&7

o (A B T

MR A

s B R T

S E | LSRN

BlsB e o L

The design of efficient storage hierarchies generally incolves the
repeated running of “typical” program address traces through q
simulated storage system while various hierarchy design parameters
are adjusted.

This paper describes a new and efficient method of determining, in
one pass of an address trace, performance measures for a large class
of demand-paged, muliilecel storage systems utilizing a variety of
mapping schemes and replacement algorithms.

The technique depends on an algorithm classification, called “stack
algorithms,” examples of which are “‘least Jrequently used.” “‘least
recently used,” “optimal,” and “‘random replacement™ algorithms.
The techniques yield the exact access Sfrequency to each storage
detice, which can be used to estimate the overall performance of
actual storage hierarchies.

Evaluation techniques for storage hierarchies

78

by R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger

Increasing speed and size demands on computer systems have
resulted in corresponding demands on storage systems. Since it
has been generally recognized that the speed and capacity require-
ments of storage systems cannot be fulfilled at an acceptable cost-
performance level within any single technology, storage hierarchies
that use a variety of technologies have been investigated.

Several previous papers describe the general concepts of hierarchy
design'™® and evaluation,'"® whereas others deal with specific

The purpose of a st

associate the inform:
the remainder of the

Processing Unit (cpL
system with instructi
tion associated with :
a single device, then
to the physical addre: |
system with the same
of storage devices ra
relatively inexpensivc
logical address spacc |
(or unequal-size segm
being moved between

A hierarchy manager
ment of pages and 1
between the logical ¢
of the hierarchy. Wt |
hierarchy manageme; |
tion of the correspo
page to a fast storag:
these actions are “tr:
system (except for tii |
is indistinguishable fr. |

The goal of the hier:
number of times logi
being referenced. As

directed to the fast, sr. i
space is distributed

system then acquires
while maintaining the |
less expensive stores |
primary justification f |

hierarchy systems, such as the core-drum combination on the
ICT Atlas computer’™ and the cache-core combination on the
1BM System /360, Model 85.1°"

This paper introduces an efficient technique calied “stack processing”
that can be used in the cost-performance evaluation of a large
class of storage hierarchies. The technique depends on a classifica-
tion of page replacement algorithms as “stack algorithms™ for
which various properties are derived. These properties may be of
use in the general areas of program modeling and system analysis,
as well as in the evaluation of .storage hierarchies. For a better
understanding of storage hierarchies, we briefly review some basic
concepts of their design.

MATTSON, GECSEI, SLUTZ, AND TRAIGER 1BM SYST J

Clearly, many factors
hierarchy. On the pert
and characteristics of
of the hierarchy, the -
hierarchy managemen
references. On the cos'
to find and move log
as the cost-per-bit an
factors, it is quite diffi

The typical approach t -
designers has been to si
at various levels of d -
large number of rela

No.2 - 1970

7 the
gh a
eters

g, in
class

y of

tack
least
hms.
rage

¢ of

1ave
e it
iire-
ost-
hies

chy
sific
the
the

1g”
rge .
ca-
for
of
sis,
ter
sic

TJ

The purpose of a storage system is to hold information and to
associate the information with a logical address space known to
the remainder of the computer system. For example, the Central
Processing Unit (CPU) may present a logical address to the storage
system with instructions to either retrieve or modify the informa-
tion associated with that address. If the storage system consists of
a single device, then the logical address space corresponds directly
to the physical address space of the device. Alternatively, a storage
system with the same address space can be realized by a hierarchy
of storage devices ranging from fast but expensive to slower but
relatively inexpensive devices. In such storage hierarchies, the
logical address space is often partitioned into equal-size pages
(or unequal-size segments) that represent the blocks of information
being moved between devices in the hierarchy.

A hierarchy management facility is included to control the move-
ment of pages and to effect the (generally dynamic) association
between the logical address space and the physical address space
of the hierarchy. When the CPU references a logical address, the
hierarchy management facility first determines the physical loca-
tion of the corresponding logical page and may then move the
page to a fast storage device where the reference is effected. Since
these actions are “transparent” to the remainder of the computer
system (except for timing), the logical operation of the hierarchy
is indistinguishable from that of a single-device system.

The goal of the hierarchy management facility is to maximize the
number of times logical information is in the faster devices when
being referenced. As this goal is approached, most references are
directed to the fast, small stores whereas most of the logical address
space is distributed over the slower, large stores. The storage
system then acquires the approximate speed of the fast stores
while maintaining the approximate cost-per-bit of the slower and
less expensive stores. This increase in cost-performance is the
primary justification for storage hierarchies.

Clearly, many factors can affect the cost-performance of a storage -

hierarchy. On the performance side, one must consider the capacity
and characteristics of each storage device, the physical structure
of the hierarchy, the way in which information is moved by the
hierarchy management facility, and the expected pattern of storage
references. On the cost side, the hardware and/or software required
to find and move logical information must be considered, as well
as the cost-per-bit and capacity of each device. Because of these
factors, it is quite difficult to design an “optimal” hierarchy.

The typical approach to hierarchy evaluation employed by computer
designers has been to simulate as many hierarchy systems as possible,
at various levels of detail.®™** During the first stages of design, a
large number of relatively simple simulations may be run with

No.Z - 1970 STORAGE HIERARCHY EVALUATION

hierarchy
concepts

79

it m‘é o

Figure 1 Linear storage

hierarchy

< GENERATOR ’

BUFFER STORE
M, \

BACKING STORE

IMM

objectives
of the
paper

basic

model
concepts

80

fixed, standard address traces. These traces are assumed to be
“typical” sequences of storage references obtained from existing
computer systems, and they are used to approximate the reference
behavior of future systems. The purpose of these simulations is tg
measure such statistics as data flow and frequency of access to
each device in order to estimate the overall performance of ap
actual system. The resulting performance estimates can then be
used to narrow the field of possible designs, which then receive
more detailed examination.

Alternatively, one may try to develop analytical techniques that
avoid point-by-point simulation but still yield accurate statistics
for data flow and access frequencies. Several papers deal with such
techniques for hierarchy evaluation.*”® In general, the approach
here is to run a relatively small number of simulations and ex-
trapolate the measured statistics to a larger class of hierarchies,
The difficulty with this approach is the need for various assumptions
about the statistical properties of address traces and data flows
required to formulate the analytical equations. Moreover, it is
difficult to include a quantitative dependence on such factors as
data path structure, page replacement algorithm,’”® and address
mapping scheme,’ so that many simulations may still be necessary.

This paper presents a technique that can be used to circumvent
much of the simulation effort required in hierarchy evaluation.
Specifically, we present an efficient procedure that determines, for
a given address trace, the exact frequency of access to each level
of a hierarchy as a function of page size, replacement algorithm,
number of levels, and capacity at each level. In the following, we
consider a class of multilevel, demand-paging hierarchies' with
the same replacement algorithm at every level. The procedures
developed here are applicable to a large class of well-known re-
placement algorithms having certain inclusion properties defined

~ later. These algorithms—which we call stack algorithms—include

“least frequently used,” *‘least recently used,” “optimal,” and a
“random” replacement algorithm.

The system model

An H-level paged storage hierarchy consists ot a collection of
storage devices M,, M,, --- , My, a network of data paths con-
necting the devices, and a hierarchy management facility. Each
device is partitioned into physical blocks called page frames. For
convenience, the highest-level store M, is called the local store
and the lowest-level store My is the backing store as shown in
Figure 1. The hierarchy management facility controls page move-
ment between the devices and associates each logical page with
a physical page frame. Special storage and processing hardware
may be required, but they are not included in our model.

IBM SYST J

MATTSON, GECSEI, SLUTZ, AND TRAIGER

1

b e e s

References to th
called the gerer.
in which they a
may represent ti
the channel, in
address referenc:
where each add
set of 2" possit
logical addresse: -
resent the num’
low-order n —
the address wit! -
hierarchy is acc -
we can analyze
by considering ¢
where each x} ;
When we consid
and denote page

A reference fro
local store M,.
device M, i.e.
must bring that
a path for bring
staging through
for bringing a p
ment hardware. |
In this paper w:
in which the on
direct ones from |
H — 1. The re: |
paper. Note th: .
hierarchy. '

The capacity of
frames, and all
At any time, ea
of the hierarchy -
erarchical level,

- it may. occupy ir. -

as:

* Unconstraine:
storage devic

» Fully constra
frame.

s Partially con:

In alater section.

that generates a

No. 2 - 1970

1ed to be References to the storage hierarchy are presented by a single device

n existing called the generator, and they are sequentially serviced in the order
: reference in which they are presented. References from the generator may
tions is to may represent the requests of several devices, such as the CPU and
access to the channel, in an actual system. The time sequence of logical-
ice of ap address references X = x,, X,, --- , X, is called an address trace,
1 then be where each address consists of » bits as shown in Figure 2. The
3N receive set of 2" possible addresses is partitioned into 2° pages of 2" &

logical addresses each. The high-order k bits of each address rep-
resent the number of the page containing the address, and the

ques that low-order n — k bits represent the location or displacement of :
statistics the address within the page. Since information movement on the

with such hierarchy is accomplished by transferring pages between levels,

approach we can analyze space allocation and data movement for a trace X

: and ex- by considering a corresponding page trace X=X ke xf—

erarchies, where each x* is the number of the page containing address x,.

-umptions When we consider a given fixed page size, we omit the superscript &,

ata flows and denote pages by x,.

ver, it is

actors as A reference from the generator can be serviced only from the Figure 2 Logical address
! address local store M,. Thus if the desired page resides in a lower level

. - . . oge k BITS ————>——n-k BITS
1ecessary. device M., i.e. where i > 1, the hierarchy management facility ' -)l

must bring that page up to M, for servicing. The hierarchy provides
rcumvent a path for bringing pages up to M,, which may or may not require PAGE PREFIX DISPLACEMENT
-aluation. staging through intermediate levels. Any temporary storage required
1ines, for for bringing a page up to M, is included in the hierarchy manage- Bs
-ach level ment hardware, and is therefore not represented in our model.
lgorithm, In this paper we restrict our attention to linear storage hierarchies
wing, we in which the only paths for moving pages down the hierarchy are
es'' with direct ones from each level M, to level M,.,, wherei = 1,2, ---, :
ocedures H — 1. The reasons for this restriction are discussed later in this ® :
nown re- paper. Note that the four-level hierarchy in Figure 1 is a linear :
5 defined hierarchy.
—~include
7 and a The capacity-of the backing store is assumed to be at least 2" page ,
frames, and all logical pages initially reside in the backing store. ’553

At any time, each logical page resides in exactly one page frame
of the hierarchy. A mapping function is associated with each hi-
erarchical level, and specifies for each logical page the page frames
it may occupy in that level. The mapping function is further defined

«ction of as: 4
iths con- : L
ty. Each s Unconstrained if any page can occupy any page frame of the o
nes. For storage device. .

cal store * Fully constrained if each page can occupy only a single page

hown in frame.

e move- s Partially constrained in all other cases.

age with

1ardware In a later section, we define a technique called “‘congruence mapping”

that generates a whole spectrum of mapping functions.

3M SYST J No.2 - 1970 STORAGE HIERARCHY EVALUATION 81

L

Sy U g
i

Figure 3 Two-level hierarchy

< GENERATOR >

BUFFER STORE
Ml

BACKING STORE
MZ

82

For simplicity in developing techniques for analyzing storage hi.
erarchies, we first consider a two-level, demand-paged hierarchy
with unconstrained mapping. Later, our results are extended to
certain classes of multilevel linear hierarchies employing the three
types of mapping functions. The local store or buffer has a capacity
of C pages, and is directly connected to the backing store as shown
in Figure 3. At time ¢, the generator presents a request for page
x, to the hierarchy. Under demand paging, if x, is in the buffer,
the reference proceeds and no page movement occurs. Otherwise,
x, is brought to the buffer from the backing store. If the buffer
is already full, x, replaces some page y, in the bufler. The selection
of the particular page y, is performed by the buffer replacement
algorithm. This operation is a key element of storage management.

In the two-level hierarchy shown in Figure 3, a reference to a page
residing either at level M, or at M, is called an access to that level.

~ For a given hierarchy and page trace, we define the access frequencies

F, and F, where F; is the relative number of accesses to level M;
during the processing of the trace. Thus, if N, accesses are made
to level M,, and N, = L — N, accesses are made to level M,, we
obtain F, = N,/Land F, = N,/L.

Some important measures of storage hierarchy performance can
be obtained from these access frequencies. For example, one can
combine access frequencies with a set of effective access times
{T:} to obtain an effective (or average) hierarchy access time

T=Rﬂ+F2T2

In general, access times depend on the access paths, device access
times, and characteristics of the hierarchy management facility.
The access frequencies depend only on the page trace, capacity
of the buffer, and replacement algorithm.

