sroceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 93-99.
= '

METRIC: a

kernel

instrumentation

distributed environments

Gene Mcdaniel

system for

Xerox Palo Alto Research Center (PARC)

Systems Science Laboratory

3333 Coyote Hill Road
Palo Alto, CA 94304

Fxtended Abstract

Metric is a distributed software measurement system that
communicates measurement data over the PARC computer
network, the Ethernet. Metric is used to instrument stand alone
and distributed computer systems (it works in an environment
of about 90 machines total and is used by about 15 machines).

The system is divided into three parts: ebject system probes that
(ransmit measurement events, the accountant that receives and
stores those events, and the analyst that manipulates the data
for the user.

Measurement events, small packets of standardly formatted
measurement data, are used in a way that emphasizes their
independence, history and context in a funning system. Events
are not counts of some system activity, they are a mini-
snapshot of the state of the system when some activity begins
or ends. - In this way they provide context about what is
happening in the system, and a succession of events provides a
rich history of what has occurred in the system under study.
The contextual information intrinsic to an event supports its
independence -- the event carries with it the information
necessary to describe what it is all about.

Metric's robustness is a direct consequence of its simplicity. Its
simple communications protocols and the independence of its
parts prevent failures in the Metric system from interfering
with the user's object system. Most failures in the object system
are unlikely to interfere with the functioning of the Metric
system. The standard format of events enables the accountant to
receive events from different environments in a straightforward
fashion, and makes the job of data handling easier for the
analyst.

Another advantage of Metric's simplicity is its economy of use:
object system probes use about 100 microseconds to transmit
data to the analyst.

Object systems that use Metric continuously transmit event data.
This means the event history log maintained by the accountant
can be examined after particutarly mysterious crashes to
determine what the system had been doing lately.

The tripartite division of the analyst into the kernel, utility
layer and applications layer simpiifies the job of maintenance,
use, and extcnsion of the system. The kernel understands event
format and acts in behalf of applications to examine data
collected by the accountant. The utility layer understands global
system structures and language constructs to simplify the job of
data analysis and presentation. The application layer is specific
code writlen to answer some particular questions about a
system. It is usually quite small and simple.

In suramary, Metric is unusual because of the way it exploits
the FEthernet, its insistence on standardized measurement
information,. its efforts to make information inteiligible to its

93

users, and its extensibility in the face of very different user
environments. The isolation of Metric's parts into different
machines that communicate over the Ethernet has proven.to be
a very effective way of achieving a remarkably robust, low cost
measurement tool.” Metric's emphasis upon the context and
history associated with measurements facilitates the use of
measurement data.

Contents:

introduction
Environment
Goals
Simplicity

Parts of Metric
Object System
Accountant
Analyst
Measurement Events

Implementation Phases
Line
Tree
Network’

Use of Metric
Experiments with the Code Swapping: Line
Experiments with User Beharior, Machine Interactions: the Tree

Discussion
Architecture
implementation
Use
Extending the kernel

Conclusion

Introduction

Metric is ‘a distributed software measurement system that
communicates measurement data over the PARC computer
network, the Ethernet [Metcalfe]. Metric is used to instrument
stand alone and distributed computer systems.

Metric was developed in the environment of the Polos system
[Duvall]. a minicomputer network {mostly Data General Novas
also connected by the manufacturer’s communications device,
the MCA) that emphasizes functional distribution of activities
across the network (see Figure 1). The Ethernet is a 3 MBs
broadcast packet switched local network that delivers packets
with high probability. Software protccols are required to obtain
communications with a lower error rate than that provided by
the basic transport mechanism. The MCA is a standard Data
General 8 MBs time division multiplexed comunications device.
Errors during MCA communications = indicate a serious
hardware problem (or "operator intervention”) as opposed to
the Ethernet which employs a probabilistic approach to
communications.

Polos provides a complex environment -- different machines
contain tailored versions of different operating systems -- in
which multiple process and mulliple processor interactions
confuse attempts to cause performance improvements of {0 find
program bugs.

