14

Processor design and program behavior are inseparable. It is this
relationship that allows us to determine how a component
will perform before it is implemented.

Instruction-Level Program and
Processor Modeling

Myron H. MacDougall, Amdahl Corporation

Asa processor is developed from high-level design to
logic design and implementation, a large number of design
decisions are constantly being made—each of which in-
volves evaluating the relative cost and performance of a set
of design alternatives. Whatever the performance metric
used, it reflects the rate at which work is being accom-
plished, and the design decision, in turn, is made with an
eye toward the work to be performed. This association
between work and design is reflected in the adjectives ap-
plied to “‘processor’’—general-purpose, real-time, signal,
or scientific—and continues as design objectives evolve
from general to specific. That is, as the design level of
detail increases, so does the level of detail at which work is
described and performance evaluated. The performance
evaluation process, then, involves two interlocking hierar-
chical models: a model of the design and a model of the
workload.

This relationship of design and work is illustrated here
in an instruction-level workload model and its decomposi-
tion in design analysis. Although details of this discussion
pertain to a specific architecture—the IBM 370 and com-
patible systems—and to a particular implementation, the
general approach is applicable to most high-performance
hardware and software design environments. In either
kind of environment, the performance issue is how fast a
specific piece of software runs on a specific piece of hard-
ware. For an analysis of that performance, it largely is ir-
relevant whether we approach from a hardware perspec-
tive, a software perspective, or both— the analysis is essen-
tially the same; what matters is the direction we take to im-
prove performance.

System-level workload characterization and
decomposition

While some processors are designed for a single, specific
application, such as signal processing, most are intended
for a range of applications. Consequently, we begin the

0018-9162/84/0700-0014801.00 © 1984 [EEE

development of the instruction-level workload model
presented here with a survey of current and pro jected user
environments, followed by a breakdown of key en-
vironments in terms of processor use and program or ap-
plication type. Samples of each application type are col-
lected; they may comprise programs and data files when
the application can be easily separated from the rest of the
system, or may be a statistical description of database
transactions or timesharing system commands.

This process is illustrated in Figure 1. In this example, a
system-level analysis of a second-shift operation in an in-
surance company (a ‘‘commercial batch” environment),
showed that 47 percent of processor time was operating
system execution time, 30 percent was Cobol batch pro-
gram execution, 14 percent was sort program execution,
and the remaining time was associated with various
utilities such as program loading. To analyze these com-
ponents of the system’s workload, programs represen-
tative of the Cobol execution portion were identified and
collected.

Environment definition is, for the most part, judgmen-
tal. Some environments are clearly unique, such as airline
reservation systems; many more, however, have essentially
similar applications but in different proportions. Charact-
erization and decomposition of the work performed in a
given environment is based largely on statistical analyses
of standard system accounting data augmented by hard-
ware measurements. When feasible, samples of applica-
tions of the same type collected in different environments
are merged to form a composite. For example, Cobol pro-
grams from varied environments collectively form a
representative sample of such programs.

The application sample sets are then used, directly or in-
directly, to define instruction-level workloads; these, in
turn, are used to estimate processor performance at the in-
struction level. To estimate performance at the system
level, the entire process is simply reversed. Program esti-
mates are combined to estimate component performance,
and component estimates are combined to estimate system-

COMPUTER

RO

level performance for various environments. (Note that the
component proportions originally measured may no longer
directly apply because of differences in relative component
performance.)

Instruction-level workload characterization
The method used to collect data for characterization of

an application sample set at the instruction level depends
on the nature of the set. The basic methods used in our en-

ENGINEERING

PROG. DEVELOPMENT

COMMERCIAL BATCH

OPERATING
TRANSACTION SYSTEM

vironment are illustrated in Figure 2. When the set is a col-
lection of programs, instruction-level data can be collected
by interpretively executing and tracing each program.
When the sample set is a description of, for example,
database transactions, these descriptions are used to
define scripts, which are then used with a terminal
simulator to generate a workload for the database system.
Program trace and hardware monitor tools then are used
to obtain data on the instruction-level behavior of .the
database system. Much the same approach is used for the
operating system; a workload of the appropriate type

SORT, 14%

PROCESSING EXECUTION, COBOL

Figure 1. The workload decomposition process. in our example, Cobol execution programs were collected as the

representative program set.

P i i

TERMINAL
SIMULATOR

PROGRAM

47% EXECUTION,

30%

SUREMENT FACILITY

INTERACTIVE
COMPONENT

——— — ——— —

BATCH
COMPONENT

HARDWARE
MONITOR

-—= X

SYSTEM
COMPONENT

PROGRAM
AND SYSTEM
MEASUREMENTS

Y

SYSTEM TRACER

TRACER

July 1984

Figure 2. The measurement environment used in characterizing an application sample set at the instruction level.

H
i
i
H

(e.g., batch, timesharing) is constructed, generally from
programs collected in the workload characterization pro-
cess, which provides the desired system load point.
Instruction-level measurement data for application and
operating system components then is collected during ex-
ecution of this workload.

Tools. The primary collection tools used are a program
tracer, a system tracer, and a hardware measurement inter-
face with its associated hardware monitor equipment.
Both the program and system tracers interpretively execute
machine instructions and produce a trace record for each
instruction. The trace record includes the instruction ad-
dress, operation code, operand addresses and lengths,
and, when specified, operand values. For branch instruc-
tions, the record also includes the target address and a
branch-taken indicator. The program tracer is used to
trace the problem state portion of individual programs (in
most cases, the dominant portion of the program’s execu-
tion time). This tracing operation executes as a simple
batch job that can be run at any time on any of our com-
puter center systems. The system tracer requires a dedi-
cated system but can trace both problem and supervisor
state portions of a workload.