For a two-level hierarchy, accesses to the buffer are called successes;
the relative frequency of successes as a function of capacity is
given by the success function F(C). For a given capacity C, page
trace X = x,, X, --- X, replacement algorithm, and arbitrary
time ¢ (where 1 < ¢ < L), the set of pages in the buffer just after
the completed reference to x, is denoted by B,(C). The initial buffer
contents is represented by B,(C). By convention

B(C) = ¢

for all C where ¢ is the empty set. The set of distinct pages referenced
in x,, X5, -+ , x, is denoted by T, and the number of pages in T:
is denoted by

Y = |I‘tl

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

O N 2

o

pemand paging in 1
the following require
union of dizioint sets
1. If x, € B.y(C)

2 If x & B,.i(C

=1

B(C) = B,.(C)
3, If X, QE B:—\((
B,(C) = B, (C)

where y, € B,_(C
Under demand pagir
by 1 and 2, while 1
sequently, referencec

Least recently us

We now consider a
recently used” (LRI
can be obtained by
trace. Briefly, the
of a list of pages, ¢
on this stack for e
distances are used t
of the LRU stack f
LRU replacement, 3
on the related conce

Under LRU, the pa
not been referencec
used page). One w
trace is to simulate
capacity. Such a sin
time 7, and counts
is found in the bu!
simulation procedu
C=1,2, 3,4 Pa
successes are marke

A greatly simplifie
under LRU replace
of that replacemer
capacity C, the bu:
it fills up with the
At time 7, the buffc
through time 7. W
(1 > 7), this-page 1t

No.2 - 1970

g storage hi.
-ed hierarchy
extended to
ing the three
:as a capacity
ore as shown
iest for page
n the buffer,
5. Otherwise,
If the buffer
The selection
replacement
nanagement.

ce to a page
to that level.

s frequencies

to level M,
es are made
level M,, we

»rmance can
nle, one can
access times
s time

levice access
ient. facility.
ce, capacity

xd successes;

capacity is
ity C, page
wd arbitrary
‘er just after
initial buffer

s referenced
pages in T,

IBM SYST J

pemand paging in the two-level hierarchy is formally defined by
the following requirements, wherein the operator “4-* denotes the
.union of dizioint sets:
1. If x, & B,_.(0) then B(C) = B,_,(O)
VIf X, EE B,_/(C) and IB:-l(C)l <C then -

B(C) = B,_(C)+ A .
1. If x & B_(O) and |B._.(O)} = C then

B(C) = B,_(C) — il + txd

™~

where y, € B,_,(C) is determined by the replacement algorithm.
Under demand paging, a buffer of capacity C simply fills as required
by 1 and 2, while the first C distinct pages are referenced. Sub-
sequently, referenced pages are swapped in, as required by 1 and 3.

Least recenily used replacement

We now consider a particular replacement algorithm called “least
recently used” (LRU), and show that the entire success function
can be obtained by stack processing in a single pass of the address
trace. Briefly, the single-pass technique requires the maintaining
of a list of pages, called an LRU stack, and measuring a distance
on this stack for every page reference. Frequencies of these stack
distances are used to calculate the success function. The existence
of the LRU stack follows from an inclusion property satisfied by
LRU replacement, whereas the use of distance frequencies hinges
on the related concept of critical capacity.

Under LRU, the page selected for replacement is the one that has
not been referenced for the longest time (i.e., the least recently
used page). One way to obtain the success function for a given
trace is to simulate the two-level hierarchy system for each buffer
capacity. Such a simulation determines the buffer contents at every
time f, and counts the number of times the current reference X,
is found in the buffer. In Figure 4, we show an example of this
simulation procedure for a given page trace and buffer capacities
C = 1, 2, 3, 4. Pages are denoted by lower-case letters, and page
successes are marked by asterisks.

A greatly simplified method for obtaining the success function
under LRU replacement can be derived from certain properties
of that replacement algorithm. For any page trace and buffer
capacity C, the buffer is initially empty, and in say 7 time units,
it fills up with the first C distinct pages referenced by the trace.
At time r, the buffer contains the C pages most recently referenced
through time r. When a new page is referenced at a later time
(t > 1), this page replaces the least recently used page in the buffer.

No.2 - 1970 STORAGE HIERARCHY EVALUATION

success
function

83

=
E
s

E
3
3

T PR

e

84

Figure 4 Determining success function by buffer simulation

_—
TIME 1 2 3 4 5 6 7 8 9 10
PAGE TRACE a b b c b 2 d 3 3 2
SIMULATIONS
.
= N EBNOEAMEEE
F(1)=0.20 . B
=2
F(2)=0.30
. . .
—— T — S—— — —
c=3 s 1 [l =1 -1 [R 1 =1 5
F(3)=0.50 b b b b b b < c ¢
c c c d d d d
— Ll S —_— —_— —_— L L L _
.
S— — S— — — ey S— —
C=4 r_a— 2 a r_a-— 2 a a a 2 2
F(4)=060 b b b b b b b b
c c c c ¢ c ¢
d d d d
e S S S —— S —— S — S — —— S S —
.

N O FA O VA 3

Thus at time 1, the buffer still contains the C most recently referenced
pages. It is easy to see that under LRU the buffer contains the C °
most recently referenced pages for all subsequent times, and that

this property holds for all page traces and buffer capacities. One
can generate the buffer contents B,(C) for any time ¢ on a trace
and any capacity by scanning backward from point ¢ and collecting
the first C distinct pages encountered.

Since the set of C most recently referenced pages is always contained
in the set of C + 1 most recently referenced pages, the buffer
contents B,(C) at any time must be a subset of B,(C + 1). In fact,
B,(C) is a proper subset of B(C + 1) if at least C + 1 distinct
pages have been referenced through time ¢. More formally, under
LRU replacement, the buffer contents for any page trace X =
Xi, Xz, -+ , X, and any time ¢ (where 1 < 7 < L) satisfy the fol-
lowing inclusion property: .

B()CBR)C ---CBH)=BH .+ D= ---)
where
|B(C))=C forl1 < C<¥,

MATTSON, GECSEJ, SLUTZ, AND TRAIGER IBM SYST J

ot st s

) W e R RS iS4

and

lBI(C)' =M

The inclusior
t = 5, for ex:

B(1) = {b}
BQ) = le, b
B3) = {a, i
and

B(#) = {a, b

Because of tl
and for all c:
and useful w:

5.2, -+ s.(y.
s() = B -
Hence

BI(C) = {{S'{ |
{5,

The list S, is
entry and s,(v
fort=5int

S; = [b, ¢, a]

The stack S, :
null stack, th
LRU stacks ¢

Besides repres
stack can be
F(C). Let us
referenced anc
< C <y

X, & B_,(O)

We call C, th
given in Equa
not been prev
contained in a

From the defi
that C, is sim

NOo.2 - 1970

————
9 10
-
: a

ferenced
1s the C
and that
ies. One
. a trace
ollecting

ontained
e buffer
In fact,
distinct
y, under
e X =
the fol-

- M

3M SYST J

and
BO) =¥, for C=w

The inclusion property can be observed in Figure 4 where at time
¢ = 5, for example

B(1) = {b} .
B(2) = lc, bl

B(3) = {a, b, c}

and

B(4) = {a, b, c}

Because of the inclusion property, the buffer contents at any time
and for all capacities can be represented in the following compact
and useful way. We order the set of pages T, into a list S, = s,(1),

52), - -+ s(v)), where

o) = B — BG—1) fori=12-",)

Hence
{51(1)9 5:2), -0, sl(c)} for C S Yt 3)

B,(C) = {
{s.(1), ,Q2), -+ ,sy)} forC 2.

The list S, is referred to as the LRU stack, with s(1) as the top
-entry and s,(y,) as the bottom entry. As an example, the LRU stack
for t = 5in Figure 4 is

SS = [b9 cy a]

The stack S, at time 7 = 0 has no entries and is therefore called a
null stack, that is, one with no entries. The entire sequence of
LRU stacks corresponding to Figure 4 is included in Figure 5.

Besides representing the buffer contents for all capacities, the LRU
stack can be used to efficiently determine the success function
F(C). Let us suppose that at time f, page X has been previously
referenced and thus is a2 member of at least one set B,_,(C), where
1 < C < 7,... Let C, denote the least buffer capacity such that

X, & B,_(C)

We call C, the critical capacity since, from the inclusion property
given in Equation 1, x, € B,_,(C) if and only if C > C,. If x, has
not been previously referenced, we set C, = « because x, is not
contained in a buffer of any finite capacity.

From the definition of LRU stacks in Equation 2, it may be seen
that C, is simply the position of page x, in the stack S,_;, so that

No.2 - 1970 STORAGE HIERARCHY EVALUATION

85

Hivias s dvibes

Vs

R s

. 040F

Figure 6 Obtaining success
function from
distance frequencies

A DISTANCE FREQUENCY
T 6
2 &
: ;
{
29 9 !
I o
O I
0) S . | 1
01 2 3 4 o«

‘B SUCCESS TUNCTION

T 0.80

0.60 |~

F(C)

Fl=F(3)=O‘50

020

|
i
|
i
i
i
|
1

1 1

‘c-——»

86

Figure 5 Sequence of LRU stacks

TIME 1 2 3 4 s 6 7 8 ° 1
PAGE TRACE a b b ¢ b a4 c a a
a b b ¢ b El d ¢ a a
a a \ b \ < b \ a d < ¢
LR STACK ~ ~
a a c b a d d
c b b b
STACK
DISTANCE ® ® 1 ® 2 3 ® 4 3 .
DISTANCE
COUNTERS n(y)
R _ ° 0 1 1 1 1 1 1 1 @
2 0 2 ° ° 1 1 1 1 1 @
3 ° ° 0 0 ° 1 1 1 2 @
4 ° o 0 0 o) ° 1 1 @
© 1 2 2 3 3 3 4 4 . @
x, = 5.(C)

We call this page position the stack distance A,, since A, is essentially
the “‘distance™ from the top of the stack to

X, = 5...(4)

(Note that here A, = C,. When constrained mapping functions are
considered, the stack distance may not always equal the critical
capacity.) If x, has not been previously referenced, then A, is set
to infinity. The sequence of stack distances for our example is

- included in Figure 5.

The significance of stack distances is that they lead directly to the
success function. To see this, let n(A) be the number of times the
stack distance A is observed in processing a trace. Since the stack
distance equals the critical capacity, the number of times that the
referenced page is found in the buffer is

B [” .)
N(©) = X n(a) 4 : @
A=]
and the success function is given by the expression
F(C) = N(C)/L ' ®

In practice, the set {n(A)! can be determined from a set of distance
counters, as shown in Figure 5. All counters are set initially to
zero, and the counter for each distance A is incremented whenever

MATTSON, GECSEI, SLUTZ, AND TRAIGER 1BM SYST J

o6

that distance
2* 4+ 1 count
the conclusio:
counters are t!
4 and 5.

We now calct
example. For

counter value:
is shown in F
summing curm -
Figure 6B. O:
Figure 6B agr:

To find the ac.
C, we take F,
pages, F; = F{(
0.50, and the
0.507..

Note that F{(«
of C for LRU
summation as
(L - vo)/L
in the backing

To avoid con
an iterative cc
every time 1, tt
to their most :
is 5,(1) since s,
is 5,(2), and s,(

Let us suppos.
appears at pos
must be the tor
page. Consider
I<j<A At
page, and the i1
is added to thi:
on stack S,. If
J at time ¢, sin
changed from t

The net effect ¢
is moved to th
down-shifted o
position. If x, \

.on the top and «

shown in Figurc

No.2 - 1970

—_ e
9 10
D —————
2 3
—
a a
fc ’
d d
b b
—_—
3 1

OO

essentially

ictions are
he critical

A, is set
xample is

ly to the
times the
the stack
s that the

@

&)
f distance
itially to
whenever

IBM SYST J

that distance occurs. For k-bit page numbers, we need at most
2 + 1 counters, corresponding to 1 < A < 2*and A = «. At
the conclusion of a page trace, the final values of the distance
counters are the values {n(A)}, and F(C) is obtained from Equations

4 and 5.

We now calculate the value of the success function in a numerical
example. For A’s of 1, 2, 3, 4, and =, the ccerresponding final
counter values in Figure 5 are 2, 1, 2, 1, and 4. This distribution
is shown in Figure 6A. Dividing by L equals 10 in Figure 5, and
summing cumulatively, we obtain the success function shown in
Figure 6B. One can verify that the F(C) values for the curve in
Figure 6B agree with those obtained in the simulations of Figure 4.

To find the access frequencies F, and F, for a given buffer capacity
C,wetake F, = F(C))and F, = 1 — F,. As an example, for C = 3
pages, F, = F(3) = 0.50 as indicated in Figure 6B, F, = 1 — 0.50 =
0.50, and the average access time T of the hierarchy is 0.50T, +
0.50T..

Note that F(C) is always a monotonic, non-decreasing function
of C for LRU replacement, since F(C) is obtained by cumulative
summation as shown in Equation 4. Also, F(C) never exceeds
(L — v.)/L for any capacity, because all pages initially reside
in the backing store.

To avoid constructing each LRU stack separately, we now give
an iterative construction of S, from S,_, and x,. Observe that at
every time 1, the stack S, is simply the list of pages in T', according
to their most recent reference. The most recently referenced page
is 5,(1) since 5,(1) = x,. The second most recently referenced page
is 5,2), and s,(v,) is the least recently referenced page in T'.

Let us suppose that page x, has been previously referenced and
appears at position A on stack S,_,. For time 7, we know that x,
must be thé top entry in S,, because it is the most recently referenced
page. Consider now a page b at some position j on S,_, where
1 < j < A Attimet — 1, page b is the jth most recently referenced
page, and the intervening pages do not include x,. At time 7, page x,
is added to this set so that page b must now be at position j + 1
on stack S,. If j is greater than A, page b must remain at position

j at time 1, since the set of more recently referenced pages is un-

changed from time 1 — 1.

The net effect of this page motion is shown in Figure 7A. Page x,
is moved to the top of the stack, pages previously above x, are
down-shifted one position, and all other pages retain the same
position. If x, were not previously referenced, x, would be placed
on the top and all other pages would be down-shifted one position as
shown in Figure 7B. :

No.2 - 1970 STORAGE HIERARCHY EVALUATION

numerical
example

Figure 7 Constructing LRU
stacks

A PAGE x IN 5‘-1

§,
t~1

RIS

5,

‘.)‘

s, (A=)

5,V

PAGE x, NOTIN'S,_

s:—l

s+

see

5D

R &)

50

5,(2)

50D

.or

50

sG=1

5,G+D

EX 0]

87

56+

Yy

I

sr=b

sy

3B A ey,
|

e

stack
generation

88

QRN TR

_This iterative procedure can be used to generate the sequence of

stacks in Figure 5. In an actual evaluation, it is not necessary to
store the entire sequence of stacks. Rather, only the current stack
must be maintained as the trace is scanned. When a page reference
occurs, that page is put on the top of the stack, and entries in the
stack are down-shifted one-by-one starting from the top. If page
.X, is encountered, its distance A, is recorded, and x, is erased because
it has already been placed on top. The position vacated by x, is
filled by the page downshifted from position A, — 1. If x, is not
encountered, then the downshifting proceeds to the bottom of the
stack, and distance A, = = is recorded.