(\l

MCA
P I I !
(]
L
0 Nova Nova . . . Nova
8 l)] ,
Figure 1. Ethernet

The Fthernet connects to other compulers
not a part of the Polos system

Terminals

Metric is unusual because of the way it exploits the Ethernet,
its insistence on standardized measurement information, its

efforts to make information intelligible to its users, and its.

extensibility in the face of very different user environments.
The isolation of Metric's parts into different machines that
communicate over the Ethernet has proven to be a very
effective way of achieving a remarkably robust, low cost
measurement tool. Metric's emphasis upon the context and
history associated with measurements facilitates the use of
measurement data.

The first section of this paper-describes the parts of the Metric
system. The next two sections describe the implementation
phases and the use of the Metric system.

Parts of Metric

The metric user views the world in three portions. There is a
probe in the user's object system, an accountant that collects
information from the probe, and an analyst that processes the
information and presents it in an intelligible format.
Measurement events are those data that the probe transmits to
the accountant, and which are subsequently processed by the
analyst.

In the Polos environment, the object system and the probe live
in a machine that is independent of the accountant and
analyst's machine. This independence plays an important role in
the robustness of Metric.

‘The Object System Probe

The probe is the user interface to the Metric communications
routines. It is a procedure call that requires a user chosen type
and subtype designation (which identify the character of the
event), and transmits that information along with an arbitrary
amount of data to the accountant.

The Accountant

The accountant may be one or more machines or processes
devoted to consuming event information from one or more
object systems. The accountant acts as a recorder to which the
object system continuously sends information. The accountant
will accept single event packets at a time or packages of events.

The accountant may completely ignore event information,
selectively keep some of the information or keep all of it. This
event filtering happens by associating filtering policies with
event types from various machines.

Whether or not the accountant is absent is irrelevant to the
object system since probes do not customarily use
acknowledgment protocols. This independence contributes to
the robustness of the probe.

The accountant is a passive engine that keeps the data it accepts
on a file for future reference. The accountant does as little else
as possible. It is designed to be fast, simple and reliable, The
only information the accountant adds to the measurement event
is the identity of the event source.

Analysts

Analysts are processes devoted to analyzing and tabulating the
information collected by the accountant. The Metric analyst
could run on vet another machin: separate from both the
accountant and object system machines. An important
advantage of separating the analyst from the object system is
that there may be more resources available for providing users
with a lfucid view of the measurement data.

While analysts are inherently ad hoc, since they are constructed
to illuminate specific atiributes of an object system, the
measurement event's standard format fosters code sharing
among the different analysts. The implementation of an analyst
may be partitioned into three sections:

1) The analyst kernel reads successive events from the
event file and keeps track of sequencing problems (the
probe automatically provides sequence numbers). This
section interfaces to the event producer-consumer
mechanism of Metric, and is common to all analysts.

2) The analyst wtility layer provides standard routines to
print strings or numbers, read symbol tables, et cetera.
This is the language and operating system specific
portion of the analyst.

3) The analyst applications layer analyzes specific
events from a specific system. This is the user portion
of the analyst.

The Measurement Event

Events are small packets of state information (see Figure 2).
Their “standard format, especially the type and subtype
designations, allows the accountant to filter unwanted events
and allows different analysts to use the same code to access
events stored by an accountant, or produced by different object
systems.

Measurement Event

Figure 2. length

sequence number

type

subtype

data
.
.

machine id

The sequence number is maintained by the communications
code in an object system machine. It is a packet numiber that
identifies each event sent from a particular machine. The
sequence number coupled with a machine id enables the
accountant and analyst to detect missing {or duplicate) events.

The length enables analysts to deal with events whose character
or purpose they don’t know by skipping them.

Event fype is used in two ways. First, it is a broad category, a
class name for experiment control. Second, it is used for
resource control in the accountant: specific event types must be
enabled or the accountant will ignore the event.

Event subtypes discriminate specific forms of events of a
particular type. Subtypes are really a matter of convention for
the . analyst's benefit, since they are unnecessary to the
producer/consumer part of Meiric,

Qualities of Events

The design of events causes them to have several important
qualities: they may be lost, they are independent, they provide
context and. history, and they contain redundant information.