During the design of Amdahl processors, signals of in-
terest from a performance viewpoint are identified and
provisions made to route these signals to the hardware
measurement interface. In some instances, these signals
exist in the basic design; in other cases, additional logic is
incorporated to generate them. The HMI provides a varie-
ty of facilities for signal manipulation (including counting,
scaling, signal stretching, and sampling) as well as an elec-
trical interface compatible with commercial hardware
monitors.

A number of tactical issues must be weighed when using
these tools. The data obtained by tracing is comprehen-
sive, but the process is relatively expensive and, in
operating system tracing, significantly perturbs the
behavior of the system. Perturbation is not generally a
problem when tracing individual programs; however,
since a program may execute billions of instructions, a

P
‘] |
]

i 9

—: 1?§§ ‘ 9
0.05: ‘ H e g 3
Ud T T ,zsgg‘ t 1_‘

P ! T i
2 4 6 8 10 12 14 16 18
INSTRUCTION RANK IN MIX

0.30
. MEAN FREQUENCY FOR MIX
. 0.25 ° PROGRAM FREQUENCIES
2 .
S 0.20
s]
E JIS TR
= 0.15—
(=] - 4
5] 3
2 0105 §us
[H
R
Z

Figure 3. Variation in intramix instruction frequency.

sampling mechanism is used to keep trace output to a
reasonable volume. (The number of instructions that must
be traced to get an accurate representation of a program’s
behavior depends on the complexity of the program. As
part of our research into program behavior, we have
developed trace reduction algorithms that essentially
regenerate an instruction-level program graph from the
trace; we hope to build on this work to develop heuristics
for trace reduction “‘on the fly.””) Sampling is also used to
reduce the perturbation inherent in operating system trac-
ing. Hardware measurement is efficient and does not per-
turb the system, but it limits the kinds of data that can be
collected. One important application of hardware
measurement data is the validation of sampled trace data.

Source-level instrumentation (for collecting data on
statement execution frequencies and times, or for analyz-
ing source statement flow) is an important tool in en-
vironments concerned with instruction set specification or
compiler design. In our environment, source-level analysis
is used primarily to identify instruction sequence and ad-
dress reference patterns generated for common operations
such as procedure calls and data type conversion.

Instruction mix descriptions. The data obtained from
instruction trace analysis and hardware measurement is
used to generate instruction mix descriptions for each key
application type. Thus, to create an instruction mix
description for Cobol execution, each program in our
sample set for that type is traced, and the trace is analyzed
to obtain data on instruction frequencies, operand length
distributions, and taken branch frequencies. Data is then
combined to form a composite of the Cobol programs.
The detail of these instruction-mix descriptions expands as
the design evolves and design questions arise. For exam-
ple, designers concerned with branch instruction perfor-
mance may want to know how often the condition code is
set by the instruction immediately preceding the branch;
when told “‘96 percent’’ they then want to know which in-
structions are the most frequent branch predecessors.
Hundreds of such questions arise during the design pro-
cess, often accompanied by performance questions like
““What’s it worth to set the condition code a cycle early in
this instruction?”’

These instruction-mix descriptions are illustrated in
Tables 1 through 4. Table 1 shows an instruction frequen-
¢y tabulation for a Cobol execution (CBL/X) instruction
mix. This and similar tabulations encompass all the in-
structions in the programs from which the mix is derived,
not just the 20 or 25 most frequent. (Certain instructions,
while low in frequency, contribute significantly to pro-
gram execution time.) The graph of Figure 3 provides a
visual indication of how instruction frequencies vary
among the programs composing the mix.

Table 2 shows a tabulation of the operand length
distribution for the move character instruction in the
CBL/X instruction mix. (This data is for the nonoverlap-
ped operand, or MOVE, case; the MVC instruction with a
one-byte operand overlap is frequently used to clear or
blank-fill data fields.) The MVC instruction has a relative
frequency of 0.0422 in this mix; approximately 96 percent
of these are MOVES. From the cumulative distribution,
note that two-thirds of these instructions have operand

COMPUTER

A

lengths of eight bytes or less. However, this high propor-
tion of short moves is only part of the picture. Figure 4
shows the proportion of MVCs with operand lengths
greater than b together with the proportion of total bytes
moved by this instruction that are moved by MVCs with
operand lengths greater than b. Clearly, most bytes moved
by this instruction are moved by a small proportion of
MVCs with relatively long operands. This behavior is a
challenge to the ingenuity of the designer: to handle the
frequent short moves efficiently, the MVC algorithm must
have minimal initialization time; at the same time, the
algorithm must be sophisticated enough to handle long
moves at the maximum rate permitted by path widths, for
example.