S‘!ack algorithms

We now examine the general class of replacement algorithms that
satisfy the inclusion property. Such algorithms are called “‘stack
algorithms.” It is shown that stacks can be iteratively maintained
for any stack algorithm, and that stack distance frequencies for a
given trace can be used to obtain the corresponding success function.
The main problems considered are (1) to efficiently generate stacks
{S,} for an arbitrary stack algorithm, and (2) to identify those
algorithms that are stack algorithms. Several examples of stack
algorithms are described, along with one replacement algorithm
that is not a stack algorithm.

A replacement algorithm is called a stack algorithm if the buffer
contents in a demand-paged. two-level hierarchy satisfly the in-
clusion property given in Equation 1, for every page trace and every
point in time. As shown for LRU replacement, a stack can be defined
according to Equation 2 in such a way that the bufler contents for
all capacities are given by Equation 3. Furthermore, since the stack
distance A, is a critical capacity, the success function for any page
trace can be obtained by summing the stack distance frequencies
{n(A)} according to Equation 4. This summation implies that the
success function is a monotonic and nondecreasing function of
the capacity C for every stack algorithm.

Let us now consider a replacement algorithm R as a collection of
mappings

R¢ : B_(C)— y(C) where y,(C) € B,_,(O)

is the page replaced by x, in a buffer of capacity C. From the con-
straints of demand paging, we know that R is applied only when the
following conditions are true: x, & B,_(C)and |B,_i(C)| = C.If the
inclusion property is satisfied up to and including time ¢ — 1, then
R must satisfy certain restrictions at time 7 to maintain the inclusion
property. Specifically, if a replacement is required for some capacity
C + 1 (and therefore for C), then y,(C + 1) must be either y,(C)
or 5,_,(C + 1). To prove this, let us assume the following:

MATTSON, GECSEl, SLUTZ, AND TRAIGER I1BM SYST J

o8

B.(C)C
;B:-x(c)‘ =
|B,(C +

and
X, & Bl—l((

Note that
B.(C +
sa(CH D)
However, ¢
would violz

We have g
same cond:
y(C)ors,_
we conclud
and only if

WC+ 1) -
for

1<C<y

Important 1
that induce
use this or¢
be represen’

Pl = pl(l)’

where p,(i) 1
algorithm t!
the lowest ¢

A convenie:
A is an arbi
in 4 having
and x, & B
WC+ 1)a
»(C) = mii

and

WC+ 1

i

NO.2 -

1970

sequence of

necessary to
surrent stack
1ge reference
»ptries in the
top. If page
ased because
tted by x, is
If x, is not
sttom of the

orithms that
alled “‘stack
maintained
iencies for a
ess function.
erate stacks
entify those
les of stack
it algorithm

f the buffer
isfy the in-
e and every
n be defined
contents for
.ce the stack
or any page
frequencies
lies that the
function of

-ollection of

>m the con-
ly when the
= C.If the
t — 1, then
ae inclusion
me capacity
gither ,(C)
18

IBM SYST J

B.(O)CBL(C+ D
. |B(O) = C

|B(C+ Di=C+1

and

x & B(C+ 1)

Note that from Equation 2, page s,,(C + 1) is contained in
B,_(C + 1) but not in B._(C). If page y(C + 1) is neither
5,.(C + D nor y(C), then y(C + 1) is some other page z & B,_,(C).
However, page z is included in B,(C), but not in B(C + 1), which
would violate the irclusion property..

«

We have given a necessary condition for stack algorithms. The
same condition is also sufficient, because if y(C 4 1) is either
p(C)or s, (C+ 1), then B,(C)is a subset of B,(C + 1). Therefore,
we conclude that a replacement algorithm is a stack algorithm if
and only if for every time ¢

JCH D =5,(C+1D o yC+1)=y©) ©)
for B
1< C <y and C+ 1 <A

Important replacement algorithms that satisfy Equation 6 are those
that induce a total ordering on all previously referenced pages and
use this ordering to make replacement decisions. The ordering can
be represented in the form of a priority list

Pf = pf(l)* pl(2)9 U ’pl(‘)’l—l)

where p,(i) has a higher priority than p(i + 1) for | < ¢ <7,... The
algorithm then selects for replacement the page in B,_,(C) that has
the lowest priority.

A convenient notation for working with priorities is min(4), where
A is an arbitrary set of pages in T,_,, and min(A) is the unique page
in A having lowest priority on the list P,. If B, ,(C) C B,_.{C + 1)

~ and x, €& B,_,(C + 1), we can express the replaced pages y.(C) and

y(C + 1) as follow:

7{C) = min [B,_,(C)])

and

¥(C 4 1) = min [B,_(C + 1)] ' ®)
= min [B,_,(C), 5,.(C + 1)] ®
= min{min [B,_(O)}, 5,«(C + 1)} (10)
= min [3(C), 5..(C + 1)] (11)

No.2 - 1970 STORAGE HIERARCHY EVALUATION

stack
algorithm
identification

89

z

P

i st 7 N S b s S

stack
updating

92

Equations 7-9 are based on the definition of the replacemen
algorithm, whereas Equation 10 is based on the properties of
minimization.

We conclude from Equation 11 that any replacement algorithp,

that induces a priority list P, for every time ¢ satisfies Equation ¢ -

and is therefore a stack algorithm. For example, the priority lig

The priority list for “least frequently used” (LFU) replacement is the
ordering of referenced pages by most frequent reference together
with a scheme to break ties.

Before describing other examples of stack algorithms, let us develop
a stack updating procedure for algorithms inducing a priority list.
For any page trace X = x,, x,, --- , X, and any time 7, where

for LRU is just the ordering of pagesin T,_, by most recent reference. -

1 < 1 < L, suppose that stack S,_, is available. Also, for any two
pages a, b € T,_,, let max (a, b) denote the page having higher °

priority. If x, has been previously referenced and appears at position ;

A, on stack S,_,, the stack at time 7 is given by

s(l) = x, (12)
5() = max [y,(i — 1), 5,_,()) for2 <i<a, (13)
sl(Al) = }’:(A: - l) . (14)

5i) = 5,.4(i)

Equations 12, 14, and 15 are based on the constraints of demand
paging, whereas Equation 13 is derived from Equation 11,

fora, < i<y, (15)

If x, has not been previously referenced, the defining equations for
stack S, are the following:

s(l) = x, - (16)
s(D) = max [y,(i — 1), 5,_,(1)] for2 <i<qy,, (17
5(r)) = y(vi-) (18)

In this case, Equations 16 and 17 express the fact that replacements
are required for all buffer capacities in the range | < C < v,
Equation 18 corresponds to the new page x, being added to the
stack, with the result that a buffer of capacity

Y = v+ 1

is now full.

Figure 8 illustrates the stack updating procedure as given in Equa-
tions 12-18. The top entry s,(1) is always x,, and the first page
replaced is

y(1) = 5,4(1) fora, > 1

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

Figure 8 S
A PAGEX INS

sl-l

LY

sl_l(tv

5@

51

Each subs:
§1(7) and
on stack !
determine ¢
If x, is not |
and we use
does not h
Only a seq
»(@i— 1)is

Comparing
shown in F
5,.(C). In 1
since both

reference. T

Y(C) = s,
and Equatic
5,(i) = max|

o= 5,
For an arbitr

than for LRU
very differen:

Let us now e:
any replacen
usage quantit
priority list :

No.2 - 1970

eplacemen(
operties of

algorithm
Equation ¢
sriority list
t reference,
‘ment is the
e together

us develop
riority list.
e 1, where
Jr any two
ing higher
at position

(12
13)

(14)
(13

of demand
1.

1ations for

-

(16)
an
(18)

>lacements
c < Y
ied to the

1in Equa-
first page

IBM SYST J

. Figure 8 Stack vpdating

A PAGEx IN STACK S, _, o B PAGE x, NOT IN STACK Seo1

® 50

3;‘(2)
513 5,(3)

3 .
RG] o)

Y,
1
[}

5(2)

.
.
M

581 }\ 5,(3,-1

el 5 (Y L/ L 5,3

Y A=
s+ D s+

.
.

“re

Each subsequent entry s(i) is then determined iteratively from
5,_,(7) and y,(i — 1) according to Equation 13 or 17. If x, is found
on stack S,., as shown in Figure 8A. we use Equation 14 to
determine s,(A,). All lower entries are unchanged from time 7 — 1.
If x, is not found on stack S,_,, as shown in Figure 8B, then A, = =,
and we use Equation 18. In either case, the replacement algorithm
does not have to be applied to all the pages for stack updating.
Only a sequence of pairwise decisions between pages s;_,(i/) and
y(i — 1) is required. :

Comparing our stack updating procedure with the one for LRU .

shown in Figure 7, we see that page 3.(C) under LRU is always
$5..1(C). In fact, the priority list P, is exactly equal to stack S,
since both lists give the order of pages in T\, by most recent
reference. Thus

(€)= 5..(C)
and Equations 13 and 17 then reduce to N
5,(i)) = max[s..,.(i — 1), s.—:(D]

=s_(-=1

For an arbitrary stack algorithm, the stack updating is more complex .

than for LRU, and the order of stack elements at time ¢ — 1 may be
very different from that at time 7.

Let us now examine several examples of stack algorithms. In general
any replacement algorithm that bases its decisions on some page
usage quantity, whether measured or predicted, naturally induces a
priority list and is, therefore, a stack algorithm. One example, of

No.2 - 1970 STORAGE HIERARCHY EVALUATION

examples
of stack
algorithms

91

kﬁ'ﬁ%' R T N

i

b ol AR i G

Yo

92

course, is LRU, and another example previously mentioned ig
least frequently used (LFU) replacement.

Under LFU, the page replaced from a buffer at time ¢ is that page
that has been referenced the fewest number of times over the intervy]
I < 7 £ 1, or perhaps over some ‘‘backward window™ interva]
+—h <7< t,where 0 < i < 1. If two or more pages are tied for
least frequency of use, then some arbitrary rule is used to break
the tie. As long as the rule is consistent for all pages and aj]
capacities (e.g., if the tied pages are numerically ordered) a priority
list P, is induced, and LFU is a stack algorithm.

Other examples of stack algorithms may arise in analytical studies
of program behavior. If an address trace is generated from some
random process, it may be desirable to study the behavior of
replacement algorithms that base their decisions on the param-
eters of the random process. One such process is a time-invari-
ant, first-order Markov chain,'™'® where any page c is referenced
immediately after page b with a fixed transition probability =,..
The process is completely described by the matrix I = {r,],
(where b and ¢ range over all referenced pages) and by the page
referenced at time 1 = 1.

One possible replacement algorithm is to remove the page least
likely to be referenced next. We call this strategy *least transition
probability™ (LTP) since, for page x, equal to page b, the page ¢
chosen for removal is the one that minimizes =, over those pages
in the bufter. Supplying an appropriate rule for breaking ties, we
see that LTP induces a priority list and is a stack algorithm.

Another replacement algorithm is to remove the page with the
largest expected time until next reference. We call this strategy
LNR for “longest next reference.” The expected times until next
reference can be obtained from the IT-matrix by standard tech-
niques.'” As with LTP, LNR induces a priority list if we supply an
appropriate tie-breaking rule.

To analyze an actual program trace under LTP or LNR (perhaps for
testing a Markov model of the program), page reference statistics
may be used to estimate the matrix II. For example, the observed
transition frequencies over some interval 1 — / to f can be used to

‘generate a time-varying estimator matrix II,. A priority list P, can

then be constructed for each time ¢, according to the probabilities
in II,, with the result that the overall strategy for replacement
remains a stack algorithm.

Other stack algorithms may base their decisions on information
from the programmer or compiler, or on properties of the computer
system. For example, the programmer or compiler may supply to
the system'* special “prcgram directives” that indicate which pages

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

v A

o A 1 e et sty

P e T .

should be g
case is wher
pages inam
of the progre
can be orde:
replacement

In the exam
variety of w:
“first-in/first:
FIFO, the p:
(continuous)

A peculiarity
X=abcd.

As shown in

" monotonic, :

algorithms h¢
is not a stac!
every time .

priorities bet:
C. Thus in 1
priority of all
longest. How
brought into

Whenever th
the buffer, w
every capacit
the frequency
Another case
buffer.

As long as ;
as one can ¢
then stack-pr

function.

An optimum

We now disct
value for the
algorithms—f
an algorithm
Belady™ desc
MIN, and sho
page trace anc
we describe a

No.2 - 1970

2ntioned ig

5 that page
‘he interva]
v interval
are tied for
1 to break
es and al|
) a priority

cal studies
Tom some
zhavior of
he param-
‘me-invari-
referenced
bility =,
= {Tbc},

r the page

page least
transition
he page ¢
10se pages
g ties, we
hm.

" with the
s strategy
until next
lard tech-

supply an

2rhaps for
> statistics
observed
e used to
ist P, can
babilities
slacement

‘ormation
computer
supply to
iich pages

IBM SYST J

should be given high priorities in the immediate future. Another
case is where the operating system assigns priorities to program
pages in a multiprogrammed system, based perhaps on the position
of the program in a task queue. If all the pages in the address space
can be ordered in a priority list P, for each time 7, the resulting
replacement algorithm is a stack algorithm.

In the examples given, we see that 'priority lists can arise in a
variety of ways. We now consider a replacement algorithm called
“first-in/first-out” (FIFO) that is not a stack algorithm. Under
FIFO, the page that has remained in the buffer for the longest
(continuous) time up to time 7 is removed.

