp——— e

logging event-handling function is called and passed the address |
of the structure we allocated. This function logs the event, and
then inspects the structure in order to call the appropriate event-
handling function with the appropriate context value. When that
function returns, our special logging function can trace its return
value. (We later refined this approach so the driver allocates a |
single structure per file object, not per event handler, so it can |
quickly free all the memory allocated fora file object when it closes.)

Logging Win32 System Calls

Logging Context Switches

Logging context switches should be easy, since kernel-mode |
software can use KeSetSwapContextNotifyRoutine to make the
system call a given function whenever it switches contexts. Unfor-
| some other subsystem such as 08/2, or to the Windows NT or
build versions of Windows NT and Windows 2000. Few people |
use these versions, and because we wanted our tracer to run on any
machine, we had to design a method for doing this on the

from the technique Matt Pietrek used for APISPY32 in his article

tunately, this call only works on the multiprocessor and checked-

uniprocessor free build.

For performance reasons,
the user-level DLL tracing SwapContextin Windows

memory with VTrace’s found that the first five

drivers. It obtains a bytes of this function area
| is easy to do once the image and file format is understood), and

pointer to this region by single instruction, so we

sending a request to the
initialization device.

in memory is not straightforward. We know it’'s always in the in-

memory image of the kernel executable, NTOSKRNL.EXE, which
is loaded at address 0x80100000. However, its position within
. technique only loads the DLL into applications that load

NTOSKRNL.EXE changes from version to version of Windows

NT 4.0. For instance, in the original Windows NT 4.0 its at
0x8013F4F0, but after applying Service Pack 3 its at 0x80140CAQ,
and after applying Service Pack 6a if's at 0x80142420. The good |
news is that in all of these versions—and all other versions of -
| virtual memory protections prevent the replacement of some

Windows NT 4.0 that we've seen—the instructions of this func-

We started by finding |
the assembler code for |
- cally works as follows. An application makes a Win32 system call
code shares a region of NT using WinDbg. We
.\ pointers. (Figure 8 illustrates the way Win32 system calls are per-

can overwrite these bytes |
in memory withajumpto |
our own NewSwapCon- |
text function, shown in
Figure 7. NewSwapContext logs the context switch and the thread
being switched to, executes the first five bytes of the original pre-
overwrite version of SwapContext, then jumps to the sixth byte of |
SwapContext. Unfortunately, finding the location of SwapContext |
CHINE\Software\Microsoft\Windows NT\CurrentVersion\

tion are unchanged. So to find SwapContext, we just searched for
the known first 28 bytes of the routine in the memory section
where we expected it. Of course, we check afew common locations
first, since the routine is most likely to be in one of them. Doing
this check is dangerous because if kernel-mode software accesses
aninvalid (paged out, say) memory Jocation, the system will crash.
So before checking any location, we first call MmIsAddressValid
to make sure we can read it.

Windows NT and Windows 2000 support multiple user-level
subsystems, such as Win32, POSIX, and OS/2. So, the term “sys-
tem call” is vague; it could mean a call to the Win32 subsystem, to

Windows 2000 kernel itself. Now we'll look at how to log system
calls to the Win32 subsystem.
Our technique for logging Win32 system calls borrows heavily

“Learn System-Level Win32 Coding Techniques by Writing an
API Spy Program” (MS/, December 1994). This technique basi-

by making an indirect call through one of an array of function
formed.) We just need to find thatarray of function pointers (which

replace the pointers to functions we want to log with pointers to
our own logging functions. These logging functions, which reside
in a special DLL that’s part of the tracer software, will call the
original functions and log those calls.

This method requires that each application load this special
DLL into its address space. In his article, Matt Pietrek provides
several ways to ensure this. We chose the simplest of them: putting
the name of the DLL in the registry key HKEY_LOCAL_MA-

Windows\ApplInit_DLLs. This doesn't take effect until you reboot,
but our raw disk filter driver needs a reboot anyway. Also, this

USER32.DLL; this was fine for us because we only needed to log
functions in USER32.DLL.