Branch instructions can represent up to one third of the
nstructions in some mixes and are thus an important con-
sideration in any design—especially in a pipelined design.
Table 3 shows part of the instruction description for the
Branch on Condition in an instruction mix representing
IBM’s MVS SP1.3 operating system. The BC instruction is
the single most frequent instruction in this mix; the se-
quences TM-BC and LTR-BC account for 25 percent of
the instructions in this mix, and so draw a great deal of
design attention. Other data in branch instruction descrip-
tions may include branch direction and distance statistics,
the distribution of the number of instructions in the target
block (word, double-word, etc.), branch repeat frequency
(how often a branch is taken or not taken on successive ex-

Table 1. Mean instruction frequencies: Cobol execution
instruction mix.

oP
RANK CODE f Z(f)
1 L 17116 17116
2 BC 10217 .27333
3 BCR .09220 .36553
4 ST .04643 41187
5 LA .04470 .45657
6 MVC .04220 .49878
7 PACK .03928 .53806
8 LH .03667 .57473
9 CLC .03033 .60506
10 CLi .02720 .63226
11 LR .02543 .65769
12 ™ .02493 .68263
44 EX .00264 .97239
45 SH .00257 .97496
46 STC .00243 97739
47 ED .00224 .97963
48 ALR .00199 .98163
49 AL .00198 .98360
50 MP .00175 .98536
51 XC .00153 .98688
52 CL .00147 .98836
53 DP .00140 .98975
54 MVO .00117 .99092
55 C .00099 .99191
56 iCM .00098 .99288
57 LCR .00031 .99380
89 SRDL .00000 1.00000
90 LNR .00000 1.00000

July 1984

ecutions), and target repeat frequency (how often suc-
cessive executions of a taken branch go to the same target
address).

Table 2. Distribution of operand lengths for Move Char-
acter instructions (MVCs) with nonoverlapped operands
in Cobol execution instruction mix: pr (instrs) = 0.4220;
pr (MVCs) = 0.96188; mean length = 32.56 bytes.

LENGTH IN
BYTES (b) pr (i.b) Zpr (i,b)
1 0.10182 0.10182
2 0.11899 0.22081
3 0.13007 0.35089
4 0.11932 0.47030
5 0.04411 0.51441
6 0.04879 0.56320
7 0.05449 0.61769
8 0.05513 0.67282
9 0.04502 0.71784
10 0.02816 0.74600
256 0.03837 1.00000

Table 3. Branch on Condition (BC) in an IBM MVS SP1.3
operating system instruction mix.

CONDITIONAL BC
BC PREDECESSOR FREQUENCY SUCCESS RATIO
™ 0.3578 0.5049
LTR . 0.1599 0.4554
CLI 0.0770 0.5000
CR 0.0666 0.6143
C 0.0572 0.4690
CLC 0.0507 0.5577
CL 0.0334 0.1864
CLR 0.0325 0.7042
CH 0.0278 0.4727
OTHER 0.1100 0.5579

pr(INSTRS) TAKEN TAKEN TOTAL

Conditional 0.1652 0.3527 0.5386 0.8913
Unconditional 0.0201 0.1081 0.0006 0.1087
Total 0.1853 0.4608 0.5392 1.0000
1.0
08 | / R —

= i i

8 0.6

S | | ‘PROPORTION OF BYTES MOVED BY |

S ga_| | MVCs WITH OPERAND LENGTH > b!

a. ’ k___:

1 PROPORTION OF MVCs WITH -~
0.2 OPERAND LENGTH > b i

0 T T T T T 1 T 1T 7T 1711
0 32 64 96 128 160 192 224 256
OPERAND LENGTH (BYTES)

Figure 4. Proportions of Move Character Instructions
(MVCs) and bytes moved versus operand length in a
Cobol execution instruction mix.

17

18

Taken branches divide the instruction stream into a
series of disjointed execution sequences. An execution se-
quence is a set of sequentially located instructions begin-
ning with the target of a taken branch and ending with the
next taken branch. The distribution of execution se-
quences is of interest in fetching pipelined instructions and
designing instruction buffers. Figure 5 shows the distribu-
tion of execution sequence lengths for the SP1.3b
operating system instruction mix. While the mean execu-
tion sequence length is approximately 7.5 instructions, 70
percent of the sequences are seven or fewer instructions
long, and almost eight percent are one instruction. Se-
quences of one instruction represent a taken branch to a
taken branch; they may result from the use of branch vec-
tor tables by the system or from procedure call protocols,
for example. The high proportion of short sequences
means that the taken branch ‘‘hole”” must be made as
small as possible to maintain pipeline efficiency. On the
other hand, more instructions are executed in the long se-
quences. Figure 6 shows the proportion of sequences of
length greater than s with the proportion of total instruc-
tions represented by sequences of length greater than s.
While more than 70 percent of the sequences in this mix

are shorter than the mean of 7.5 instructions, sequences .

Ty

Figure 5. Distribution of execution sequence lengths for
the SP1.3b operating system instruction mix.

Figure 6. Proportions of sequences and instructions ex-
ecuted versus execution sequence length.

greater than the mean account for more than 65 percent of
all instructions executed. Thus, while frequent branches
are of concern to the pipline designer, they do not prevent
a pipelined design from being effective. (Kobayashi!
discusses the characteristics of instruction sequences in
greater detail.)

As a final example of the types of data composing an
instruction-mix description, one kind of interinstruction
dependency is shown in Table 4. There are several kinds of
interinstruction dependencies; an address generation
dependency exists when the result register of one instruc-
tion (the setting instruction) is used to form the operand
address or target address of a following (using) instruc-
tion. When this situation occurs, operand or target ad-
dress generation for the instruction must be delayed until
the contents of this register become available, which
creates a “‘hole’’ in the instruction pipeline. For the Cobol
execution instruction mix, an address generation depen-
dency exists for almost 12 percent of instructions; about 88
percent of these dependencies are caused by Load (L) or
Load Register (LR) instructions. In this instruction mix,
about two thirds of the Load instructions are used to load
an index or base register for operand or target address
generation. One frequent case is the sequence L-BCR,
where the load sets the target address for the RR-type
branch.