There are several consequences of the fact events may be lost: It
forces the analyst's implementers to design their programs to be
immune to inconsistencies in the data. It facilitates lower
transmission overhead by using simple transmission protocols,
and it explicitly recognizes the inevitability of lost data--a fact
often avoided! -

When we say events are independent, we mean events are the
raw information of what is happening in real time in the
system being measured. The loss of a single event is unlikely to
be extremely significant. By analogy, the experimenter is less
concerned when he loses a single instance of a page fault
statistic than when he loses the transmission of an accumulated
average.

Events provide context and history with their content and
sequence numbers. For example, the kind of event that might be
sent when access is made to a mass storage device as part of a
file 1/0 operation is: :

probe(disklOeventType, fileReadSubtype, fileName,
TimeRequired, diskAddress, processName)
Example 1.

“Events of this type provide sufficient context to determine
quite a bit of information about a system. For example:

1) What is the average time to access files in the
system?

2) What is the average time to access specific files?

3) How many files were accessed by a particular user
process?

4) What is the average access time to files for a specific
user process?

5) How much arm movement occurred on the disk?

The redundant information in a series of events reflects the
duplicate information passed among the several layers of a
system. Redundancy simplifies armoring the analyst against lost
data and simplifies the job of data analysis.

For example, assume events from example 1, and consider
investigating the effectiveness of the disk scheduling machinery.
A probe in the /0 driver module may well respond to a
finished request with an event like,

probe(diskiOeventType, RawDiskSubtype, TimeRequired,
DiskAddress, processName)
Example 2.

While the scheduler may not know fileName, the processName
and diskAddress will be the same as Example 1. The differences
between the two occurences of TimeRequired will reflect queue
wait time and process activation delay.

AAsubset of the probes used in the Polos system to investigate
utiliszation of the code segment memory (CSM) further
illustrates the way event data may be exploited to obtain
different kinds of information:

probe(CSMType, SegmentFauitSubtype, MissingSegmentNum,
EntryPoint)

95

11

probe(CSMType, AllocateSubtype, SegAddr, SegNum,
SizeNeeded, SizeAllocated)

probe(CSMType, FreeSegmentSubtype, SegmentAddr,
SegNum)

probe{CSMType,CompactTimeSubtype, time, spaceRetrieved)
Example 3.

These events, others like them, and disklOevents can be used to
answer questions like:

1) Which code segments fault most frequently?

2) Which code segments take the longest amount of
time to swap in?

3) Which entry points are used most often?

- 4) Which code segments are most frequently deleted
during a compaction?

5) How fragmented is the code segment memory when a
compaction occurs?

The section Use of Metric describes an analyst developed to
answer some of these questions.

Choosing Events

Probes are intended to be so inexpensive that they can be
placed at will through a system and the experimenter/designer
can choose the events to which he will listen. These guidelines
have been worthwhile:

1) Place probes in the interface between layers or
modules of a system.

2) Place probes at contour or block structure boundaries
[Batson].

3) Place probes in the different pieces of an existing
system to simulate a new, diffcrently designed system.

Implementation phases: Line, Tree, Network

We view the orderly growth of the distributed Metric system in
three phases. There is the line: a single object system machine
and a single accountunt machine. There is the free: two or more
object system-machines that send events to a single accountant.
Finally, there is the network: two or more trees that
communicate with each other (Figure 3).

The Line

The line, the simplest form of Metric, is free of most problems
associated with multiple machine interactions. It requires the
basic communications machinery to work and provides a quick
opportunity to. obtain measurements. The line is flexible; the
designer or maintainer of any stand-alone system can find a
machine to run an accountant and obtain immediate
information regarding the problems of his particular system.