Matt designed APISPY32 for Windows NT 3.5. Some Usenet
messages report it can't be used with Windows NT 4.0 because

of the function

Figure'B How Win32 System Calls are Performed : pointers. To fix this
problem, we call

Code Description VirtualProtect to
call dword ptr fimpretMessageA@lG Application code. The application calls GetMessageA, which is temporarily change
compiled as an indirect call through __imp__GetMessageA@16. those protections.
__imp__PostTh readMessageA@16: 0x10001E50 Array of function pointers. The location __imp__GetMessage- Another problem
__imp__GetMessageA@16: 0x10001410 A@16 is in an array of imported function pointers located in the with APISPY32 is
i mp_PeekMessageA@ZO: 0x10001550 import data section. that it onl hooks
0x10001410: Function body. The actual body of the function GetMessageA system ¢ al)l,s made
sub esp, 18h is at the specified memory Jocation 0x10001410. This location Y h
push ebx is part of the memory image of the USER32 DLL. directly by the ap-

94 msdnmagazine

plication. If an ap-

A

———— S SRR U

plication callsa DLL function, which in turn makes a system call,

[l Figure 9 Mapping Kernel Memory to User Level

APISPY32 doesn't notice that system call. This is because APISPY32

performs its function interception on the application executable |

image, but not on the image of any DLL.

Our solution to this has two parts. First, when an application
loads the logging DLL, the logging DLL calls EnumerateLoad-
edModules to get the memory Jocations of the application and all |
its loaded DLLs. It then intercepts functions in all those modules. |
Second, it intercepts the LoadLibrary functions (even though we
dorit need to log them), so that when one completes we can call
EnumerateLoadedModules to intercept functions in all the newly
loaded library images. Note that it isn't sufficient to consider only |
the library mentioned in the LoadLibrary call, since that library |
may have implicitly or explicitly caused other libraries tobeloaded. |
Also, be aware that this implementation will miss logging some

calls that libraries make when they initialize.

An important part of
parsing a PE format file
is translating virtual
addresses into file
positions.

suming. A good solution, suggested in a Usenet post, isto put the |
DLL on a floppy disk and tell Applnit_DLLs to get it from there. |
That way, if there’s a bug, you can just remove the floppy so no app
can load the DLL. For VTrace, we have the DLL check with the

initialization device to see if VTrace is disabled for this boot.

For performance reasons, the user-level DLL tracing code shares
a region of memory with VTrace’s drivers. It obtains a pointer to
this region by sending a request to the initialization device. To |

satisfy this request, the initialization device must constructa pointer
that is valid in the user-mode process calling it, using code suchas
that shown in Figure 9. One important issue is that the device must
unmap this address before the process exits, or the system will |
crash. Fortunately, in order to access the device to request the
mapping, the user process must create a“file” representing alinkto |
the driver. When that process is about to terminate, it automati-
cally closes this file. VTrace stores the user-level address in the
corresponding file object, and unmaps the address when it re- |

ceives a close request for the file object.

Logging Kernel System Calls

We also wanted to log kernel system calls; that is, system calls |
made via a transition from user mode to kernel mode. Our ap-
proach comes from the Regmon application, available from the |
Syslnternals Web site. The idea is to find the service table list (an
in-memory array of system call function pointers indexed by sys-

tem call number), and replace the function pointers with pointers

to special logging functions. The trickiest partis determining which

96 msdnmagazine

Debugging a logging
DLL can be difficult,since
any bug can make the
system unusable. For in-
stance, it could make the |
logon screen fail. If this |
happens, the only recourse
may be to restore the reg-
istry to a previous state
without the DLL in the Applnit_DLLs list, or to delete the offend-
ing DLL file. Each of these approaches is annoying and time-con- |

PVOID GetUserLevelAddress (PVOID kernellevelAddress, ULONG length,
FILE_OBJECT *fileObject)
{
pVOID address;
PMDL md1;

mdl = loAllocateMdl(kerne]Leve1Address. length, FALSE, FALSE, NULL):
if (mdl = NULL)
return NULL;

// Build the MDL for the kernel-level address, assumed to lie in
// non-paged memory. Then, map it into a user-level address.

MmBui]de1FurNonPagedPuol(mdl);
address = MmMapLockedPages (md1, UserMode);
if (address = NULL) {
ToFreeMd] (md1);
return NULL;
}

// Save the address and MDL pointer so they can be unmapped and
/1 freed, respectively, when this file object is closed.

fileObject->FsContext = address;
£ileObject->FsContextZ = mdl;

/7 In Windows NT 4.0 SP3 and earlier, 'address’ refers to the base

// virtual address of the page instead of the actual virtual address of
// the MDL. So, we use the following code, which will work whether or
/{ not it's one of those versions.

return (PVOID) ((ULONG)PAGE_ALIBN(addreSS) + MmGetMd1ByteOffset(md1));

system call number corresponds to each system call.