Using knowledge of what causes dependencies, the
pipeline designer can reduce, and in some cases eliminate,
address generation delays by incorporating bypasses at ap-
propriate points in the pipeline. A bypass is a data path
that routes a value to the address generator from a stage in
the pipeline earlier than that at which the value is actually
stored in its destination register. Software designers need
to consider the impact of interinstruction dependencies in
code optimization. Rymarczyk 2 discusses this and related
topics.

Models. The static model of program behavior
represented by instruction mix descriptions is useful for
answering questions about the execution of individual in-
structions and for analyzing some aspects of instruction
interaction. Performance questions dealing with the con-
current execution of instructions and interactions among
processing units are generally analyzed in relation to
dynamic models. These range from simple analytic models
used to ‘‘size’”” queueing delays at various points in the
system (bus and memory conflicts) through a hierarchy of
trace-driven simulation models that, as the design pro-
gresses, approach the register-transfer level very closely.
Cycle-by-cycle simulation of a large set of programs, each
represented by a trace of several million instructions, re-
quires a substantial amount of computation time. There
are a variety of ways to reduce these requirements, in-
cluding decomposition, multilevel simulation, and trace
reduction and synthesis. The full program set can be com-
pletely simulated only at points in the design process that
require overall, absolute predictions of processor perfor-
mance. While a variety of models may be used to analyze
different aspects of performance, all resulting estimates
are combined in the instruction-level model discussed
below.

COMPUTER

e pa:

An instruction-level performance model

Performance measures. The common measure of per-
formance for 370-compatible systems is the mean instruc-
tion execution rate, usually stated in millions of instruc-
tions per second, or MIPS. As a measure of processor per-
formance, instruction execution rate is often misused
(and, consequently, manufacturers tend to specify pro-
cessor performance in relative terms). On any particular
processor, the execution rate of applications can vary
greatly. Thus, it is not uncommon for a Cobol compiler to
execute its instructions at a rate twice that of the object
program it compiles. Minor changes within a given ar-
chitecture may decrease instruction rate performance and
increase (or, for that matter, decrease) system perfor-
mance as measured by throughput. For example, IBM has
extended the 370 architecture several times over the last
few years by incorporating various operating system func-
tions into the processor (usually via microcode). An
instruction-rate comparison of different versions of the
operating system is not valid. For an invariant instruction
stream, the mean execution rate is a useful tool for com-
paring different processors or different processor designs.

Mean instruction execution time. The reciprocal of the
mean instruction execution rate in MIPS is the mean in-
struction execution time in microseconds. This, in turn,
is—at least for synchronous machines—the product of the
processor cycle time C and the mean instruction execution
time in cycles /. That is,

MIPS ! = IxC)

Most of our analysis work uses the processor cycle as the
unit of time, rather than microseconds or nanoseconds.
Machine organization decisions made early in the design
process establish a cycle-time objective, but the exact cycle
time may not be determined until late in the design, when
chip layout is complete and path timing can be analyzed.
More important, however, is that machine designers tend
to think in terms of cycles, while software designers are
concerned with the total number of cycles required to per-
form some function. Conversion from instruction execu-
tion time to instruction execution rate is generally made
only to compare performances of processors with dif-
ferent cycle times.

Decomposition of instruction execution time. The mean
instruction execution time I is assumed to be the sum of
three basic components, such that

I=E+D+S @

where E is the mean nominal instruction execution time,
that is, the mean instruction execution time if the pipeline
could be kept fully busy; D is the mean pipeline delay per
instruction, representing pipeline ‘‘holes’’ caused by path
conflicts, register use dependencies, and taken branch
delays; and S is the mean storage access delay per instruc-
tion representing the delays when an instruction or
operand is not found in the buffer and must be fetched
from mainstore. E, D, and S are expressed in cycles per in-
struction.

July 1984

Equations (1) and (2) define a simple macroscopic
model of CPU performance: Each term of (2) is, in turn,
defined by submodels of increasing detail.

Mean nominal instruction execution time. For a pipe-
lined processor with serial execution, E is the mean
number of cycles per instruction spent in the execute stage
of the pipeline. (A processor with parallel execution units
will have overlapped execution cycles and requires a more
complex model of E than that considered here.) For a
given instruction mix, E is the weighted sum of the
nominal execution times of all instructions in the mix. If
f(i) is the relative frequency of instruction i (where i can
be the rank of a given operation code in the mix), and e (i)
is the mean nominal execution time of that instruction,
then

E = Ze(i) *f(i) ©)]

where f(i) e(i) is the contribution of instruction 7 to the
mean nominal instruction execution time of the mix. It is
assumed that the nominal execution time of each instruc-
tion can be computed independently of execution or delay
times for any other instruction. Each e(/) represents a
submodel of E. Many of these are trivial, such ase(/) =1.
Others, such as the move character instruction are more
complex. The MVC instruction has two uses, moving and
clearing, which have different operand length distribu-
tions and different frequencies of buffer line and memory
page crossings. Consequently, a fair amount of arithmetic
is needed to compute e for this instruction.

The complexity in computing e for the MVC instruction
arises from the large number of subcases involved: Design
analysis to determine the execution time for a given sub-
case generally is simple. For some instructions, it is the
design analysis which is complex. To determine e for the
370’s Start 10 Fast Release (SIOF) instruction, central
processor and channel processor designs and their inter-
communication must be analyzed. For the Start 10 (SIO)
instruction, we also need to know the timing characteris-
tics of the device controllers to which various proportions
of 1/0 operations are directed.