A peculiarity of FIFO is illustrated by the following page trace
X=abcdabeabcde

As shown in Reference 18, the success function for this trace is not
monotonic, and takes the form shown in Figure 9. Since stack
algorithms have monotonic success functions, we conclude that FIFO
is not a stack algorithm and does not induce a priority list P, at
every time 7. In amplifying this conclusion, we note that the relative
priorities between pages in T',_, may depend on the buffer capacity
C. Thus in the example, one can verify that page d has lowest
priority of all pages in B,(3) in the sense that d has been in the buffer
longest. However, page d has highest priority in B,(4), since it was
brought into. the buffer latest.

Whenever the priorities among pages depend on the capacity of
the buffer, we cannot define a single priority list that applies to
every capacity. One instance of this is when priorities depend on
the frequency of reference to pages after their entering the buffer.
Another case is when priorities depend on total time spent in the
buffer.

As long as priorities are independent of capacity, and as long
as one can order the referenced pages to reflect these priorities,
then stack-processing techniques can be used to find the success
function.

An optimum replacement algorithm

We now discuss a replacement algorithm that yields the maximum
value for the success frequency over the space of all replacement
algorithms—for every page trace and every buffer capacity. Such
an algorithm is 'said to be an optimum replacement algorithm.
Belady'® describes an optimum replacement algorithm called
MIN, and shows how to evaluate the success frequency for a given
page trace and a given buffer capacity. In the following discussion,
we describe a stack algorithm called OPT and prove that it is also

No.2 - 1970

STORAGE HiERARCHY EVALUATION

F(C) ——»_

first-in/
first-out

Figure 9 Success function for
FIFO replacement

0.80

040

020

93

e

e R A it

IRTNTRTE S

OPT

Figure 10 Example of OPT

replacement

TIME

k234567

PAGE TRACE

abc adba

BUFFER
CONTENTS
FORC=3

stack

processing
example

94

an optimum replacement algorithm. Using certain properties of LRy
and OPT, the entire success function for OPT can be determined i,
two passes of a page trace.

The replacement algorithm OPT has the following characteristic,

Whenever a page must be pushed from the buffer, the chosen page :

is the one whose next reference is farthest in the future. If 2 tie
results because two or more buffer pages are never referenced again.
the tie is broken by an arbitrary rule Q that pushes the page with
the latest alphabetical or numerical order. An example of opy
replacement is shown in Figure 10, for the buffer capacity C = 3
As an illustration, notice that at time 7 = 5 page ¢ is pushed fron
the buffer, since the other bufler pages a and b are referenced sooner,
At time r = 9, page b is pushed from the buffer, because page dis
referenced again (at time r = 10), and page @ has priority over
page b by our rule Q.

A formal proof that OPT is an optimal replacement algorithm is
given in the Appendix. We note here that OPT is not realizable in
an actual computer system because it requires knowledge of future
page references. However, OPT does serve as a useful benchmark
for any replacement algorithm, including stack-type algorithms.
To show that OPT is a stack algorithm. observe that a priority list
P, can be constructed for OPT at each time 1. Specifically, P, is the
list of the pages referenced again, ordered by their time of next
reference, followed by the list of the pages not referenced again, as
ordered by the tie-breaking rule Q.

The stack processing technique for OPT is illustrated in Figure 11.
Priority lists are ordered as described above, and curly brackets
denote the pages ordered under the rule Q. For example, at time
1t = 8 the priority list is Py = ¢, d, a, b, because ¢ is the next page

Figure 11 Stack processing and success function for OPT replacement

TIME 1 2 3 4 5 6 7 8 9 10

PAGETRACE| @ b ¢ a d b a2 d ¢ d

F(C) ——s
°
3

PRIORITY

ust € ¢ d cfafadb jc
c{hbbcd

a4 2 ¢ a2 a b a d ¢
OPT STACK
b b b d d b a2 a
€c ¢ ¢© ¢ b b
ok | @ @2 23 2 34 2

MATTSON, GECSEI, SLUTZ, AND TRAIGER

referenced

Pages a anc
ing to rule
priority lis
distance fr
amount of

Fortunatel:
priority list |
w(a)toap
in xt +19 b B
1. If page «
as infinity.
pages in T
illustrative
Figure 12.

If the forwe

the new fo: |
from the ¢
a # x, ar

w(a) = {h
H

To determi
trace X, co
Suppose th
that x; and
reverse trac:
At time j,
referenced i
However, t'
distance w;
distances fo:
of the sequ
trace X.

These result:
for determi:
technique is
scan of the
left-pointing
order, on a
using OPT -
Forward dis
the OPT pri

The LRU sta
important ir

No.2 - 1970

:rties of LRy

stermined iy

aracteristics,
chosen page
are. If a tie
>nced again,
€ page with
ple of opr
city C = 3,
»ushed from
1ced sooner,
se page dis
riority over

igorithm is
ealizable in
ze of future
benchmark
algorithms.
priority list
y, P, is the
me of next
:d again, as

Figure 11.
ly brackets
sle, at time
> next page

IBM SYST J

referenced (at 7 = 9) and d'is the second page referenced (at 1 = 10).
Pages @ and b are not referenced again, and thus are ordered accord-
ing to rule ©. The sequence of OPT stacks is construcied using the
priority lists, and the success function is obtained from the stack
distance frequencies. A major difficulty with the technique is the
amount of forward scanning required to construct the priority lists.

Fortunately, a more efficient procecfurc exists for obtaining the
priority lists. For a given page trace X, we define the forward distance
w,(a) to a page a at time ¢ as the number of distinct pages referenced
i Xeats = » X, (Where x,. is the first reference to page a after time
7). If page a is not referenced again, the forward distance is defined
as infinity. Note that the priority list under OPT is a listing of the
pages in I, according to their increasing forward distances. An
illustrative example of forward distance determination is given in

Figure 12. .

If the forward distances to all pages in I',_, are known at time 7 — 1,
the new forward distances at time t can be determined iteratively
from the single forward distance w,(x,). Specifically, for page
a # x, and w, £ w,(x,), we have

{W.-,(a) —1 for wo@ < w, and w,_,(a) # @
W:(a) =

wia(a) = @

(19)
To determine the sequence of forward distances {w,} for"a page
trace X, consider the reverse trace X = x5, Xp_ay t0c 4 Xay X
Suppose that X" is analyzed according to LRU replacement and
that x; and x, denote two successive references to page a in the
reverse trace. Thus X* = x,, -+, xi=a, -+ ., X, = @, -+ , Xu.
At time j, the stack distance A; is the number of distinct pages
referenced in x.. --- , X;.1. (Note that x,,, precedes x; in X*)
However, this number of distinct pages is precisely the forward
distance w, for page trace X. Thus the sequence of LRU stack
distances for trace X% namely, A., Ap.y, 2+, Ay, Ay, is the reverse
of the sequence of forward distances wy, wy, <=+ , Wiy Wi for
trace X.

w,_;(a) for w,_,(a) > w, or

These results form the basis of a two-pass stack processing technique
for determining the success function for OPT replacement. The
technique is illustrated by Figure 13. The first pass is a backward

scan of the page trace X using LRU replacement, denoted by the .
left-pointing arrow. The LRU stack distances are stored, in-reverse’

order, on a “distance tape.” The second pass is a forward scan
using OPT replacement, as shown by the right-pointing arrow.
Forward distances read from the distance tape are used to maintain
the OPT priority lists according to Equation 19.

The LRU stack distances gathered from the reverse page trace yield
important information about the forward page trace. Specifically,

STORAGE HIERARCHY EVALUATION

NOo.2 - 1970

forward
distance

Figure 12 Determination of
forword distances ot
time t — 4

1

'

TIME 12 3 45 6 7 8 910

PAGE
a b c 2
TRACE 9 10
2
3

4

w4(a)=3 w‘(b)=2 w‘(:)=4 P‘=b.a‘c

maximum
success
function

95

i

\"\’-’G’-ﬁ"»"m"m* ‘v‘

96

S T

Figure 13 Two-pass technique for LRU and OPT replacement

A BACKWARD SCAN

PAGE Xy
TRACE

-

LRU
PROCESSOR

BACKWARD
DISTANCE i
TAPE

[-

B- FORWARD SCAN

PAGE x.
TRACE 2

[=]

FORWARD
DISTANCE
TAPE

B

[~]

Figure 14 Scquence of LRU distances for page o

A TRACE X
TIME 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16

c b b d @w ¢ (3) «
PAGE TRACE ~_/ —

3 3 1 2 4 2
B TRACE xR
TIME 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1

< b b d @ (a) ¢ b d c d @ 3
PAGE TRACE A NN

3 1 2 4 2 [

we claim that the success function for the reverse trace X® under

LRU replac

trace X under LRU replacement. Thus one can use the backward
scan of X, not only to generate the distance tape for OPT, but also

to generate

To prove this result, let Fy,,(C, X) denote the LRU success function
for trace X, and consider the set of LRU stack distances measured
for a given page a in X and X*. As the example in Figure 14 ;
illustrates, these sets are always identical. Since this holds for every

MATTSON, GECSEL SLUTZ, AND TRAIGER

ement is equal to the success function for the forward

the success function for LRU.

§

IBM SYSTJ

66

distinct page
identical, so
are equal.

Another rest
isequal to F,
for trace X. -
forward-bac!
During the f
the distance
function for

Random re

In the stack

tion is associ
techniques t
that does no
if the buffer t
ment with a
perform a }
obtain a RA?
yield a set o:
sample succe:
success funct

A question t
generate a sa:
that bases a
variable. We
there certain!
property fails

Our approac!
stack algoriti
each capacity
time 7, the pr
of pages in

likely to be c
induces a pric

To establish
that a replace

Since y(C) =
bility that any

One difficulty
priority list P,

aciually const

No.2 -

1970

(I

X*® under
1e forward
backward
T, but also

ss function
; measured
Figure 14
s for every

IBM SYST J

distinct page in the trace, the distance frequencies for X and X* are
identical, so that the success functions Frr(C, X ") and Fyru(C, X)

are equal.

Another result, which is proved in the Appendix, is that For+(C, X)
is equal to Fopr(C, X 7y, where Fopr(C, X) is the OPT success function
for trace X. Thus, our two-pass technique can be implemented with
forward-backward scans as well as with backward-forward scans.
During the first scan, the success function for LRU is obtained, and
the distance tape generated. During the second scan the success
function for OPT is obtained.

Random replacement

In the stack algorithms considered thus far, a unique success func-
tion is associated with each trace. We now extend stack-processing
techniques to cover a “random replacement” algorithm (RAND)
that does not always yield a2 unique success function. With RAND,
if the buffer has a capacity of C, any given page is chosen for replace-
ment with a probability of 1/C. In analyzing RAND, one might
perform a Monte Carlo simulation for each buffer capacity to
obtain a RAND success function. Repeating these simulations would
yield a set of sample success functions to characterize RAND. The
sample success functions could then be used to estimate an “‘average”
success function.

A question that arises is whether stack processing can be used to
generate a sample success function for RAND or any other algorithm
that bases a replacement choice on the value of some random .
variable. We observe that RAND is not a stack algorithm, because
there certainly exists a trace and a time ¢ for which the inclusion
property fails to hold with a nonzero probability.

Our approach is to define a replacement algorithm RR, which is a
stack algorithm having the same statistical properties as RAND for
each capacity C. The algorithm RR is defined as follows: at each
time 1, the priority list P, is obtained by randomly ordering the set
of pages in T,., (each of the v,_,! possible orderings is equally
likely to be chosen). Observe that RR is a stack algorithm, since it
induces a priority list.

To establish that RR is statistically equivalent to RAND, assume
that a replacement is necessary in a buffer of capacity C at time 1.
Since y,(C) = min [B,_,(C)), and P, is randomly chosen, the proba-
bility that any given page is y,(C) is 1/C—the same as for RAND.

One difficulty in implementing RR is the generation of the random
priority list P,. Fortunately, it is possible to update the stack without
actually constructing the entire priority list. Assuming that A, > j,

No.2 - 1970 STORAGE HIERARCHY EVALUATION

<

97

1
R s e e St S B - s SRR

R 8 B

e AT

s i £ “lf

s B il it M0k B e S R

o

98

let g,(r) denote the probability that page s,_.(j) has priority ove,
page y.(j — 1) at time . If s5,_,(j) does not have priority ove
».(j — 1), we know that s5,_,(j) = min [B,_,(j)]. Since this occurs
with probability 1/, we obtain

1 —q®=1/j
or

a0 =0G-1/j (20)

Using Equation 20, the stack can be updated at time ¢ for rRr
replacement by choosing page s.(j) = s._.(j) with probability
G—1)/jfor2 <j< A,and j < v,.,. As a check, let us compute
the probability Q that an arbitrary page b is pushed from a buffer
of capacity C at time ¢. Assuming that page b occurs at some position
k on stack S,-, where 1 < k < C, then Q@ is given by the following
expression:
0 = P.{y.(C) = b}
= Pisik) = yik — 1), 5,k + 1) = 5,3k + 1),
sik + 2) = s,k + 2), -, 5(0) = 5,.,(C)} 21

The events in the joint probability in Equation 21 are independent,
so that we obtain

0 = P{s,(k) = y.k — D}-P{s,k + 1) = s,_,(k + 1)}
P sk + 2) = stk + 2} -+ P {s(C) = 5,4(O))

- O - (2

I

Since Q = 1/C holds for any page b and capacity C, we have
verified that the stack updating for RR can be accomplished using
Equation 20, and that RR has the same statistical properties as
RAND for each buffer capacity. Note that although a particular
value of a point on the success function, for example F(4) = 0.3, is
equally likely to occur under both RAND and RR, the occurrence
of a particular success function is not equally likely.