User-level code makes a kernel system call by putting the system
" call number in EAX, putting parameters in other registers, then
executing the INT 2E instruction. An application usually does this
indirectly. For example,a call to WaitForSingleObject in KERNEL-
. 32 DLL will eventually call NtWaitForSingleObject in NT-
. DLL.DLL, which performs the register manipulation and the call
to INT 2E. Kernel-mode code usually does ita little differently, by
. callingroutines with the prefixZw exported by NTOSKRNL.EXE.
Each Zw routine,suchas 7wWaitForSingleObject, handles thereg-
ister manipulation and the callto INT 2E.

Regmon's authors noted that the first thing these Zw functions
do is load the system call number into EAX. Thus kernel-mode
. code can find the system call number in bytes 2-5 of each 7w
function. One caveat is that in a debug version of the driver, each
7w function is only a wrapper that calls the “real” Zw function. It
turned out that we didn't have to worry about this because, for
reasons we'll now explain, we wound up not reading the Zw func-
tions from the memory image of our running driver.
. Wefound that, unfortunately, NTOSKRNL.EXE doesn't export
- all the system calls we wanted to log. Some, such as ZwSignal-
| AndWaitForSingleObject, are only exported by NTDLL.DLL, but
. we couldn’t link our driver with NTDLL.DLL. (Regmon doesnt
have this problem since it only hooks calls exported by NTOS-
| KRNL.EXE.) So we had our tracer find the Zw function bodiesby
reading and parsing the NTDLL.DLL disk file. Our technique is
" based on an understanding of the well-documented portable ex-
. ecutable (PE) file format.
An important part of parsing a PE format file is translating

X AVS ER

I NFORMAT.!

L RWANEN S

TECHNDODLOGHN

N

virtual addresses into file positions. Many structures in the file
refer to other structures in the file using their relative virtual ad-
dresses (RVAs). A structure’s RVA describes where it will be in

memory when the file is mapped. Its virtual address will be its RVA. |

plus the base address where the file is mapped in memory. The
problem is that we need to know where in the file those structures
are. To translate from RVAs to file positions, we need the section
header information. This is an array of IMAGE_SECTION_
HEADER structures, each of which has the absolute file position,
length, and RVA of a section. Using this information, we can figure
out which section contains a given RVA, and from that we can
determine the file position for that address. Figure 10 shows how to
find these section header structures in the file.

Once we can translate from RVAs to file positions, we can find
the names and bodies of all the exported functions using the in-
formation in Figure 10. This lets us find where the Zw function
bodies are and the contents of their first few bytes.

As mentioned earlier, we hook the system calls for opening files
so our file system filter driver can attach a device to each file sys-
tem. Unfortunately, the DDK doesn’t document one of these sys-
tem calls, ZwOpenFile. The book Windows NT File System Internals,
by Rajeev Nagar (O'Reilly & Associates, 1997) does document this
function, so we were able to use its parameters to determine which
file system to filter.

Parsing File System Metadata

We also wanted to take periodic snapshots of each local NTES
partition, so that for every file we would know its name, size, at-
tributes, and its physical location on the disk. For this we found
valuable NTFS driver documentation and source code at http://
www.informatik.hu-berlin.de/~loewis/ ntfs.

We found that just about all the data we need is in a special file in
each partition called the Master File Table (MFT). This file, named
$MFT, contains fixed-length records describing the attributes of
each file (and directory, since directories are basically just special
files). However, we can't just dump this file, for at least three rea-
sons. First, the file is sparse: many files’ attributes don’t use an
entire record and many records are unused because they corre-
spond to deleted files. Second, an attribute can be nonresident,
meaning that it's somewhere else on disk and only a pointer to it is
in the MFT record. Third, the contents of a file are considered an
attribute of the file, so recording the MFT would record file con-
tents and violate the confidentiality of our users’ data.

So, instead, we do a depth-first search of the directory structure
of each NTFS partition and, for each file, find and record certain
non-data attributes of that file. Finding the metadata for a file
requires knowing its file number, which is the index of the MFT
record containing that file’s attributes. The partition root always
has file number 5.