The Tree

The tree offers the user his first opportunity to study the kinds
of activities that happen in a functionally distributed system or
to study the typical behavior of systems that run stand alone on
numerous machines. For example, answers to questions like:

What are the typical compile errors in language X?
What are the most common editing operations?
How much idle time is there across the whole network?

can be collected with greater ease than if individual machines .
had to generate and store those sorts of statistics. The tree also
conserves resources by allowing a single accountant machine to
collect events from several object systems. Unfortunately the

SR RIS

sccountant accountant
. object system object system object system
object system
The Line The Tree
“accountant
accountant

object system object system object system object system

object system

The Network

Note: In the line, information flows from the object system to the accountant.

In a simple trece the information from scveral object systems collects at an accountant
In a more complicated version of the tree and in the nctwork, information flows
both directions.

(Figure 3)

tree -analyst has more. difficulties with sequencing and
discrimination of events.

The Network

Our ideas about networks of metric are conjectural since our
experience is limited to the line and tree architectures.

Resource sharing is the principal attraction of the network
version of Metric since the network offers no functional
additions to the capabilities offered by tree Metric. The
network offers the opportunity for object systems to broadcast
a request for an accountant and then to select the machine least
loaded [Farber, Thomas] as the one to which it will send its
measurement events.

The network architecture will cause data to be distributed
across the network. The mechanism to deal with such data is
complex [Cosell]. Unfortunately, these improvements presume
a fairly sophisticated Metric system or supporting file system=-
and sophistication breeds robust bugs before it breeds robust
systems.

Use of Metric

Usigg_Me;ric we have adopted an iterative approach to system
optimization where we obtain specific information to back
various implementation decisions.

Experimenting with Code Swapping: the Line

The first analyst was like a microscope. It provided a detailed
history of the system activity and a simple statistical summary
of its characteristics. We were studying code swapping
. characteristics of the multiple process environment in the Polos
system.

The kind of thrashing indicated by those histories and statistics
prompted the development of a Smalltalk [LRG] analyst that

96

made a movie illustrating code swapping behavior (see Figure
4)--our relescopic view of the system. Such visual cueing is
very important because it provides a qualitative understanding
not obtained by looking at masses of system statistics
[Swinehart; Wegner]. Results from the Smalltalk analyst
suggested that an LRU algorithm [Coffman] or a code
restructuring algorithm [Ferrari] should be adopted to improve
system performance.

A B [+
—> — >
118
80
134
37
81
—
110
80
134
110 o8
t 125
48
78
114
135
-3
L4

The graphics analyst cycles through three views of the memory zone dedicated to code
segments. The top most arrow represents the current top of the code zone. The bottom
arrow is the current top of the code stack. Dark boxes represent allocated code segments.
As the designer waiches the program run he can see holes developing in the zone, he can
watch compactions, and he can see the code segments that have been deallocated recently.
The analyst is currently working on view A. Notice that segment 80 was freed

in view C and recently realiocated in view A.

Figure 4.

A different version of the analyst that gave symbolic
information and an improved siatistical profile of code
swapping activity, another .microscope; was developed. It
suggested that the cost of code compaction in our system made
an LRU algorithm unfeasible. Since then we have performed
several -experiments by applying code restructuring and by
modifying the compaction routines. We used the analyst to
check on our results.

Experimenting with Machine Interactions: The Tree

The tree structure was developed to maintain more information
regarding the system wide interactions between a centralized
file server and ils numerous users. We have used the tree
strictly to merge common event types as opposed to correlating
different event types in different machines with a common
activity. '

Discussion

This section -discusses the architecture, implementation and use
of Metric. The robustness of Metric as a function of machine
isolation and the economy associated with Metric's approach to
communications are particularly interesting. The careful
layering of the analyst has proven to be very worthwhile.

Architecture: Robustness

-ye want the accountant to be robust and to leave object
systems unharmed in the event of an accountant failure. The
scknowledgment-free probe to accountant interactions expedite
this goal. Littie the object system does can harm the accountant
and vice versa. Failures can occur in three places:

1) At the worst, the object system may spew many
events at the accountant. This causes excessive use of
the accountant's resources and the possible degradation
of the communications medium. While we have never
experienced object system logorrhea, it could be an
odious problem.

2) The accountant can die without affecting the object
system since our implementation does not require
communication between the accountant and the object
system.