The values of e(i) computed from various instruction
submodels are multiplied by /(i) for the particular instruc-
tion mix, and the resulting products are summed to com-
pute the mean nominal execution time for the mix, as il-
lustrated in Table 5.

Mean pipeline delay time. There are a variety of situa-
tions in which the execution of an instruction in a pipelined
processor may be delayed. For example, an instruction

Table 4. Address generation dependencies in a Cobol ex-
ecution instruction mix: pr(dependent instrs)=0.1179.

PROP. OF PROP. OF OP CODE
0P DEPENDENCIES CAUSING
CODE CAUSED BY 0P CODE DEPENDENCY
L 0.7979 0.6684
LR 0.0816 0.2544
LA 0.0168 0.0867
A/SR 0.0550 0.4015
A/S 0.0342 : 0.2235
other 0.0146 -

19

B4

20

may have to wait for an address or operand value to be
computed by a preceding instruction, or an instruction’s
operation fetch may be blocked because the buffer is busy
performing a store for a preceding instruction. Most such
delays result from interactions between instructions,
which can extend across several instructions. As instruc-
tion execution times decrease, these interactions can in-
crease because instructions are executed more closely
together; at the same time, the proportionate effect of
delays on performance increases. To counter this effect,
current pipeline designs incorporate a variety of delay
reduction mechanisms, including multiple copies of
registers, special data paths (bypasses), multiple instruc-
tion stream buffers, and various kinds of branch predic-
tion algorithms. In software design, code optimization for
pipelined processors includes loading address and operand
registers as early as possible before their use, making the
most frequently followed paths corresond to not-taken
branches, for example. Rymarczyk? describes various

design tactics.
Delay analysis is not simple. An instruction incurring a

delay may be several instructions away from the instruc-
tion causing the delay, and potential delays may be partly
or entirely masked by other delays or by the execution time
of intervening instructions. A single instruction may be in-
volved in several different delays; for example, a branch
may have a potential wait-for-condition-code setting
overlapped by a wait-for-computation-of-a-target-
address-register-value, and there may be a delay between
the execution of the branch and the execution of its target.
Consequently, delay analysis involves examining a se-
quence of instructions in terms of their relative positions in
the pipeline and determining exactly which resources and
paths are used by each instruction as the sequence ad-
vances from stage to stage.

Delays can be divided into three classes: register access,
buffer access, and branch/miscellaneous. A delay sub-
model is associated with each delay condition, the most
important of which are

Table 5. Nominal instruction execution times in an IBM
SP1.3 MVS operating system instruction mix.

oP

RANK CODE f e exf
1 BC - 0.18532 1 0.18532
2 L 0.14447 1 0.14447
3 ™ 0.06289 1 0.06289
4 ST 0.05122 1 0.05122
5 LR 0.04864 1 0.04864
6 LA 0.04645 1 0.04645
7 BCR 0.03035 1 0.03035
8 LTR 0.02903 1 0.02903
9 MVC 0.02226 4.667 0.10389
10 IC 0.01790 1 0.01790
1 LH 0.01765 1 0.01765
12 BALR 0.01647 1 0.01647
13 ST™ 0.01563 5.543 0.08664
104 SCKC 0.00001 4 0.00004

E="Ce+f

® Register Access Delays
GI (generate interlock) delay. This delay can occur
when the result register of one instruction is an index
or base register of a following instruction.
EI (execute interlock) delay. This delay can occur
when the result register of one instruction is an
operand register of a following instruction.

* Buffer Access Delays

PI (priority interlock) delay. This delay occurs when
an instruction attempts to fetch an operand from the
buffer at the same time a preceding instruction is stor-
ing an operand into the buffer; the store is given
priority, and the fetch is delayed.

SFI (store-fetch interlock) delay. This delay occurs
when an instruction accesses a storage location being
stored to by a preceding instruction; the fetch access
is delayed until the store is complete.

Branch and Miscellaneous Delays

TFCH (target fetch) delay. This delay represents the
pipeline ‘‘hole”” that may occur between a taken
branch instruction and its target.

CCI (condition code interlock) delay. Conditional
branches are almost always preceded by condition
code setting instructions. Some of the latter can be
implemented to set the condition code at an early
stage in their execution, but some set the condition
code in a late stage, causing a delay in the execution of
the subsequent branch instruction.

STIS (store in instruction stream) delay. This delay
occurs when a store address falls within the address
range of the instructions already in the pipeline and
instruction fetch buffer; these instructions are
discarded, and instruction fetching is reinitiated when
the store is completed.
il
The submodels themselves may be further decomposed ac-
cording to causing-instruction type and incurring-instruc-
tion type. For example, a key submodel of the Gl delay is
the load-branch instruction sequence.

Rough estimates of these delays can be obtained from
analytic models using instruction mix description data.
However, since the type, frequency, and length of delays
depend very much on the details of a particular design, ac-
curate estimates require a detailed model of pipeline
operation driven by instruction traces. The computational
cost of this modeling can be substantially reduced by trace
reduction methods. For example, a program loop may
generate repetitive sequences of trace records, each se-
quence representing one iteration of the loop. Frequently,
these sequences differ only in operand addresses and
values. From the standpoint of pipeline delays and,
generally, execution times, the set of sequences can be
represented by a single sequence and a loop count.
Pipeline delays are typically one cycle, and rarely more
than two or three cycles. Any individual pipeline delay
contributes very little to the pipeline delay per instruction
(D). Consequently, low-frequency sequences can be ig-
nored without introducing much error in D, The net result
is that a program trace comprising millions of instructions
can be represented, for pipeline modeling, by a relatively

COMPUTER

small number of instruction sequences totaling a few thou-
sand instructions.