We still haven't explained how you read directly from a disk, or
how you find specific MFT records. To read a raw disk on Win-
dows NT and Windows 2000, a user-mode program can open a
file called \\.\X:, where X is the appropriate drive letter. The first file
block contains useful information: the size of a block (the 2-byte

IMAGE_DOS_HEADER: First 60 bytes*
at beginning of file U
{64 bytes) I Absolute file position of PE Signature (4 bytes)

PE Signaturs {4 bytes: P, E; \U, A0

IMAGE_ FILE_ First 2 bytes*
HEADER Number of IMAGE_SECTION_HEADERs (2 bytes)
(20 bytes) Last 16 bytes® ;

First 12 bytes*

RVA of section (4 bytes)

Size of section (4 bytes)

Absolute file position of section (4 bytes)
Last 16 bytes*

IMAGE_SECTION _
HEADER
(40 bytes)

Array of RVAs of functions (each 4 bytes)

Array of RYA‘S: of fﬂm,‘t n,'vi_;a‘mes_ {each 4 byte,s)':' .v

* Check WinNT.h in the Platform SDK for description

Figure 10 PE File Format for Executable Files

value at offset 0xB), the number of blocks in a cluster (the 1-byte
value at offset 0xD), the number of clusters in an MFT record (the
1-byte value at offset 0x40), and the cluster number of the first
MFT record (the 8-byte value at offset 0x30). The first MFT record
is useful to find, since it contains the file attributes for SMFT itself.
By parsing its data attribute information you can locate any MFT
record. Then, parsing a file's MFT record reveals the entire file's
attributes. (This is easy if you read the NTFS documentation de-
scribed earlier and judiciously inspect sections of the Linux NTFS
driver code.) If the file is actually a directory, you can parse its
index allocation attribute to find the file numbers of its contents.

Listing Processes and Threads

To log when processes and threads start and stop, we use the
barely documented functions PsSetCreateProcessNotifyRoutine
and PsSetCreateThreadNotifyRoutine. With them, we can have
the system call a given logging function when a process (or thread)

- is created or destroyed.

We also need to record alist of the existing processes and threads
when the tracer starts logging. Unfortunately, there’s no docu-
mented way to do this from kernel mode. Fortunately, we found a

october2000 97

Usenet message describing how do this with the undocumented
function ZwQuerySystemInformation. The function has the
prototype shown here:

unsigned long ZwQuerySystemInformation
(ULONG tag, VOID *buffer, ULONG bufferSize, ULONG *returnedSize);

The tag parameter in this prototype indicates what kind of in-
formation is to be returned; the value 5, for instance, indicates
process and thread information. Figure 11 shows how we use this

Figure 11 Getting Process and Thread Information

f#define TAG_GET_PROC_THREAD_INFO 5
#define FIRST_GUESS_AT_PROC_THREAD_INFO_SIZE 8192
#define INCREMENT_FOR_PROC_THREAD_INFO_SIZE 1024

// GetProcessAndThreadInfo() returns a pointer to zn allocated buffer
// containing process and thread information. *bytesReturnedPtr will
// hold the useful length of this information. If am error occurs,

/! this function returns NULL. Otherwise, the caller is expected to
/1 eventually call ExFreePool() to deallocate the returned buffer.

char *GetProcessAndThreadInfo (ULONG *bytesReturnedPtr)
{
char *buf;
ULONG bufSize;
NTSTATUS status;

/7 buffer to hold the process and thread information
/1 size of the buffer
// status code returned by IwQuerySysteminformation

bufSize = FlRST_GUESS_AT_PROC#THREAD_INFG?SIZE;
while ((buf = ExAllocatePool(NonPagedPool, bufSize)) i= NULL) {
*bytesReturnedPtr = 0;
status = ZwuuerySystemInformation(TAG_GET_PROC_THREAD_INFO,
buf, bufSizé, bytesReturnedPtr);
if (status == STATUS_SUCCESS) return buf;

/] 1f the buffer was the wrong size, make the buffer bigger; use the
// value returned in bytesReturnedPtr as a hint about the needed size.

ExFreePool (buf);
if (status = STATUS_BUFFER_OVERFLOW 1
status = STATUS_INFO_LENGTH_MISMATCH)
bufSize = MAX(*bytesReturnedptr,
bufSize + INCREMENT_FOR_PROC_THREAD_INFO_SIZE);
else
return NULL;

}
return NULL;
}

unkn yes)

 Thread Info (unknown 36 bytes)
Structure Thread 1D (4 bytes) :
(64 bries) {unknown 24 bytes)

Figure 12 Process information Structure

98 msdnmagazine

" kernel mode write protection causes problems for VTrace. The

function to get a sequence of process information structures, one
for each process. Figure 12 illustrates what you can find in each of
these structures (at least, in the current uniprocessor build of
Windows NT). We also use this routine to obtain and log the name
of a process when it starts, since the notification only tells us the
process ID.