As the example with RR illustrates, stack processing techniques
can be extended to cover probabilistic replacement algorithms. In
fact, a replacement algorithm can have a mixture of probabilistic
and nonprobabilistic aspects. For instance, the arbitrary rule used
to break ties in LFU and other algorithms may choose a page at
random. Another possibility is for a replacement algorithm to favor
some pages probabilistically in the construction of the priority list.
thereby realizing a so-called “biased replacement” algorithm.'” In
any case, the only requirement is that the priority list be constructed

MATTSON, GECSEl, SLUTZ, AND TRAIGER IBM SYST J

63

e B e v

1o reflect
algorithm

Congrue

Up to nc
hierarchie
this type «
referencec :
that all a
that seldc
mapping
is that e>
pages in t
replaceme
informati
offset the
employed

only a su’

One such
the 2k di:
disjoint ¢
k-a pag
2% — 1,
bits of th
the class
called the
the class
for all pa

In a two-!
class is a
be used e
the class
buffer in
may appe
reference
-occupied
selects o1
replacem:

Note tha
class, anc
Cisapo
cach clas
for a fixe
the map;
constrain

iority over
iority over
this occurs

(0)

-t for RR
probability
S compute
m a buffer
1€ position
: following

}ooo@
iependent,

i}
= 5,..(0)}

, we have
shed using
perties as
particular
y = 0.3, is
currence

rechniques
rithms. In
obabilistic
rule used
a page at
1 to favor
iority list,
ithm.”” In
»nstructed

IBM SYST J

1o reflect the probabilistic properties of the desired replacement
algorithm for every capacity C.

Congruence mapping

Up to now, we have restricted our attention to two-level storage
hierarchies with unconstrainted mapping at the first level. Under
this type of mapping, any page in the buffer may be replaced by the
referenced page. The advantages of unconstrained mapping are
that all available page frames in the buffer can be used, and also
:hat seldom used pages cannot become “locked” into the buffer by
mapping constraints. A disadvantage with unconstrained mapping
is that extensive associative searches may be necessary to locate
pages in the buffer. Moreover, the implementation overhead of the
replacement algorithm may be excessive, since relative priority
information must be maintained for all pages in the buffer. To
offset these disadvantages, a constrained mapping scheme can be
employed whereby each page is restricted to occupy a member of
only a subset of the buffer page frames.

One such mapping technique is called congruence mapping, by which
the 2¢ distinct pages in the address space are partitioned into 2°
disjoint congruence classes, where 0 < a < k, and each class contains
2"~* pages. The classes are numbered consecutively from 0 to
2° — 1, and class membership is determined from the a low-order
bits of the page number. In this case, the low-order bits constitute
the class number [x] of a page, and the remaining k — « bits are
called the page prefix as shown in Figure 15. The quantity « is called
the class length. For a class length equal to zero, we set x] =0
for all pages.

In a two-level hierarchy with congruence mapping, every congruence
class is assigned an equal number of page frames in the buffer—to
be used exclusively by members of that class. This number is called
the class capacity and is denoted by D. (The total capacity of the
buffer in pages is thus C = 2°-D.) When a page x is referenced, it
may appear in any of the D page frames reserved for class [x]. If the
reference page is not in the buffer, and if the D page frames are all
occupied by other members of class [x], a replacement algorithm
selects one of these pages for removal. We assume that the same
replacement algorithm is used separately for each of the classes.

Note that when the class length a is zero, all pages are in the same

class, and the mapping is unconstrained. When the buffer capacity
Cis a power of 2, and when C = 27, only one page is allocated to
each class, and the mapping function is fully constrained. Thus
for a fixed buffer capacity C = 2*, where 0 < k < k, we can vary
the mapping function from unconstrained to partially and fully
constrained simply by varying the value of « from 0 to Ah.

STORAGE HIERARCHY EVALUATION

No.2 - 1970

Figure 15 Page number

i\(—'k—a BITS —>

fac———a BITS —

PAGE PREFIX

CLASS NUMBER

99

k BITS

o 9 g Gl

W o 15 g

0207 S A 900 R B

i o

& i

e N
Figure 16 Two-level hierarchy with congruence mapping
BUFfez
D PAGES
PER CLASS
ml -l 1 | e
: STORE
2%-° paGES f~——f — — ... FRPN 7
PER CLASS
~ = —
[]] O |
[1 2 3 i 2e-2 27
2° CLASSES

Since the congruence classes are disjoint, and since the same number
of buffer page frames are allocated to each class, it is possible to
treat a bufler as a collection of 2 distinct buffers—one for each
class [x]. If we also view the backing store as 2* individual backing
Stores, as shown in Figure 16, the two-level hierarchy partitions
into a collection of 2* distinct subhierarchies, each with a buffer
capacity of D page frames. When the replacement algorithm is a
stack algorithm, these subhierarchies can be evaluated separately
using stack processing techniques. In practice, 2° stacks (one for
each subhierarchy) can be maintained as the trace is processed.
Each page reference x causes only the stack for class [x] to be
updated, and a stack distance A to be determined from that stack.

In congruence mapping, to calculate the success function for a
given trace and given class length a, the stack distances must be
carefully interpreted. Whenever a stack distance A is measured, the
corresponding critical capacity of the entire buffer is 2%.4, since
this is the minimum buffer capacity necessary to contain the refer-
enced page. Therefore, the success function F*(C) for the set of
capacities C = 2°-D where D = 1, 2, ---, is given by

s n(4)

F*(C) = F*(2*-D) = g; T

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

where n(A)
any of the

Generally,

each value

only a sing
success func
that under

ordered acc
S, o) ¢
one would

reference. F
any i and a
in order all

it is not nec
order to fi1
distances {2
first define t
x and y as

For example
that the clas:
if the class le
that the cur
on stack S,_.
stack will co:
Therefore, A
entries y abo

A simple pro
stack, and m
for0 <r<
equal to r. If
find RM(x, y)
is given by

k

AT = 3 @

r=a

However, if |
of stack S,_,
lengths a. In
appropriate d

An example ¢
17A, the righ
stack. In Figu
in reverse ordc
to Equation 2
Note that the
distance A as

mapping.

Y0.2 - 1970

BUFFgp

|

BACKING
STORE

bbb LLllIll'j,

2 number
issible to
for each
{"backing
sartitions
2 buffer
thm is a
>parately
(one for
-ocessed.
x] to be
stack.

n for a
must be
ired, the
A, since
1e refer-
e set of

M SYST J

where n(4) is the total number of times the distance A occurs for
any of the stacks.

Generally, stack processing techniques must be used separately for
each value of the class length a. However, for LRU replacement,
only a single stack need be maintained in order to determine the
success functions for all values of « in the interval 0 < o < k. Recall
that under LRU, the stack S,_, is the list of all the pages in T,_,
ordered according to most recent reference. To form the stack
S,_.(i, &) corresponding to congruence class i and class length a,
one would list the pages in class i according to their most recent
reference. However, this ordering is preserved in the stack S,_, for
any i and any o. Therefore, S,_,(i, @) can be determined by listing
in order all the stack entries of S,_, belonging to class i. In practice,
it is not necessary to actually construct each stack S,_([x.], «) in
order to find the distance A%. One can determine all the stack
distances (A%} in one scan of the LRU stack S,_,. To do this, we
first define the right match function RM(x, y) for two page numbers
x and y as the number of consecutive low-order bits that match.
For example, RM(01101,00101) = 3, and RM(0000.0001) = 0. Note
that the class numbers of two pages are equal ([x] = [y]) if and only
if the class length satisfies the inequality « < RM(x, y). Now suppose
that the current reference is to page x, and censider the jth. entry
on stack S,_,, which is y = s5,_,(j). The occurrence of page y on the
stack will contribute to the distance A? if and only if RM(x, 3) > a.
Therefore, A7 can be determined by counting the number of stack
entries y above (and including) page x that satisfy RM(x, y) 2> a.

A simple procedure for determining A{ for all « is to scan down the
stack, and maintain a set of right match frequency counters | u(r)}
for 0 < r < k. Counter u(r) is incremented whenever RM(x, y) is
equal to r. If page x has been previously referenced, we eventually
find RM(x, y) = k (corresponding to x = y), and each distance A}
is given by
k

Af = > u(r) where 0<a<k (23)
However, if page x has not been previously referenced, the bottom
of stack S,_, is reached and A? is set equal to infinity for all class
lengths «. In either case, each distance A{ is used to increment the
appropriate distance counter for class length a.

An example of this procedure is indicated in Figure 17. In Figure
17A, the right match functions are found by scanning down the
stack. In Figure 17B, the right match frequencies {u(r)} are plotted
in reverse order as a function of . Cumulative summation, according
to Equation 23, then yields the desired LRU stack distances {Af}.
Note that the stack distance for class length zero is the same stack
distance A as obtained for LRU replacement with unconstrained
mapping.

No.2 - 1970 STORAGE HIERARCHY EVALUATION

101

Fa

Figure 17 Right match function for LRU replacement set of pages
* * R A DETERMINATION OF RIGHT MATCH FUNCTIONS B DETERMINATION OF STACK DISTANCES referenccd I
T PAGE x, the replacer
n 7 8] the page
" , 2 YAV A /IA»/D 1 . 1o pag
i i RIGHT 5 When page
. 7z el e a a page isre

3 cjlofo}o /1/7‘ [_2— page replace ;

ofr]1fo|ope] 1 o 9 9 }? ! since a page ;

1] Po 1//0/ T os 4 2 ° the backing -

“? —— -— M" MQ’ ..

: t]l1jof1]o]1 0 of pages in

— do not depe |
I A A N | °] 8 store, but
11ofo] 1|0 £o 1 T] capacity at

. ERAG AV AY A A 1S __s_‘ <'4 We have st

E) ol1t1f1]o]o for a two-l.

P ' 2f contents of
R A e L R o , | now assume
STAcK S ¢ ‘ z __o archy induc:

; * | the replacer

: true, then f

E C, - ,Cy

x from the s

Sy , let Bi(C,)dc

3 Multilevel hierarchies thesum C, - |
In previous sections of this paper, stack processing techniques are Bi{(C) = B,

_ developed to obtain the success function for a two-level hierarchy. |

% _ For each buffer capacity, this success function represents the relative or equivaler
number of accesses to the buffer for a given page trace. stack S, an
a5 result is illu:

: We now show that the same success function can be used to find |
the access frequencies for all levels of a muitilevel, linear hierarchy The main ek
for any number of levels, and any capacity at each level. Recall that that Equatic |
in a linear hierarchy, the only downward data path from each level s,(4) is &
M; is to the next level M., for 1 < i < H. Also a path or sequence stack S,_, i
of paths is available from each level M,, for 1 < i < H, to the the top C, ¢
local store. Furthermore, no replacement decisions are required 5(C,) repre:
when 2 page moves upward through intermediate levels. We now removed freo
assume that the same replacement algorithm is used at all levels. hierarchy, w
and that the mapping function is uncounstrained at every level. since the hie
(Hierarchies with constrained mapping functions are considered selects a pag
later in this paper.) At time t = 0, the backing store contains all page v (C))
pages, and these pages are moved to the local store M, on demand. fcmoval has
When M, is full, pages replaced in M, are pushed down to the next 5 y(C +
lower level in the hierarchy, M,. As each successively lower level BY(C,), and
M; fills, the pages replaced in M; are pushed to the next level
M;.,. At level M,, the replacement algorithm is applied to the A similar ar;

102 MATTSON, GECSEI, SLUTZ, AND TRAIGER 1BM SYST § N0.2 - 1970

72

STACK DISTANCES

iniques are
- hierarchy.
the relative

sed to find
r hierarchy
Recall that
each level
T sequence
H, to the
e required
. We now
all levels,
very level.
considered
ontains all
n demand.
o the next
ower level
next level
ted to the

IBM SYST J

set of pages already present, thereby making room for the currently
referenced page x.. At the intermediate levels M,, for 2 < i < H,
the replacement algorithm is applied to the set of pages in M, and
to the page pushed from level M,_,.

When page x, is accessed from some level M;(for2 <i< H-1),
a page is replaced from each of the lgvels M,, M,, --- M._.. The
page replaced from level M._, is guaranteed to find space at level M,
since a page frame was vacated by x,. When page x, is accessed from
the backing store M, a page is displaced from each of the levels
M,, M,, - -- , until a vacant page frame is found. Note that positions
of pages in the hierarchy—and therefore the access frequencies—
do not depend on the structure of upward data paths to the local
store, but depend only on the replacement algorithm and the

capacity at each level.

We have shown that when a stack replacement algorithm is used
for a two-level hierarchy, the top C, pages of the stack are the
contents of a buffer of capacity C, as shown in Figure 18A. Let us
now assume that the replacement algorithm for a multilevel hier-
archy induces a priority list at every time and that this list determines
the replacement decisions at every level of the hierarchy. If this is
true, then for any number of levels and any set of capacities C,,
C,, - -+ , Cy, the contents of each level at any time can be determined
from the stack for this replacement algorithm. More precisely,
let Bi(C.) denote the contents of level M, at time ¢, and let #; denote
the sum C, + C. 4 --- + C. We then claim that

Bi(C) = B(o:) — BJ(oi) fori=1,2,--- ,H—1 (24)

or equivalently that B}(C,) can be identified as the first C, entries of

stack S,, and B? can be identified as the next C, entries, etc. This
result is illustrated for a four-level hierarchy in Figure 18B.

The main elements of the proof of this result are as follows. Assume
that Equation 24 is satisfied at time 7 — 1, and that page x, =
s,(A)) is an element of Bi_,(C,) (i.e., level M, is accessed.) As
stack S,_, is updated to stack S,, page y«(C)) is removed from
the top C, elements of S,_,, with the result that pages s/(1), -+ ,
s(C,) represent B)(C,). Now observe that page y(C, + Gy is
removed from the top C, + C. elements of §,_,. In terms of the
hierarchy, we know that y,(C,) is pushed to the next lower level M,,
since the hierarchy is a linear one. The replacement algorithm then
selects a page from y,(C,) 4+ B2_(C.) for removal from M.. Since
page y,(C,) has lowest priority in B;_,(C)), the page selected for
removal has lowest priority in B}_(C,) + Bi_(C,;). But this page
is y(C, + C,), so that s,(1), --- , s(C, + C,) represent B{(C) +
B¥(C,), and thus 5,(C; + 1), - - , s{C: + C>) represent BY(C,).