Delay estimates are reported in several different forms:
by cause, by causing-instruction type, and by incurring-
instruction type. An example of the last form is shown in
Table 6. Here, fis the relative frequency of each op code,
and d is the mean number of delay cycles incurred by all in-
stances of that op code for all delay conditions. (D, the
mean pipeline delay time for the instruction mix, is

Td(i) *f(i), “

where i denotes the ith-ranked op code.) In analyzing soft-
ware, execution and delay cycles are reported instruction
by instruction so that delay cause and effect can be easily
pinpointed.

Mean storage access delay time. A storage access delay
occurs when an instruction or operand access references a
line not in the buffer, and the pipeline must wait for the
line to be fetched from mainstore. A reference to aline not
in the buffer is called a buffer miss, or simply a miss. S is
the product of the mean number of misses per instruction
(miss rate) u and the mean delay per miss (mean miss
penalty) M in cycles. That is,

S = uxM 5)
The miss rate v and buffer hit ratio # are related, such that
h=1-u/a 6)

where @ is the mean number of buffer accesses per instruc-
tion; A increases as a increases; and a is (among other
things) a function of the width of the path between the
pipeline and the buffer. Everything else being equal, a
system with a four-byte buffer path, for example, will have
a higher hit ratio—but lower performance—than a system
with an eight-byte buffer path. Even for the same path

width, @ can vary from one design to another because of

differences in operand alignment handling. Consequently,
the miss rate is a more revealing measure of buffer perfor-
mance than the buffer hit ratio.

While E depends on individual instructions and D
depends on instructions sequences, S—and especially
u—generally depends on the overall system environment.
Current large-scale processors typically have buffer sizes
of 64K bytes, and that figure is likely to increase by a fac-
tor of four to eight in future systems, most likely in the
form of a buffer hierarchy. (The Fujitsu M-380 already
has a two-level buffer hierarchy with 64K bytes at the first
level and 256K bytes at the second.) A typical application
task may reference the equivalent (in buffer lines) of 20K
to 30K bytes in an execution interval before control is
switched (voluntarily, because the task issued an 1/0 or
some other system request, or involuntarily, because of an
interrupt) to another task. If control is quickly returned to
the first task, it will find many of its lines still in the buffer.
Conversely, if the delay before resumption of the task is
long, (in terms of the life of buffer lines, a disk request ser-
vice time is very long), the task will find few, if any,
residual lines, and will spend a good part of its execution
interval bringing lines back into the buffer. The miss rate
realized by a particular task depends not only on its intrin-
sic characteristics (number of instructions executed be-
tween 170 and other system requests, buffer line locality,

July 1984

address reference patterns, etc.) but also on the character-
istics of all other concurrently executing tasks. Thus, by
itself, analyzing the buffer behavior of individual applica-
tion programs does not provide sufficient basis to estimate
miss rates in a system environment. For example, in the
typical 370 environment, two thirds or more of all buffer
misses occur in supervisor state What we require is a
system view of buffer behavior.

Although we are focusing on mean overall values of u
and M, equation (5) can be further decomposed in terms
of instruction, target, and operand reference behavior,
such that

S=u(i)y*M() + u(t)y*M(t) + u(o) *M(o) (7)

where u (i), u(t), and u(o) are, respectively, the mean
miss instruction fetch, branch target fetch, and operand
fetch (and store) miss rates; and M (i), M(t), and M(o0)
are the associated mean miss penalties. Generally, u (i) <
u(t) < u(o);asequential instruction fetch is less likely to
cause a miss than a branch target fetch, and the locality of
operand references is usually less than that of instruction
references. The mean miss penalties also differ, and each
miss penalty can be further decomposed as

M@y = m(j) + p(j)*Tr ®

where j=1, 1, or 0; m(j) is the cost of fetching the instruc-
tion, target, or operand line itself; p(,) is the proportion
of misses of type j requiring an entry to be made in the
translation lookaside buffer (typically from 0.1 to .01);
and 7Tr is the TLB miss penalty, which may include
mainstore accesses for page table and/or segment table en-
tries.

Major components of the mean miss penalty M include

* Buffer miss processing time, the time required by the
buffer to determine that the referenced line is not
present; issue a mainstore read request for the missing
line and, if the incoming line is to be replaced, issue a
mainstore write request for a modified line. Typical-
ly, the line to be written is buffered and sent to
mainstore after the read is initiated.

® Mainstore processing time, including memory bank
queueing and access times. Some bank contention is

Table 6. Pipeline delay times by incurring instruction in
an IBM MVS SP1.3 operating system instruction mix.