User-level Service

Some of VTrace’s general operations are easier and safer to per-
form at user level than at kernel level. So VTrace includes a user-
level service, VTrcSrve, which the system launches at startup. This
service runs continuously. When the user has been idle for two
hours, it takes a metadata snapshot, compresses all the trace and
metadata files collected, uploads those files to our Web site, and
deletes them from the local hard drive. It doesn'’t do this again for
24 hours unless the trace files take up more than 50MB.

The user-level service also checks for changes in the current
user. Whenever a new user logs on or the logger signals that a new
log file has started, it generates a log entry describing the current
user’s name. It uses RegNotifyChangeValue on the registry key
HKEY_LO CAL_MACHINE\Software\Microsoft\Windows NT\
CurrentVersion\Winlogon to ensure it’s notified when the current
user name changes.

Pentium Cycle Counter

Whenever the logger driver receives & description of an event, it
writes a time stamp to the log just before it writes the event de-
scription to the log. To get accurate time stamps for our trace
events, we use the Pentium cycle counter. This counter gives the
number of cycles that have passed since the computer started up.
We access it with the RDTSC instruction, which canbe coded in C
by invoking assembler, as shown in these lines of code:

_asm {
push eax
push ebx
push edx
_emit OxOF ; The RDTSC instruction consists of these two bytes.
_emit 0x31
mov ebx, bufPtr
mov [ebx], eax
mov [ebx+4], edx
pop edx
pop ebx
pop eax

}

;. Save registers we will overwrite (eax, ebx, edx).

Put the address where the timestamp goes in ebx.
Save low 4 bytes of timestamp there.

Save high 4 bytes of timestamp next.

Restore overwritten registers.

Implementing VIrace in Windows 2000

Windows 2000 is similar to Windows NT, but there are enough
differences that porting VTrace to it required some effort. In this
section we'll describe some of the changes we made so that V'Trace
would work on Windows 2000.

The biggest difference between Windows 2000 and Windows
NT is that Windows 2000 has kernel-mode write protection. This
means that kernel-mode code cannot write read-only memory
(such as the kernel image) without causing a system crash. Since
our method of hooking context switches requires that we over-
write the first instruction of the context-swap code in memory, the

e AT

park.
and

Figure 13 Writing Read-only Memory

// This function should only be called on Windows 2000. It's not
/1 necessary on Windows NT, and, besides, on Windows NT 4.0 SP3 and
// earlier, MmMaplLockedPages() does not give the result we need.

NTSTATUS WriteReadOnlyMemory (char *dest, char *source, int length)
{

KSPIN_LOCK tempSpinLock;

KIRQL oldirql;

PMDL md1;

PVOID writableAddress;

mdl = IoAllocateMd1((PVOID) dest, length, FALSE, FALSE, NULL);
if (mdl = NULL)

return STATUS_UNSUCCESSFUL;
MmBui1dMd1ForNonPagedPool (md1);
MmProbeAndLockPages(mdl, KernelMode, IoWriteAccess);
writableAddress = MmMapLockedPages(mdl, KernelMode);
if (writableAddress = NULL) {

MmUnlockPages(mdl);

ToFreeMdl(md1);

return STATUS_UNSUCCESSFUL;
}

/1 It is imperative that no context switch happens during the
/1 copying, so we protect the write with a spin lock. (Context
/1 switches are disabled while a spin Tock is held.)

KelnitializeSpinLock(&tempSpinLtock);
KeAcquireSpinLock(&tempSpinLock, &oldirql);
Rt1CopyMemory(writableAddress, source, Tength);
KeReleaseSpintock(&tempSpintock, oldirql);

MmUnmapLockedPages(writableAddress, md1);
MmUnlockPages(mdl);

IoFreeMd1(md1);

return STATUS_SUCCESS;

solution is to map the memory to a writable address (see Figure 13).
Also, the context-swap routine is different in Windows 2000, so
the tracer must look for this new routine in memory.