3) While the communications medium can die, the
unidirectional, "no acknowledgments” type
transmission between the . object system ~and the
accountant prevents this from harming the object
system.

The criterion that Metric bugs must not contaminate the object
system is easily met since only the probe’s communications
routines need be debugged. Those routines are small given the
modest communications goais.

The analyst's separation from the rest of Metric prevents any of
its bugs from directly affecting the accountant or the object.
system.

Architecture: Communication

Metric is the child of its environment: the design depends upon
the availability of an inexpensive, high bandwidth
communications line, the Ethernet.

Metric should not overload the Ethernet. Our computations
show that 80 machines could send about 75 events per second
averaging 14 bytes per event without seriously clogging the
Ethernet.

Even so, cthernet congestion can become an issue. Enough
machines spewing events on the Ethernet could result in such
congestion that ong of several alternatives may become
necessary:

1) Events per second per machine can be limited by
administrative policy for systems not being run in
"debug” or “experiment” mode.

2) Machines or systems with the right to send
measurement events may be limited by administrative
policy.

3) A traffic controiler can monitor Ethernet usage and
ask - particularly verbose machines to cease sending
events. This course will complicate the probe portion of
Metric.

4) A private communications line could be provided for
high bandwidth event flow. This is easy and inexpensive
in the Ethernet world.

Our attitude toward the unreliability of events permits fow
overhead. Reliable packet ~transfer protocols require
maintaining state information, an awareness of time outs and
sending acknowledgments [Akkoyunlu: Cerf; Metcalfe]. These
requirements are not compatible with Metric's low overhead
ideals. Metric loses about .5% of the events transmitted to it
because of the simple protocols.

For those events that must be transmitted more reliably, extra
steps may be taken:

97

13

1) The information can be transmitted redundantly.

2) The information can be transmitted to more than
one accountant.

3) The information can be stored locally and retrieved
manually.

4) The accountant can be expanded to allow a protocol
socket where appropriate conventions are followed to
enhance the probability of reliable transmission.

Architecture: The Producer/Consumer Relationship

The producer/consumer division in the Metric system can be
implemented using a small, private Ethernet, the MCA, another
communications device. or another process within the same
machine as the object system. In the latter case, the process
would buffer events and save them on some available mass
storage device for future reference.

The character of the event producer is independent of
the accountant itself. The event producer may be any
machine running any language or operating system.
The standard event format allows any system to
participate at a minimal cost to its measurers (who
must construct an analyst that suits their needs).

]mpleméntation: Overhead Costs

We have found there is small cost to using Metric, that costs

increase uniformly with the quantity of measurements taken,
and that there are no sudden peak costs. Metric is cheap to use.

Tl)e time to transmit events is small--on the order of 100
microsecends in our system (1 MIP processor). The code space
fpr the Ethernet drivers and the probe() routine is about 190
sixteen bit words--about 20 words of machine language and
170 words of resident Bepl code, the language we use in Polos
object systems [Curry]. Each probe() call takes about 10
instructions of procedure call overhead.

The economy of Metric is highly dependent upon the
characteristics of the Ethernet. The Ethernet is easy to drive
and using it does not significantly degrade the performance of
object systems. :

Implementation: Controlling Resource Consumption

To conserve mass storage utilization, the accountant
understands the idea of filtering events. When an event arrives,
the accountant compares the event type against a list of
acceptable event types for that machine. If there is no match,
the event is thrown away.

In any system, the accountant will eventually exhaust the
available mass storage. To preserve the history inherent in the
event stream across user “runs”, the accountant must avoid
prematurely destroying old data. It may implement a circular
buffer arrangement or "double buffer” its events into different
files. The circular buffer arrangement is complicated since
events are different sizes. Switching back and forth between two
or more event files guarantees there will be at least one file of
event history. - .

With increasing usage and limited storage, the facility to
maintain "counters” may have to be added to the accountant.
These counters would be modified in core each time an
increment or decrement was received from an object system.
Counters can conserve event storage space at the expense of
accountant cpu time and complexity. They also reflect a lapse
in the compartmentalization between the accountant and the
analyst.