RANK 0P CODE f d d+f
1 BC 0.1853%2 1.029 0.1907
2 L 0.14447 0.428 0.0618
3 ™ 0.06289 0.408 0.0256
4 ST 0.05122 0.580 0.0297
5 LR 0.04864 0.087 0.0042
6 LA 0.04645 0.313 0.0145
7 BCR 0.03035 1.437 0.0436
8 LTR 0.02903 0.773 0.0224
9 MvC 0.02226 0.982 0.0219
10 IC 0.01790 0.802 0.0144
11 LH 0.01765 0.625 0.0110
12 BALR 0.01647 1.601 0.0264
13 ST™M 0.01563 0.559 0.0087
D=Ld+f

21

22

caused by 1/0 operations, but most memory traffic is
generated by the central processor (so that M depends
on u). Some buffer designs may permit as many as six
memory requests to be in process at any time:
operand fetch, operand prefetch, replaced operand

MEAN = 14.4 INSTRUCTIONS |

 PROPORTION OF MISSES

%

; a 16
INTERM|SSINTERVAL tN STR GTK!NS
Figure 7. Intermiss interval distribution measured during

supervisor state in a timesharing environment (without
prefetch).

Figure 8. Buffer miss rate compared to buffer size during
supervisor state in a batch environment (without
prefetch).

10007

!‘ l HHHj l;lﬂyvi‘HHl[» ’!- t_ﬂllmif 4l'~‘lVHUU
10 00 1000 10,000
: NUMBEH OF INSTRUCTIONS Execureu "

Flgure 9. A stack growth function model.

line store, instruction fetch, instruction prefetch, and
replaced instruction line store.

® Buffer interference time, which occurs when the miss-
ing line is sent to the buffer from mainstore. The.
originally referenced portion of the line may be
directly sent to the pipeline so execution can continue,
and the line then is stored in the buffer. The number
of buffer cycles required for the store depends on the
path width and line size; these store cycles may-in-
terfere with buffer accesses from the pipeline and
cause pipeline delays. (Since these delays are a func-
tion of u, they are included in S rather than D.)

Other contributors to M include, as noted earlier, TLB
miss processing and, in a multiprocessor system, inter-
processor communication to determine if a buffer line
referenced by one processor exists in modified form in the
buffer of another processor. Part of the time required to
process a miss may be overlapped by the execution time of
instructions preceding the instruction causing the miss.
Consequently, the effective value of M may be less than
the sum of these components; penalties for missing a se-
quential instruction fetch will usually be less than operand
or target miss penalties.

Given the miss rate, proportion of modified lines, and
pipeline, buffer, and mainstore operation details, we can
obtain a reasonable approximation to M using analytic
methods. However, because of the “‘bursty’’ nature of
miss generation, the number of units involved (pipeline,
buffer, and mainstore), and the high degree of concurren-
¢y in the processing performed by these units, we need a
detailed simulation of the entire process to get an accurate
estimate. Figure 7 shows the distribution of intervals be-
tween misses measured during supervisor state execution
in a timesharing environment. The average interval be-
tween misses was greater than 14 instructions, but 45 per-
cent of intermiss intervals were less than eight instructions
long. This type of behavior causes designers to focus on
miss response time, rather than simply buffer-mainstore
bandwidth.

The buffer miss rate u depends on many buffer design
parameters, including buffer size, line size, set size, and
address mapping, replacement, and prefetch algorithms,
for a specific workload. These parameters have tradi-
tionally been investigated with trace-driven models.
However, it is extremely difficult to reproduce the
reference stream seen by a buffer in actual system opera-
tion as control switches among various application and
operating system tasks, so modeling results must be
carefully interpreted. For example, investigations of line
size based on application program traces suggest that long
lines are more efficient than short lines. On the other
hand, similar investigations based on operating system
traces suggest that short lines are more efficient than long
lines. The operating system tends to reference only a small
portion of each line, so long lines dilute the effective
capacity of the buffer. Since the system generates most
misses, short lines are preferable; the final choice depends
on the relative values of buffer-miss processing time and
mainstore access time. :

The different conclusions are due to behavioral dif-
ferences. The typical batch application program tends to

COMPUTER

have relatively strong spatial locality; line utilization (bytes
referenced divided by line size in bytes) is high even with
long lines, and a long line size expedites buffer reloading
after a long suspension interval. The operating system is a
collection of different tasks providing a variety of services
and exhibits relatively little spatial locality either in its in-
struction or operand behavior: envision, for example, a
long linked list search. Studies of other parameters, such
as set size and address mapping, may also yield different
conclusions, depending on the data used.

Because miss rate depends on system-level behavior, it is
extremely difficult to model the relationship between miss
rate and buffer size. For workloads and buffer designs
that are similar except for size, empirical relationships be-
tween buffer size and miss rates have been determined
through hardware measurement studies. These relation-
ships have the form y = gxB—k (9)
where B is the buffer size in kilobytes and @ and & are con-
stants for a particular workload or workload component.
Typically, k is from 0.35 to 0.50, depending on the
workoad. Figure 8 shows an example of equation (9) for
the supervisor state component of a batch workload.
Smith3 provides a more elaborate form that includes
problem state data and the effect of set size.

One approach to modeling this relationship (now under
investigation) involves two submodels: a model of line
reference behavior for individual tasks and a model of task
switching behavior. The first model relates the number of
unique lines referenced in a task’s execution interval to the
length of the interval in instructions. This model, called
the stack growth function model, 4 is based on LRU stack

i
SRR

1 £ (i} - eli)

L f(i) - dli)

behavior determined by instruction trace analysis. In
many cases, an excellent fit to a trace-derived model is
givenby L = rxJd (10)
where 7 is the number of instructions executed, L is the
number of unique lines referenced by these instructions,
and r and d are parameters for each program or task.
Typically, d is from 0.35 to 0.65 for application programs
and from 0.65 to 0.80 for operating system tasks. Figure 9
shows equation (10) plotted together with the trace-
derived model for an operating system instruction trace.
The task switching model being developed is based on data
for a system event trace and gives transition frequencies
for switches between both operating system and applica-
tion tasks together with task execution interval lengths.
The next step is to integrate the stack growth function
models for individual tasks into the task switching model
and validate the behavior of the composite model against
system measurements.