Windows 2000 expects filter drivers to provide two additional
dispatch routines to deal with power management and plug-and-
play requests. To pass on a power-management IRP, a dispatch
routine must first call PoStartNextPowerlrp, and must use
PoCallDriver instead of IoCallDriver. When a filter device receives
a plug-and-play request, it must check whether the minor func-
tion number is IRP_MN_REMOVE_DEVICE. If this type of re-
quest completes successfully, the device to which the filter device is
attached has removed itself, so the filter device should detach and
delete itself.

A particularly complicated plug-and-play request type to handle
isIRP_MN_DEVICE_USAGE_NOTIFICATION. Such a request
can indicate that a page file on the underlying device either started
or stopped being used. A file system filter or disk filter must keep
track of how many in-use page files the underlying device has,and
update this count whenever it receives one of these notifications.
Updating this count is complicated by the fact that the device
must, in some cases, update the count when this request arrives,
then undo it if the request fails. The DDK provides samples show-
ing how to do this.

In the metadata section we discussed how to determine the disk
and partition numbers of a drive. Unfortunately, this particular
method does not work in Windows 2000, and the method that

does work will not work in Windows NT. In Windows 2000, you
must use a new device I/O control code, IOCTL_STORAGE_
GET_DEVICE_NUMBER. Passing this code to an open file rep-

“resenting the raw disk yields a STORAGE_DEVICE_NUMBER

structure containing the disk and partition numbers.

In Windows 2000, the process information structure is slightly
different from that shown in Figure 12. The unknown 64 bytes in
the header are actually 112 bytes long in Windows 2000.

The rest of the changes in Windows 2000 concern its filter plug-
and-play feature, which makes it easier to attach a filter to every
device of a certain type. To use this, our installer adds the name of
the filter driver to the UpperFilters value of type REG_MULTI_SZ
in the registry key corresponding to the class of devices we want it
to filter (such as HKEY_LOCAL_MACHINE\System\Current-
ControlSet\Control\Class\{4D36E96B-E325-11CE-BFC1-
08002BE10318} for keyboards). The filter driver’s DriverEntry
routine makes DriverObject->DriverExtension->AddDevice a
pointer to a function that (like the example in Figure 14), creates a
filter device, and has it filter a given device. Also, if a filter driver
doesn’t have to start at boot, the installer gives it a Start parameter
of SERVICE_DEMAND_START (instead of SERVICE_AUTO_
START) when it sets this parameter with CreateService or Change-
ServiceConfig.

If you use a filter driver in this way, be extremely careful that
your installer and uninstaller never leave the system in a state where
your driver does not exist but is listed as an upper filter. This is
important because the operating system will refuse to create any
devices requiring a nonexistent filter. The user would get pretty

Figure 14 AddDevice Routine

NTSTATUS VTrcKbdAddDevice (IN PDRIVER_OBJECT driverObject,
IN PDEVICE_OBJECT physicalDeviceObject)
{
PDEVICE_OBJECT filterDevice;
PKBD_HOOK_EXTENSION filterExtension;
NTSTATUS status;

/1 Create the filter device.
status = IoCreateDevice(driverObject, sizeof(KBD_HOOK_EXTENSION), NULL,
FILE_DEVICE_KEYBOARD, 0, FALSE, &filterDevice);
if (INT_SUCCESS(status))
return status;
/1 Set flags for the filter device.
filterDevice->Flags |= (DO_BUFFERED_IO | DO_POWER_PAGABLE);
// Attach the filter device to the existing keyboard device.
filterExtension = filterDevice->DeviceExtension;
filterExtension->attachedDevice =
ToAttachDeviceToDeviceStack(filterDevice, physicalDeviceObject);
if (filterExtension->attachedDevice = NULL) {
IoDeleteDevice(filterDevice);
return STATUS_UNSUCCESSFUL;
}
// Indicate that the filter device is finished initializing.
filterDevice->Flags &= ~DO_DEVICE_INITIALIZING;

return STATUS_SUCCESS;

october2000 101

Figure 15 VTrace Benchmark Results

VTrace slows down various operations. You can
see that V' Trace has almost no effect on simple reads

Operation Time Without VIrace Time With Virace
Read an uncached 32KB file 9.16 ms 9.17ms
Write 1KB file (write-through) 25.05 ms 25.05 ms
Read 32KB direct from disk 9.47 ms 9.17 ms
Copy a 32KB file locally 6.29 ms 6.57 ms
Copy a 32KB file remotely 27.73ms 35.07 ms
ZwFiushinstructionCache 2.78 us 3.72ps
WaitMessage 8.98 us 64.84 us
TranslateMessage 0.11 us 42.19 ps
Compile logger with DDK 10.23 s 11.60s
Format article with LaTeX 1.69s 1.79s

annoyed if the keyboard didn't work, or if the system blue-screened
on boot because it couldn’t start a disk device necessary to mount
the boot partition. For the same reason, make sure your DriverEntry
routine never returns an error, because in this case as well, the
operating system will refuse to create any devices that appear to
require your failing filter. We think that these behaviors constitute
abug in the operating system, but it hasn't been treated as one.