Use: Debugging

Our contention has been that measurement information should
flow continuously from a system--for debugging as well as

£

!

performance and system analysis [Lauesen]. Continuous
debugging traces are useful since the historical context provided
by the accountant points to the causes of mysterious "cosmic
ray” bugs that are not repeatable.

Use: The Analyst.

There are several problems associated with the analyst that bear
further discussion: duplicate data structures, verifying the
results, and good human engineering.

The distributed nature of the Metric system naturally causes
information 1o exist in two places and causes
problems,

For example, there are declarations that define event
type and subtype values. This information must be
copted from the object system environment to the
analyst’s environment. If changes in the object system
are not be updated in the accountant's data structures,
chaos results when data is analyzed. This problem is
exacerbated by the use of different language systems to
implement the object system and the analyst.

The unanticipated results of systems measurements further
complicates the problem of verifying the results: When the
experimenter obtains unexpected results he must decide if he
has learned something new about his system, or if he has
misused ‘his measurement tool, or if that tool has somehow
failed.

Given that the probe-accountant-analyst -ensemble works, care
must be taken to present the pertinent information rather than
hide it. Filtering out masses of data or presenting specific
relationships immensely eased the use of the system and
facilitated understandirg the object system.

Extending the kernel: Higher Level Language Instrumentation

Now we discuss the suitability of Metric as a kernel for further
extension, and use the work of {Mac Ewen] to develop criteria
for a distributed instrumentation system in a heterogeneous
network:

1) The system should be easy to use.

2) The system should provide a uniform context for
talking about measurements.

3) ‘The system must be efficient.

We want to obtain measurements from a system without
recompiling ‘or reloading it. In Metric, event types can be
enabled at the accountant independent of the state of the object
system. This is only an advantage if the object system probe
already sends the needed events. Where new information is
desired, another mechanism must be added. This implies some
sort of code patching mechanism [Deutsch] or redefinition
mechanism [Mac Ewen]. The Metric kernel completely ignores
this issue.

A patching facility is an attribute of the language support
facilities in the object system. If such facilities exist the Metric
routines can be used with them.

We can afford to "take down" a machine to add measurement
facilities since it takes us as little as five minutes to implement
new measurements. In a production-oriented environment, even
five minates of down time may be unacceptable. Then the
ability to add probes to a constructed or running system is more
important. .

The names and structures (the context) visible in the object
system where the probe is used should be visible to the Metric
user. Providing such uniform context is difficult when the
probe and analyst may be implemented on different processors
in entirely different environments.

For example, the analyst should be able to help users deal with
probe data from an APL machine, a machine dedicated to

updating -

98

14

information retrieval, and a development machine being used
by systems programmers, .

While we agree with the importance of allowing the Metric user
to see the same context as his object system provides, we feel
this is inappropriate in the kernel. The fundamental context in
Metric is the machine.

Consider the case of a process-based system. Process
identification can be provided in another layer in the
object system by encapsulating the Metric version of the
probe() routine with a routine that always includes
process information with the data. A part of the analyst
utility layer will know about processes. so that different
applications of the Metric system that use the same
operating system can use the same code.

The existence of heterogeneous system environments
prevents the Metric kernel from knowing very much
about the systems it measures.

Another crucial issue is whether the sorts of tools provided by
an object system can be employed outside the running
environment of the object system. An analyst for a particular
object system may well be run on a different processor and in a
different environment from the object system. That analyst's
implementer will want to access the tools and context of the
language and object system being analyzed. Metric doesn't
address this issue.

An important part of the development of the two Bepl
analysts was the design and construction of naming
facilities that enable the Metric user to get names rather
than addresses. These facilites will work for any of our
Bepl systems that Metric measures; we view them as
crucial facilities.

As mentioned above, we believe the simple interface to Metric
in the object system costs very little in terms of object system
machine cycles or code space. Most extensions are present in the
analyst where they don't impact object system performance.

*The object system extensions come in two flavors: user support

and run time context identification.

User support consists of things such as adding or deleting
measurements, or displaying measurement status upon user
demand. These features tend to be things that can be run in the
background, swapped in, or otherwise kept at a-low cost profile.