A similar argument applies to subsequent levels M; where 2 < i <

No.2 - 1970 SYORAGE HIERARCHY EVALUATION

Figure 18 Relationship between
stack and hierarchy
levels

A TWO-LEVEL HIERARCHY

T p——
e ;‘- - } B(C)
My=My E

8 MULTILEVEL HIERARCHY
STACK

=

! Gl— }s:(C,)
‘% po—

™, c’z — | pBACY

M, —1:. 13-~ (B}
M =M, p—

=

Figure 19 Obtaining access

frequencies from
success function

0.50

o

104

-

g — L. Page y,(0._,) is puéhed from level M,_, of the hierarchy, ang
competes with the pages in B;_,(C). The replacement algorithp,
selects for replacement the page

min [ye(m-n), B:—I(C')] = min [B,__,(a'g)] = y;(ﬂi)
with the result that
B(0:) = Bi(C)) + BY(C,) + --- + Bi(C)

and

 B(C) = B(c) — Blo:)

At level M, the page y,(s,-,) that has been pushed from M,_, finds
a vacant page frame, and all lower levels remain unchanged. Then

Bi{(C,) = B]_(C)) + y{o,) — x, = B(o,) — B(o,-,)
and
Bi(C)) = B]_(C;) = B(s;) — Bfo,;-,) for j > ¢

Thus we have shown that Equation 24 is satisfied at time ¢.

The significance of this result is that a stack distance A, where
G+ -+ C,., <AL C + --- + C,, corresponds to an access
to hierarchy level M, and the relative number of such A’s is simply
the access frequency F, to that level. Thus

Amgg—y+1 L

F, = = F(o,) — F{o,-,) for 1<g< H-1

25

As with two-level hierarchies, all other accesses are directed to the
backing store so that
H-1

Fy=1— > F
f=1

The determination of access frequencies is illustrated graphically
in Figure 19 for a four-level hierarchy. Note that the technique
illustrated in the figure cannot be used for an arbitrary hierarchy
or success function. However, the technique can be used for any
linear hierarchy as long as the replacement algorithm always induces
a single priority list for all hierarchy levels.

Our treatmert of multilevel linear hierarchies can be extended to
include hierarchies with congruence mapping functions. We assume
that the same class length o is used for every level and that D.
page frames are allocated to each congruence class at level M..

The total capacity of level M, is then
C:=2"-D; wherel <i<H. (26)

Using the success function F*(C) and Equations 25 and 26, w¢
obtain the access frequency F; for each level as follows:

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

74

When usin;

19, it is im}
level hierar |
the storage

Possible ¢

It is possib
various ch:
propriate e
that are nc

" encodings ¢

congruence
classes with

of the hier:
techniques ¢

o+ Pre-load
o Loading |
program
* Returnir
tion
¢ Maintai
hierarch:
¢ Bringing
* Returnir
stores fr. |
+ Moving |

To illustrate .
these variati
some detail. .
fetch operat
however, pa
tions, and 1
only to refer
hierarchy ar
facility, and
hierarchies i
mediately foi

The evaluati.
tag each ref -
priority list . |
recorded. Fc

80.2 - 1970

rchy, and
algorithm

wn-l ﬁndS
i. Then

ne t.

A, where
an access
is simply

H-1
25
ted to the

raphically
technique
hierarchy
d for any
vs induces

tended to
’e assume
i that D:
level M..

(26)
d 26, we

IBM SYST J

F“(U,‘) - Fa(o',‘_l) fOl‘ 1 S is H — 1

Fl = H-1
1—) F! for i=H

i=1

@7

When using Equation 27 or the graphic technique shown in Figure
19, it is important to remember that the success function for multi-
level hierarchies with congruence mapping is defined only when
the storage capacity is a multiple of 2%

Possible extensions

It is possible to extend stack processing techniques to account for
various changes in the hierarchy model. For example, with ap-
propriate encoding of the n-bit address, systems with page sizes
that are not a power of two can be evaluated. Similarly, other

- encodings of the n-bit address can be used to evaluate systems with

congruence mapping functions for any number of congruence
classes with equal or unequal class sizes. Indicative of other changes
of the hierarchy model that can be handled by stack processing
techniques are the following:

e Pre-loading program pages into the buffer for starting execution

« Loading a working set'® of pages into the buffer when resuming
program execution

« Returning all pages to the backing store upon program interrup-
tion

« Maintaining copies of pages in several levels of the storage
hierarchy

« Bringing pages to the local store only for fetch operations

o Returning pages to the backing store for references such as
stores from an 1,0 channel S

« Moving unequal size pages or segments between levels

To illustrate how stack processing techniques can be adapted to
these variations in hierarchy design, we describe two extensions in
some detail. In our original model, the generator does not distinguish
fetch operations from store operations. In some computer systems,
however, pages are brought to the local store only for fetch opera-
tions, and usage statistics for page replacement algorithms refer
only to references for fetches. Stores to pages in lower levels of the
hierarchy are broadcast to these levels by the hierarchy management
facility, and no pages are moved. The justification for fetch-store
hierarchies is that fetches or additional stores usually do not im-
mediately follow stcres to a page. i

The evaluation of fetch-store hierarchies requires that the generator
tag each reference as either a fetch or a store. For fetches, the
pricrity list and the stack are updated, and a fetch distance A’ is
recorded. For stores, neither the priority list nor the stack is up-

No.2 - 1970 STORAGE HIERARCHY EVALUATION

!

105

qm
A

2y

. ,v%?‘;w AT

P AT A R

gy, ey, Lo PR T R T . W L ns i f
SEBR R G e A0 et | sl R S L W bt .

106

dated, but a store distance A® is recorded. The distributions {n'(a®y
and {n°(A")} can then be used to determine the fetch and store
access frequencies to each level of the hierarchy. It should be clear
that this technique also works if congruence mapping is includeq.
We can also consider -a modified fetch-store design where the page
usage statistics are updated for a store operation even though no
page motion occurs. This change is incorporated by updating the
priority list for both fetches and stores. Thus, for modified fetch-
stores, the net change in our model is that the stack is not updated
for store operations.

Besides distinguishing fetches from stores, a computer system may
also distinguish the various sources of store requests. For example,
a “call-back” feature can be used by which a page in the buffer
is moved to the backing store if the page is stored into by an 1/0
device. The motivation here is to free the buffer of pages not needed
by the CPU, and to service all 1.0 stores from the backing store,

For a call-back hierarchy, the generator must specify at least two
kinds of references—CPU references, and stores from the 1,0 channel.
Stack processing techniques can then be modified as follows. When
a CPU store or fetch occurs, the stack is updated in the normal
way (except for special entries to be described later), and a distance
counter n°**(A) is incremented. When an 10 store occurs, say
at time 1, a counter n°(A) is incremented. If page x, does not

occur on stack S,_,, then S, is equal to S,_,. If page x, does occur °

onstack S,_,, then S, = S, _, except that x, is replaced by the special
entry “#.” This entry, counted for all stack distance measurements,
represents the empty page frame caused by page x, returning to
the backing store. To ensure that empty page frames are filled as
soon as possible, all #-entries are assigned the lowest priority
in replacement decisions.

The call-back feature can be used in conjunction with the fetch-
store or modified fetch-store schemes. In all cases, the correctness
of the modified stack processing techniques can be established.

Since stack processing allows a large sample of “typical” address
tapes to be analyzed, for many hierarchy models, the efficiency
gained at the early stages of hierarchy design may be great enough
to impact the whole design process. More of these traces can be
processed in a given time, and more hierarchy designs can be evalu-
ated for a given number of traces. The availability of this data may
help justify the “typical”-trace approach to design, or may help in
the development of other models for system requirements. As an
example, program models can be more deeply investigated by
evaluating both a program and its model under a very large number
of address traces. Improvement in program modeling, in turn, may
enhance the success of analytical disciplines that use these models.
such as storage interference studies for multiprogrammed systems.

MATTSON, GECSEI, SLUTZ, AND TRAIGER

70

IBM SYSTJ

ot s
'

Concluding 1 k

The concepts |
variety of stact
tion of storage
a class of page
show that rep!
as least recent -
ment—belong

For any stack
obtained from
calculate the s
used to determ
multilevel, line.
any capacity at

For least recer
of hierarchies v
in a single pass
classes, any nu
level.

Some special 1
ment algorithn
and that OPT n
trace and buffe:
with a forward
pass of the sam

We conclude t!
of the simulati
Furthermore, v
and the variot
provide insight
and computer ¢

ACKNOWLEDG
The authors w
comments and

proof of Theore

Appendix

Two results mer
algorithm are p
any trace and rc

No.2 - 1970

itions {n'(a%)} -

tch and store
hould be clear
1g is included,
’here the page
en though no
updating the
dified fetch-
s not updated

T system may
For example,
in the buffer
ito by an 1/0
es not needed
sacking store,

- at least two
2 1/0 channel.
ollows. When
n the normal
nd a distance
> Occurs, say

x, does not
x, does occur
by the special
ieasurements,

returning to

.,are filled as
west priority

th the fetch-
e correctness
‘tablished.

ical” address
-he efficiency
great enough
races can be
can be evalu-
his data may
may help in
nents. As an
‘estigated by
.arge number
in turn, may
hese models,
ned systems.

IBM SYST J

g
!
i
!

concluding remarks

The concepts presented in this paper have been used to develop a
variety of stack processing techniques that are useful in the evalua-
tion of storage hierarchies. Using the inclusion property, we define
a class of page replacement algorithms, called stack algorithms, and
show that replacement algorithms that induce priority lists—such
as least recently used, least frequently used, and random replace-
ment—belong to this class.

For any stack algorithm, the frequency of stack distances can be
obtained from an address trace by stack processing and used to
calculate the success functions. The success function can then be
used to determine the relative frequency of access to all levels of a
multilevel, linear storage hierarchy, with any number of levels and
any capacity at each level.

For least recently used replacement (LRU), the access frequencies
of hierarchies with congruence mapping functions can be determined
in a single pass of the address trace—for any number of congruence
classes, any number of levels, and any capacity per class at each
fevel.

Some special results are presented concerning an optimal replace-
ment algorithm (OPT). It is shown that OPT is a stack algorithm
and that OPT minimizes the number of page swaps for any address
trace and buffer capacity. Also, both OPT and LRU can be evaluated
with a forward pass of the address trace followed by a backward
pass of the same address trace.

We conclude that stack processing techniques can eliminate much

of the simulation effort required in storage hierarchy evaluation.
Furthermore, we believe that the classification of stack algorithms
and the various extensions to stack processing techniques may
provide insight into the areas of program modeling, system analysis,
and computer design.

ACKNOWLEDGMENT

The authors wish to acknowledge J. H. Eaton for his helpful
comments and criticism, and T. W. MacDowell for his help in the
proof of Theorem 4.

Appendix

Two results mentioned in the paper concerning the OPT replacement
algorithin are proved here. To do this, it is first shown that given
any trace and replacement algorithm (not necessarily using demand

NOo.2 - 1970 STORAGE HIERARCHY EVALUATION

107

R

SRkt

A i e

0% A R R i ol o

108

paging) another replacement algorithm exists that uses demang
paging and causes the same or a fewer total number of pages to be
loaded into the buffer. This result is used to show that OPT is an
optimal replacement algorithm and, in fact, that OPT causes the !
minimum total number of pages to be loaded into the buffer, |
Finally, it is shown that the success function under OPT for any :
« trace is identical to the success function under OPT for the reverse

of the trace.
Definition

¢ |S] denotes the number of elements in a set S.

* lalx denotes the number of occurrences of a symbol a in 3
sequence X.

e A= lab,---}is afinite set of N page addresses or pages.

o X = Xx;, X, -+, X is a finite sequence of L elements from 4,
and is called a rrace.

* B(C) & A denotes the contents of a buffer of capacity C at time
1, and is called a srate.

Throughout this appendix, we consider a two-level storage hierarchy
with fixed buffer capacity C. Consequently, we usé B, instead of
B/(C). The term B, denotes the contents of the buffer immediately
after reference x, is made; B, is called the initial buffer state; and ¢,
the empty set, denotes an empty buffer state. '

Definition
e P =p,p,---,p,isafinite sequence of L sets, p. € A, called 'V
an O-policy. :

e Q0 =4q,q,---,q;isa finite sequence of L sets, g, C A‘, called
an I-policy.

A policy is a particular realization of a replacement algorithm for
a given trace. For such a trace and initial buffer state B, an I-policy
and an O-policy together determine the sequence of buffer states
that will occur during the trace. An I-policy gives the set of pages
loaded into the buffer, and an O-policy gives the set removed. If
P = ¢, no page is removed, and if g, = ¢, no page is loaded in.
Note that only certain pairs of O- and I-policies are meaningful.
For example, a page cannot be removed if it is not in the buffer.

" We consider only meaningful policies, where ¢,., & B, and p,., C
B, + g1, for 0 < t < L — 1. In this case, B,,, is obtained from
B, by

Bt+! = [Bl + qtﬂ] = D41
Definition

Let X be a trace and B, (where |B,] < C) an initial state. A
sequence of states B = By, B,, - - -, B, is a valid sequence if x, € B

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYSTJ

i

ST——

for1 <1<
application ¢ |

Note that va
pages may t -
our attentiol

AR
¢ x, € B,
¢ pFE o=
forallt,lgf

Under dema
the buffer fill

One measurc
number of p
pair. The fc

paging.