While our discussion of buffer behavior has been from a
processor design perspective, software performance can
also benefit from an awareness of buffer organization and
operation. Tactics are similar to those used for improving
paging behavior—separation of modified and unmodified
parts and aggregation of frequently referenced code and
operands—but on a smaller scale.

Starting with mean instruction execution rate as a
measure of instruction-level performance, we have traced
several decomposition levels of a performance model
(Figure 10), which encompasses a wide range of program-

Instruction Execution Time Models

SEENE

e Arithmetic execution times
e Data move times

Pipeline Models

e 10 instruction execution times

Miss Processing Models

o Register access delays (G, XI)
e Buffer access delays (PI, SFI)
e Branch delays (TFCH, CCI, . .)

Buffer miss processing times

Pipeline interference

Buffer Models

Mainstore queueing & access times

TLB entry & miss processing times

o Buffer size
e Organization (line & set size,

o Prefetch algorithms
o o0

mapping & replacement algorithms)

Figure 10.Summary of instruction-level model decomposition.

July 1984

23

Wete looking for t%eo le who
can see beyond the obvious.

If Christopher Colimbus had been content to ship
cargo around the Mediterranean, he would have missed
the opportunity to discover the New World.

If LINKABIT engineers weren't thinking about what
could be, instead of what is, we wouldn't be at the
forefront of the telecommunications industry.

Thanks to a cadre of conceptual achievers, however,
LINKABIT has continued to set the standard in diverse
and complex projects such as MILSTAR terminals,
video scrambling equipment, domestic satellite
systems, modems, codecs, advanced processors and
fault-tolerant systems.

Now, we're looking for more of the same kinds of
thinkers to join our ranks in the following areas:

¢ Satellite Data Communications
Satellite Network Technologies
Information and Network Security
Speech Coding and Compression
Local Digital Switching Systems
Modulation and Coding Techniques
Synchronization Techniques
Advanced Digital Signal Processing
RF & Analog Design

The creative, free-thinking atmosphere at
LINKABIT promotes excellence and is a reflection of
our physical environment. San Diego, America’s Finest
City in location, climate, cultural and recreational
facilities, offers you and your family an unsurpassed
lifestyle. This invigorating setting, combined with the
challenge, satisfaction, and reward of a career at
LINKABIT, provides an unbeatable opportunity to fulfill
your goals. Opportunities are also available in the
Washington, D.C. area and Boston.

If you see your opportunity here, send your resume
to: Dennis Vincent, M/A-COM LINKABIT,
3033 Science Park Road, San Diego, CA 92121.

You'll discover a world of obvious possibilities.

-#-M/A-COM LINKABIT, INC.

Equal Opportunity/
Affirmative Action Employer

processor interactions. Although this model is oriented
toward a specific architecture and a particular implemen-

* tation view, the underlying concepts have a much broader

application. A model of this kind can provide a taxonomy
for identifying and describing performance components at
successive levels of decomposition. It provides a consistent
framework in which to incorporate estimates from dif-
ferent and possibly dissimilar submodels, including
measurement as well as analytic and simulation models.
When possible, its decomposition should follow lines of
minimum component interaction. Decomposition is done
not only in terms of processor design, but also in terms of
program behavior. For current large-scale processors, per-
formance depends on—literally—hundreds of different
low-level interactions between program and processor,
and we should be able to represent each of them at some
level of the model. While performance analysis may be ap-
proached from a hardware or a software perspective, both
require a performance model that is a composite of pro-
gram behavior and processor design models. %

Acknowledgments

The work described in this article represents workloads,
systems, tools, models, and methods developed over
years. Many individuals have made important contribu-
tions to this effort and I feel privileged to describe some of
their accomplishments.

References

1. M. Kobayashi, ‘‘Dynamic Profile of Instruction Sequences
for the IBM System 370,’’ IEEE Trans. Computers, Vol.
C-32, No. 9, Sept. 1983, pp. 859-861.

2. J. W. Rymarczyk, “Coding Guidelines for Pipelined Pro-
cessors,”” Proc. Symp. Architectural Support Sfor Program-
ming Languages and Operating Systems, 1982 (also in Com-
puter Architecture News, Vol. 10, No. 2, Mar. 1982, pp.-
12-19).

3. A.J. Smith, ‘“Cache Memories,”’ Computing Surveys, Vol.
14, No. 3, Sept. 1982, pp. 473-530.

4. M. H. MacDougall, “The Stack Growth Function Model,”
tech. report 820228-700A, Amdahl Corp., Sunnyvale,
Calif., Apr. 1979.

Myron H. MacDougall is director of
Systems Performance Architecture for Am-
dahl Corporation. Prior to joining Amdahl
in 1976, he worked for 12 years at Control
Data Corporation. He began working with
computers at RCA in 1959. His interests en-
compass all aspects of computer perfor-
Y mance analysis and include a long-term in-
terest in system-level simulation.

MacDougall attended Rutgers Universi-
ty. He is a member of the ACM and IEEE Computer Society. His
address is Amdahl Corporation, M/S 139, PO Box 470, Sun-
nyvale, CA 94086.

COMPUTER

gt