The price of context identification depends upon the
complexity of the object system in question. When complex
context affiliations last for a long time, they can be associated
with an abbreviation that accompanies the measurement event.
This can be done in the same fashion of adding process context
information that we discussed above. Short term, complex
affiliations require more dala to be transmitted in the
measurement event.

Conclusions

Metric has obtained the goal of low cost measurements. The
infrequent loss of events, about .5%, has not proven tc be a
problem in our experiments. The accountant works in a fairly
large and complex environment (one computer network of
about 15 machines and another of about 70 machines).

The carefully enforced separation of responsibilities into the
probe, accountant and analyst along with a standard data packet
format has greatly simplified the production and processing of
measurements.

Metric is easy use and easy to change. The layering of the
analyst into an event consumer layer, a language and operating
system layer, and a user applications layer, has simplified the
construction of analysts. The standard event format ties these
diverse pieces together. We have successfully spanned a great
deal of diverse data in ways that have aided our understanding
of the systems we have built and extended.

=

ycknowledgments. [want to thank Dan Swinehart and Howard
SUFEIS for sundry encouragements and ideas. Thanks to A.
{‘,:»xfjberg. D. Swinehart, M. Schroeder, D. Boggs, . Shoch, and
Ww. Newman for help with debugging the paper.

References

[,\kkoyunlu] E.A. Akkoyunly, K:E.Kanadham, R.V. Huber,
Some Constraints and Tradeoffs in the Design of Network
Communications, Proceedings of the Fifth Symposium on
Qperating Systems Principles, 1975.

{Batson] AP. Batson, R.E. Brundage, Segment Sizes and
Lifetimes in Algol 60 Programs, CACM, 20,1, 1971

[Cerf] V.G. Cerf, R.E. Kahn, A Protocol for Packet Network
intercommunication, /EEE Transactions on Computers, Volume
~ Com-22, Number 5, May 1974

{Coffman] E.G. Coffman, Ir, P.J. Denning, Operating Systéms
Theory, Prentice-Hall, 1973.

[Cosell] B.P. Cosell, P.R. Johnson, J.H. Malman, R.E. Schantz,
j. Sussman, R.H. Thomas, and D.C. Walden, An Operational
System for Computer Resource Sharing, Proceedings of the
f'ij'tlz Symposium on Operating Systems Principles, 1975.

[Curry] J. Curry, A BCPL Manual, CSL, Xerox PARC 1974.

[Deutsch] L.P. Deutsch. C. Grant, A Flexible Measurement
Tool for Software Systems, /FIP 74, Software.

[Duvall] W.S.Duvall. POGOS An Operating System for a
Network of Small Machines, SSL 76-6, Xerox PARC, June
1976.

[Farber] D.J. Farber, et al., The Distributed Computing
System, Proceedings of the Seventh Annual IEEE Computer
Society [nternational Conference, San Francisco, February,
1973.

[Ferrari] D. Fersrari, Improving Locality by Critical Working
Sets, CACM, 17,11, 1974.

[Lauesen] S. Lauesen, A Large Semaphore Based Operating
System, CACM, 18,7,19175.

[LRG] Learning Research Group, Personal Dynamic Media,
SSL. 76-1, Xerox PARC, Palo Alto, CA, March, 1976.

[Mac Ewen] G. Mac Ewen, On Instrumentation Facilites in
Programming Languages, /F/P 74, Software.

[Metcalfe] R.M.Metcalfe, D.R‘.Boggs, Ethernet: Distributed
Packet Switching for Local Computer- Networks, CACM,
19,7,1976.

[Swinehart] D.C. Swinehart, Copilot: a Multiple Process
Approach to Interactive Programming Systems, Stanford PhD
Thesis, Stanford University, 1974.

[Thomas] R.H.Thomas, A Resource Sharing Executive for the
Arpanet, Proceedings of the National Computer Conference,
1973.

[Wegner] P. Wegner, Data Structure Models for Programming
Languages, Symposium on Data Structures in Programming
Languages, 1971.

99