Theorem 1

Let P and (
valid demanc

E!ﬁls;?

valid policy
P = P, QO
for1<j<
Q"' by alte:
straints wher
demand pagi
clements of p
and a € ¢l ¢
p, and gi. Cl
and only dec:

. Proof. P° 2
]

To construct
smallest time
Set P/ = P~
X, = qand t
ack givt, the:
is defined her:
and g}, = ¢
or g/ = aif
q. & B, for

N2 - 1970

hat uses demang
ser of pages to be
'w that OPT is ap
t OPT causes the

into the buffer,
wder OPT for any
PT for the reverse

a symbol a in 3

ises or pages.
zlements from 4,

apacity C at time

storage hierarchy
se B, instead of
fler immediately
fler state; and ¢,

5, 00 © A, called

35 q, Q A, called

at algorithm for
e B,, an I-policy
of bufler states
the set of pages
set removed. If
ge is loaded in.
are meaningful.
»t in the buffer.
B, and p.., C
obtained from

initial state. A
ence if x, € B,

IBM SYST J

£+ €1 < L. A policy pair P and Q is a valid pair for X and B, if
“ication of the pair results in a valid sequence.

Note that valid policy pairs are quite general in that any number of
pages may be moved into or out of the buffer. However, most of
our attention is directed toward demand paging where

e pl<1 and lg| <1

e x, €EB.,=p =q =2¢ A1)
e pFEOG=q F ¢ and [Bioy] = C
foralls, 1 <r < L.

Undef demand paging, single pages are loaded when necessary until
the buffer fills; subsequently, page swaps occur only when necessary.

One measure of goodness for a policy pair P and Q is the total
number of pages loaded into the buffer)_% | |g,| under the policy
pair. The following theorem supports the usefulness of demand

paging.

Theorem 1

Let P and Q be a valid policy pair for X and B,. There exists a
valid demand policy pair P” and Q" for X and B, such that

L L
2} lg5] < Z‘ @]

Proof. P” and Q" will be constructed by forming a sequence of
valid policy pairs (P°, Q). (P', "), (P*, Q%), --- , (P*, Q%), where
PP=P Q" =QP'=P.0%=0"and 3%, lgi| < Xl.lgi"
for 1 < j < K. Informally, P’ and Q' are constructed from P’ ™' and
Q"' by altering pi~* and ¢i~' to satisfy the demand paging con-
straints where pi™' and‘or ¢gi™' are the first occurrences of non-
demand paging in P""* and Q'"'. This is done by “sliding" offending
elements of. pi~* and /or ¢i~" to a later time in P’ and Q'. If a € pi
and a € ¢! ever occurs then we trivially remove page a from both
pi and g!. Clearly, this does not disturb the validity of P’ and Q'

and only decreases the value of D %, |g!|.

To construct P’ and Q7 from P'"and @', 1 < j < K, let 1 be the
smallest time such that pi~" and /or ¢!’ do not satisfy Equation Al.
Set P/ = Pi"*and Q' = Q' except as noted below. Suppose that
x, = a and that ¢'™", for 1 < L, does not satisfy Equation Al. If
ad gi~', thensetq! = ¢ and qi,, = ¢} + ¢gi~'. (Note that “+”
is defined here since g ' N pi™* = ¢). If a € g7}, then set ¢/ = a,
andgq;,, = ¢;;1+1[qi7" —al1fr=L, thenset ¢/ = ¢ if a & g},
or gi = aif a € ¢gi'. In all cases, note that Q' is valid, since
9 & Bj_, for 1 <1< L,and that 2°7., |gi] < 3°F, lgi™).

No.2 - 1970

STORAGE HIERARCHY EVALUATION

73

109

Ty

e b ki

V,,-ri»i

e ik

SR e Ry

P S

optimum
replacement
algorithm

110

Now suppose that p;™*, for 1 < L, does not satisfy Equation A]
We observe first that {g;| < land ¢] = a.ifa & BiZl. If g = ¢ o
|BiZ3| < C, thensetp] = ¢ and pi., = pi7) + pi™". If ¢! = a anq
|BiZi| = C, set pj = b for some b € pi™' and pi,, = pi7! +
[pi' — b]. (Note that' pi™' 5 ¢, since BiZ!| = C and ¢i~' =)
Fort=L,setp/ =bCp;'ifq, =aand |[BjZ}| = C,orp} = 6
otherwise. In all cases, we observe that P’ is valid, since p: € B,

for 1 <t < L. Since P’ and Q' satisfy demand paging at least up

through time 1, the desired demand policies must eventually be
obtained. Thus the theorem is proved.

Before considering an optimum replacement algorithm we make
two observations. First, under demand paging, a valid policy pair
P and Q can be completely represented by specifying just the O-
policy P. This follows from Equation Al because g, s ¢ can only
occur when x, = a and @ & B,_, (in which case we know that
g. = a). Second, for demand policies P and Q, we can use i¢!p as
an alternative criterion of goodness. To see this let « be the smallest
integer such that |B,| = C,t > u. Then ¢/, is given by the following
expression:

1

Z la.|

(TR

lolp = u+ (L — w)— (A2)

Since u in Equation A2 is not a function of the policies, >_¢_, lg.lis

a constant and

« IA A
), = (L + E lq,l) - Z lg.| = constant — Z la.l (A3)

For a given trace X and initial state B, let us define an optimum
policy pair P and Q as a pair that is valid and minimizes >_*_, lg.’
over the class of valid policies. From Theorem 1 there always exists
an optimum policy pair which is also a demand policy pair. Since
(A3) holds for all demand policies we can find an optimum demand
policy pair if we can find a demand policy P” such that |¢|,» > |¢}r

where P is any demand policy.
Definition

Let X be a trace, and let @ € A be a page. The forward distance
d(a, x,) to page a from page x, is the number of distinct pages
occurring in X..,, - - , X, where e is the smallest integer satisfying
e > tand x, = a. If no such e exists then d(q, x,) =. .

Definition
Let X be a trace and B, an initial state. A valid demand policy P"-
called an OPT policy, for X and B, is defined as follows. For 7 = 1, 2.

-++, L, whenever p, # ¢ is required then p, = a where

MATTSON, GECSEI, SLUTZ, AND TRAIGER 1BM SYSTJ

Yo € B,_,)(d(

The forward di
referenced befi
requires that t
greatest forwar
realization of t}
We observe th:
have distinct fo
have an infinite
more than one
that all such pc

To show that :
policies we use

Lemma 1

Let X be a trac

By = T, + {a}
By = T, + {b}

and d(a, x,) < ¢
X and B,, there
B}, such that

54’:!1” Z !95[?

Proof. Given
Xatx; and b a’
does not occur i
three cases.

Case 1. p; = i
1 < j< i, Here
This results in B,
and B, = B, j <
up to time J, it
(because P is) an

Case 2. p,, =1
case we set pf =
Case 1, P'isa v

Cd&e_?,‘ pi # b’

CGSe 3A. p“ =
by

B, =T. + {a)

| N0.2 - 1970

uation Al |y € B,_.)(d(a, x) > d(b, x))
9; = ¢ or
10 =aand | rpe forward distance to a page is just the number of distinct pages
=‘_{’::; + referenced before that page is referenced again. An OPT policy
9 7 @) | (equires that the page removed from the buffer be one with the
orp; =¢ greatest forward distance. Note that an OPT policy is a particular
p: & B, realization of the OPT replacement algorithm discussed in the paper.
at least up | we observe that, at time 7, all pages with finite forward distances
:ntually be have distinct forward distances. However, more than one page may
have an infinite forward distance. This means that there may exist
more than one GPT policy for a given X and B,. It should be clear
v we make | a4 all such policies P° have the same value of |¢|so.
policy pair :
ust the O- | 1 show that any P° maximizes |¢|po over the class of demand

¢ canonly | ,jicies we use the following lemma.
know that

use || as
he smallest

¢ following Let X be a trace and B, and B} initial states where

Lemma I

R

B=To+ {“}} for ToC A and a,b& T, (Ad)
(A2) | By = T, + {b}
and d(a, x,) < d(b, x,). For any demand policy P, corresponding to

> i-1lglis | Xand B,, there exists a demand policy P’, corresponding to X and
B:, such that

ol 2 [9le ’ ,
] A3 | =
Proof. Given P, we construct P’. Suppose page a first occurs in '
1 optimum Xat x,, and b at x,,. Thus, i, < i, < L is assumed. If either b or a

S lad does not occur in X, then set i, or i, equal tc L + 1. We consider
’ =1 1

ways exists three cases.

pair. Since . .
m demand Case 1. p; = b where p; is the first occurrence of b in P, and
oo > ol 1<j<i, Hereweseip, =pi,1 < k< Landk # j, and p; = a.

Thisresultsin B, = T, + {(b}and B, =T, + {a},0 <t < j—1
and B, = B!, j < t < L. Since pages a and b are both not referenced
up to time j, it should be clear that P’ is a valid demand policy
(because P is) and that |¢p|pr = |@]s.

rd distance
inct pages
- satisfying

Case 2. p., = b where p;, is the first occurrence of b in P. In this
case we set p. = pi, | < k < Land k # j, and pl, = ¢. As in
Case 1, P’ is a valid demand policy and ¢, = |¢|r + 1 2 (9]~

Case 3. p, # b, 1 < j < i,. Here we must consider two subcases.

policy P’. gfase 34. p., = c. Attimer = i, the states of the buffer are given
= l, 2’ y

Bf. =T: + {a}

1BM sYST J N0.2 - 1970 STORAGE HIERARCHY EVALUATION 111

81

%

g ’Tm T R T A R I

112

Bi,=Tw+ {b} + la} — {c}force T,

which can also be written as follows:

B, =[Ti.+ la} — {c}]+ {e}

Bi, =1[T:, + {a} — {c}]1+ (b}

Note this is the séme form as Equation A4 with T, replaced by
[T:.,+ {a} — {c}]and a replaced by ¢. If d(c, x., ,,) < db, x;,,)

then we have a situation identical to that in the statement of Lemmjy
I where Xnowis x,, ,,, -, xy. Setting p, = p.for 1 <k <, — 1

and p), = ¢, we again consider Cases 1, 2, and 3. Since the “npew» °
ia o

X is strictly shorter than the original X, this situation can only occur
a finite number of times. Note that 2’ is valid as far as it is specified
and that p{, --- | p’_ contains one more ¢ thanp, --- p,..

If dlc, x,,.1) > d(b, x...,), we set Pe=pforl < k<i —
and p!, = ¢, and consider two more cases, First, if p, = b, where P
is the first occurrence of b in X and ¢ < iy, we set pi = p,. for
lo+1<k< Landks fand p, = c.Here B, = B, fort < t < L
and as in Case 1, we see that |¢|, > ¢! p still holds. Second, if p, #
b,for ¢ < i,, weset p! =Pl + 1< k< Landk = i, and p!, = ¢
Again we have B/ = B, for i, < ¢ < L, but we note that p,, = ¢,
whereas p/, = ¢ ¢ ¢. However, since Pi. # ¢ and p!, = ¢, the
relation [¢|,- > |¢], still holds.

Case 3B. p., = ¢. Since g:., = a we observe that |Bi..] < C.
Let ¢ be the smallest integer such that Pe # ¢. If no such integer
exists, thenlet { = L + 1. We set p; = p.for 1 < k < i, and con-
sider two cases. First, if Iy < £ then we set p; = pefori, +1<
k < L. Note that Q' = Q cxcept at times i, and i,. Since [B]| = B!
fori, <1< L, we see that P’ is valid, and |¢|,- = |¢]|,, since P’ =
P. Second, for the case i, > ¢, note that X, = ¢, where ¢ # g and
c# b Wesetp, = p,fori, + 1 Sk<Landk ¢ and p, = 4.

Ifp, = b, then |B)| = |B|fort <1< L,and [¢plp = |p}p + 1 >

|¢|r. If p, = a, then the buffer states at times £ -- 1 and £ are:
Biv=Teat {a} " Bi=To 4+ {a} + (]
Biy = Ty + {a} + {b)} Be = Tea + {b) + {c}
Rewriting the buffer states at time £ as

By =I[Tps + {c}] + {a}

B, = [T + {c}] + b}

we arrive at a case similar to Case 3A. As in Case 3A, P’ contains
one more ¢ than P in the interval t = 1, - .. , £. Therefore, we treat
this case in the same way, with the result [$lp > |¢|p. Finally, if
p. = dwhere d > a and d 5 b the buffer states at time ¢ can be
written as

Bi = [Te + {a} + {c} — {d}] + {d}

MATTSON, GECSEI, SLUTZ, AND TRAIGER BM SYSTJ

B(= [Tl‘l + {

which again can

Note that the sit
bE B =1+ We
cases, and Lemn

Theorem 2

Let X be a trace
for X and B,. I
;¢fpo > I¢IP-

Proof. We reca
exactly the same
only find any op
will construct a fi
is an OPT policy :

P' is constructed
pi # p% where ,

pi = a and p9 -
demand policies.)
B,= T, + {b}}
B = T, + {a}

where d(a, x,) < «
da, x.,) < d(b, x
as X, we can use L¢
as least as many ¢’
pL as

ka’]Sks

pb, k=i
Li, i+1<L}

Note that P* is val:

I <k < ¢ for son

Policy P* is constru
that p? = p9, 1 < &
finite, construction «
Pi=po1<k<

that Jo|, < Iglpi
proved.

Corﬁbining the rela
Theorems 1 and 2, 1

No.2 . 1979

T, replaced by
'l) -<— d(bs xi,ﬂ)
ment of Lemm,
1<k<i,—|
since the “new”
i can only occur
as it is specified
e P

SkLio -1
¢ = b, where p,
tpr = py for
fort <t <1,
Second, if p, =
iyand p!, =c.
te that p,, = ¢,
d pl, = ¢, the

tIB, | < C.
10 such integer
: £i, and con-
Jor i, + 1<
nce |B!| = |B,|
$|p, since P’ =
ere ¢ # g and

{,and p}, = ¢.
= !¢EP +12
ind £ are:

{c}

fe}

A, P’ contains
efore, we treat
¢|p. Finally, if

time £ can be

IBM SYST J

as least as many ¢’s as pisy, - -

No.2 - 1970

B, =T+ {a} + {e} — {d}]1+ {b}

which again can be treated as in Case 3A.