As useful as the filter plug-and-play feature is, we only use it for
our keyboard and raw disk filters. It appears that Windows 2000
will not support it on virtual device classes such as file systems and
network protocols. We could filter these classes on a device-by-
device basis using SetupDiSetDeviceRegistryProperty, but then if
any additional devices were added to the system later on, they
would not get filtered.

Benchmarks

With all the tracing that VTrace does, you may be wondering
how it affects the system performance. We wanted the overhead to
be unnoticeable so users would let us install it on their systems. By
this measure, we succeeded, since no user has ever complained
about a performance hit.

This may not mean much, though, since it hard for users to
detect subtle differences, especially on today’s fast machines. So we
designed a few benchmarks to show the effects of running V'Trace.
We ran each of these benchmarks on our PC, which hasa 450MHz
Pentium 111, is connected to a 100Mbps switched Ethernet, has
128MB of memory, and has 10GB divided among three SCSI disks.
We ran each benchmark (other than the compilation and docu-
ment format benchmarks, which take too long) often enough that
we could be 95 percent sure the real mean was within 0.1 percent ;
of the estimated mean. We also instrumented VTrace to find out
how much overhead there is just to write a single short log entry; -
on average, this takes 20.24 ps from user level, but only 0.95 us
from kernel level.

Figure 15 lists the mean benchmark results, showing how much

102 msdnmagazine

Slowdown _ and writes, since there isn't much to log and all the
0.1% logging is at kernel level. Copying files incurs more
0% tracing overhead, especially when VTrace is also
0% tracing network operations. Calling various traced
4.5% functions like ZwFlushInstructionCache, Wait-
26.4% Message, and TranslateMessage incurs overhead
33.8% essentially due to the overhead of writing a log
799% entry. As you can see, this is substantial for the
40178% latter two functions since they don't do much, but
13.4% tbey’re at user level. Finally,. you can see the big
5 3% picture from the two application benchmarks,

which show that VTrace makes a 10-second com-
pilation take 13.4 percent longer and a two-second
document-format take 5.3 percent longer.

These benchmarks suggest that the biggest area for improve-
ment is the overhead of tracing user-level events. They seem to
indicate that we could substantially improve VTrace’s performance
by having it trace user-level events entirely at user level. To test this,
we wrote a version of VTrace that did separate kernel-level and
user-level logging. This approach reduced the overhead for user-
level logging tremendously, from about 20 us to only about 0.254s.
However, the extra processing required to perform separate user-
level and kernel-level tracing dominated these improvements, caus-
ing this separation approach to actually do slightly worse in the
macrobenchmarks than our original approach. So, in the final
version of VTrace, we perform all logging at kernel level.

Conclusion

If you're interested in participating in our experiments, please
download our tracer from http://www.cs.berkeley.edu/~lorch/vtrace and
install it on your machine. Of course, you must be running Win-
dows NT or Windows 2000.

Building V Trace for Windows NT and Windows 2000 was chal-

 lenging because of the difficulty inherent in system-level program-

ming and the lack of official documentation. Nevertheless, with
the help of many sources of information, including developer tools,
magazines, books, Web sites, and Usenet, we achieved our goal. We
believe the techniques we've described, as well as the references
we've provided, will be helpful to system-level programmers using
Windows NT and Windows 2000. Keep in mind that even if an
operating system isn’t designed to let you perform tasks like we've
described here, that doesn’t mean it can’t be done.

]acob R. Lorch and Alan Jay Smith are affiliated with the Computer Science Division at the
University of California at Berkeley. Jacob (http:/ Jwww.cs.berkeley.edu/~lorch) is a graduate
student researching ways to reduce the energy consumption of portable computers. Alan

| (smith@cs.berkeley.edu) is a professor whose research interests include the analysis and

modeling of computer systems and devices, computer architecture, and operating systems.

e S——