Note that the situation where i, = £ can not arise in Case 3B, since
p € B.,_;- We have therefore successfully exhausted the possible
cases, and Lemma 1 is proved.

Theorem 2

Let X be a trace, B, an initial state, and P a valid demand policy
for X and B,. If P° is any valid OPT policy for X and B,, then

dlpo 2 |l :

Proof. We recall first that every OPT policy for X and B, has
exactly the same number of ¢’s. To prove the theorem, we need
only find any OPT policy P? such that |¢|r0 > |¢[r. To do this we
will construct a finite sequence of policies P', P*, --- , P', where P’
is an OPT policy and [¢)p < [@|p: < -+ < |o]pi.

P! is constructed as follows. Let i be the smallest integer such that
p: # p°, where p9 is an element of an OPT policy. Suppose that
pi = a and p° = b. (Neither p; nor p% can be ¢, since both are
demand policies.) We observe that

Bi=Ti+ {b}} for a,b & T
Bl =T, + {a}

where d(a, x;) < d(b, x.). Since x; * a and x; # b, it follows that
d(a, x:.,) < d(b, x:.,). Treating B as B,, B% as Bj, and x.,,, - -+ , X
as X, we can use Lemma 1 to find a policy p’,,, - - - , p/ that contains
, pr. We then define P' = pj, --- ,
D: as

ka, 1<k<i-—1

ﬁt k=i
B i+ 1<k L

Note that P' is valid and that |¢|, < |¢|s.. Furthermore, p; = p%,
I <k < ¢ for somedt, > i

Policy P? is constructed from P' in a similar manner with the results
that p? = p%, 1 < k < £, where {, > ¢, and |¢|p: < |p]ps. Since X is
finite, construction of P', P?, - - - must result in P/, for finite j, where
pi=p% 1< k < L. It follows from [¢]p < |$lp: < -+ < |olrs
that |¢|, < |¢|r; where P’ is an OPT policy and the theorem is
proved.

Combining the relation in Equation A3 for demand paging with
Theorems 1 and 2, we have the following theorem.

STORAGE HIERARCHY EVALUATION

OPT is an
optimal
replacement
algorithm

113

F
L

PR

e R

. o s

IR o 54

OPT
minimizes
page
loading

114

Theorem 3

Let X be a trace, B, an initial state, and P° a valid OPT policy -
(Also, let Q° be the corresponding I-policy.) For any valid polic, -

pair P and Q,

T2l > X 1afl

t=]

Thus we see that an OPT policy results in a minimum number of -

pages being loaded into the buffer over the class of all valid policies.

After giving preliminary Lemmas 2 and 3, we present a final theoren, :

concerning OPT policies.
Lemma 2

For a trace X, let the set B, represent the first C distinct pages
referenced in X. For a buffer of capacity C, if P is a valid demand

policy for X and some Bj C B, then P is a valid demand policy |

for X and any B, C B..

Proof. Let i be the smallest integer such that x,, - - , x, contains
C distinct pages. If B, C B, then, for any valid demand policy P,
we have B, = B.,sincep, = p, = --- = p: = ¢. For B, C B, this
also holds, so P is a valid demand policy for X and B. (Note that
for different initial states, B, C B., the Q policies will not be the
same.)

Lemma 3

For a trace X, let the set E. represent the last C distinct pages
referenced in X. For a buffer of capacity C, if P is a valid demand
policy for X and B,, there exists a valid demand policy P’ with 2
state sequence B,, Bj, B}, --- , B/ such that B} = E, and l¢|p 2
¢l

Proof. Let i be the smallest integer such that x,, --- , x, contains
C distinct pages. Suppose, under policy P, that B,., contains n
elements of E, i.e. |[B,,, N E.| = n. It follows that at least C —
pages will be loaded into the buffer following time i — 1. Setting
pi=pefor1 < k < i~ 1, we will specify the remainder of P’ in

such a way that exactly C — n pages are loaded into the buffer !
following time ¢ — 1. We observe that, since at most C distinct pages

are referenced following time i — 1, we never need remove a page b
from the buffer where b € E.. Thus, if a page must be removed at
time {for i < £ < L, there always exists a page ¢, where ¢ & Ec,in
the buffer, and we set p, = c. If P’ is constructed in this manner,

L L
Z 2] € 3 lau]

t=1

MATTSON, GECSEI, SLUTZ, AND TRAIGER - IBM SYSTJ

and from Eg
no page in E
and IECI =t

Theorem 4

Let X = Xis .
If P°isan O
for'’Xand'F °

Proof. Let
without loss ¢
is an integer ¢
in "X)and if .
contradiction
D> C.

Let us denote

Lemma 2 we
From Lemmez
altered policy
OPT policy. (
Similarly, if "7
assume that " |

Consider now
X, € By, xp
sequenceisav
Let us denote
observe first t|
and Q' (as w.
observe that
'BL-I =B, -
f@:} — ipity
¢. Similarly, ¢ |
q; = ’Pg—l a
show that

q: = 'p2+2—-t}
pl’ = 'q2+2—l

Now, since x
Pl ="q% =
follows that p!
‘qQand ¢/ ="
we have estab!
'0° and betw

l$le" = |#].r0.
B = --- =
NO.2 - 1970

OPT policy,
valid policy

¢+ number of
alid policies,
nal theorem

stinct pages
iid demand
nand policy

X contains
d policy P,
? C B this
(Note that
not be the

itinct pages
lid demand
¢ P’ with a
nd l¢[r‘ 2

X, contains
contains n
cast C —n
1. Setting
fer of P’ in
the buffer
stinct pages
ve a page b
-emoved at
c & E,in
nanner,

IBM SYST J

and from Equation A3 we have |¢|p» > |@|p. Furthermore, since
no page in Ec is ever removed from the bufler following time 1 = i
and |Ec| = C, we see that B/ = E..

Theorem 4

Let X = X, --- , X, be a trace and "X = x,, --+ , X its reverse.
If P° is an OPT policy for X and B, = ¢, and "P° is an OPT policy
for "X and "B, = ¢, then |¢|p0 = |$]. 0.

Proof. Let us assume that the theorem does not hold. Thus,
without loss of generality, suppose that i¢},,0 = |¢|po + k where k
is an integer and k > 0. If D distinct pages are referenced in X (and
in "X)and if D < C, the buffer capacity, then we have an immediate
contradiction, since |¢|po = l¢|.,0 = L. We therefore assume

D> C

Let us denote the state sequence under P? as B,, B,, --- , B,. From
Lemma 2 we can set B, = B, without disturbing the validity of P°.
From Lemma 3 we can alter P? such that B, = E.. Note that the
altered policy contains the same number of ¢’s as P?, since P° is an
orT policy. (We subsequently refer to the altered policy as P°.)
Similarly, if "B,,"B,, - -+ ,"By is the state sequence under "P° we can
assume that "B, = "Bc and "B, = "Ee.

Consider now the state sequence "B, "By, "Br_y, = -+, 'Bz,"B‘. Since
X, EB,x; E By, -, X € By, i € "B., we see that this
sequence is a valid (not necessarily demand) sequence for the trace X.
Let us denote the corresponding valid policy pair as P’ and Q'. We
observe first that, since "E. = B, we have "B, = B, = B,. Thus P’
and @’ (as well as P®) are valid policies for X and B,. Next we
observe that "B, = "B._, + {"¢2} — {'pZ} can be written as
"'B,_, = "B, + {'p%} — {"¢?}. But we also have "B,_, = "By +
(g} — {ps}, which yields g = 'p§ and p} = "g2, since 'p} M g7 =
¢. Similarly, since "By, = "Br. + {"qi-\} — {'p%_,}, we have
¢, = "p%_, and p, = "q2_,. Continuing in this manner we can
show that ’
q: = 'Pgn-:

: } for 2<:t< L (AS)

. r_ 0
P: = Qriz-s

Now, since x, € "B, (recall that "B, = "Bc), it follows that

S = "¢% = ¢. Similarly, since x, € B, (recall that B, =" Bg), it
follows that p; = g, = ¢. We can then trivially assume that p] =
"¢% and] = 'pS. The significance of this is that, using Equation A3,
we have established a one-to-one correspondence between P’ and

"0°, and between Q' and "P°. In particular, |¢l;+ = [¢].c0 and
16l = |6|,»0. We now observe that [¢}.q0 = |¢]. 70, since i"By| =
'B| = --- = |'B.] = C. In other words, 'p% = ¢ if and only if
No.2 - 1970 STORAGE HIERARCHY EVALUATION

forward/
backward
OPT

115

EE
ey

g% = ¢, since the buffer is always full. We thus have shown that
ld’ll" = I¢’vq0 = l¢lrp0'

Recall that P’ and Q’ are not necessarily demand policies. Frop,
Thecrem 1 we can find a demand policy pair P” and Q" such that
L

L
gwmsgm
From Equation A5 and the discussion that follows, we know that
Ipil = |gif for 1 < ¢ < L. Since P and o

are demand policies, and since |B,| = |B)!| = --- = |B| =
we have :

[pi'] = lgi’| for 1 < ¢ < L. Combining these results yields

L L
gwmsgwlmwmzww

But then we have [¢),- > |¢,] = |¢],,0 = l¢|r0 + k. Since p°
was given as an OPT policy, we have from Theorem 2 a contradiction
with [¢],+ > |¢lpo for the demand policy P”. Thus our original
assumption is false, and it must be the case that l6l.r0 = |p|po.

CITED REFERENCES

1. A. Opler, “Dynamic flow of programs and data through hierarchical
storage,” Information Processing 1965, Proceedings of IFIP Congress
1, 273-276 (1965).

2. E. Morenoff and J. B. McLean; “Application of level changing to a

multilevel storage organization,” Communications of the Association
for Computing Machinery 10, 3, 149-154 (1967).

3. C. J. Conti, “Concepts for buffer storage,” IEEE Computer Group
News 2, 8,9-13 (1969).

4. W. Anacker and C. P. Wang, “Performance evaluation of computing
systems with memory hierarchies,” IEEE Transactions on Electronic
Computers EC-16, 6, 764-773 (1967).

5. R. L. Mattson and J.-P. Jacob, “Optimization studies for computer
systems with virtual memory,” Information Processing 1968, IFIP
Congress Booklet I, 47-54 (1968).

6. J. E. Shemer and G. A. Shippey, “Statistical analysis of paged and
segmented computer systems,” IEEE Transactions on Electronic Com-
puters EC-15, 6, 855-863 (1966). .

7. J. Fotheringham, “Dynamic storage allocation in the ATLAS com-
puter, including an automatic use of a backing store,” Communications
of the Association for Computing Machinery 4, 10, 435-436 (1961).

8. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner,
“One-level storage system,” IEEE Transactions on Electrenic Com-
puters EC-11, 2, 223-235 (1962).

9. M. H. J. Baylis, D. G. Fletcher, and D. J. Howarth, “Paging studies
made on the L.C.T. ATLAS computer,” Information Processing 1968,
IFIP Congress Booklet D, 113118 (1968).

10. D. H. Gibson, “Considerations in block-oriented systems design,” AFIPS
Conference Proceedings, Spring Joint Computer Conference 30, Aca-
demic Press, New York, New York, 75-80 (1967).

11. S. J. Liptay, “Structural aspects of the System/360 Model 85: II The
cache,” IBM Systems Journal 7, 1, 15-21 (1968).

MATTSON, GECSEI, SLUTZ, AND TRAIGER IBM SYST J

8o

12. R. W. O'N«
tem with «
Proceeding:
New York,

13. L. A. Belac
computer,]

14, C. 1. Kueh: |
Conference
1018 (1968

15. C. V. Ran
and progr:
Proceeding:
Computing
229-239 (1

16. J. Kral, “C
Communic.
7, 475-480

17. J. G. Kem:
Company, 1

18. L. A. Bela:
time charac
Communic:
6, 349-353

19. P. J. Denn
Communic:
5,323-333

No.2 - 1970

wve shown that

policies. From
Q" such that

we know that

+ k. Since P°
1 contradiction
1S our original
o= i¢!p0.

agh hierarchical
" IFIP Congress

I changing to a
the Association

omputer Group

n of computing
s on Electronic

s for computer
ng 1968, IFIP

; of paged and
Zlectronic Com-

ATLAS com-
‘ommunications
35436 (1961).
F. H. Sumner,
lectronic Com-

“Paging studies
rocessing 1968,

design,” AFIPS
rence 30, Aca-

‘del 85: II The

IBM SYST J

12.

13.

14.

15.

16.

17.

18.

19.

No.2 - 1970

R. W. O'Neill, “Experience using a time-sharing multiprogramming sys-
tem with dynamic address relocation hardware,” AFIPS Conference
Proceedings, Spring Joint Computer Conference 30, Academic Press,
New York, New York, 611-621 (1967).

L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer, IBM Systems Journal 5, 2, 78-101 (1966).

C. J. Kuehner and B. Randell, “Demand paging in perspective,” AFIPS
Conference Proceedings, Fall Joint Computer Conference 33, 1011-
1018 (1968). ’

C. V. Ramamoorthy, “The analytic design of a dynamic look zhead
and program segmenting system for multiprogrammed computers,”
Proceedings of the 21st National Conference of the Association for
Computing Machinery, Thompson Book Company, Washington, D. C.,
229-239 (1966).

J. Kral, “One way of estimating frequencies of jumps in a program,”
Communications of the Association for Computing Machinery 11,
7, 475-480 (1968).

J. G. Kemeny and J. L. Snell, Finite Markov Chains, D. van Nostrand
Company, Inc., Princeton, New Jersey (1960).

L. A. Belady, R. A. Nelson, and G. S. Shedler, “An anomaly in spare-
time characteristics of certain programs running in a paging machine,”
Communications of the Association for Computing Machinery 12,
6, 349-353 (1969).

P. J. Denning, “The working set model for programming behavior,”
Communications of the Association for Computing Machinery 11,
5, 323-333 (1968).)

STORAGE HIERARCHY EVALUATION

117

