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INTRODUCTION mance. For example, we might claim that
algorithm A requires no more than O(n?)
comparisons to sort a list of n items (this
“big-oh” notation is defined later in this
section). If the claim holds for all possible
lists of size n, then we have a worst-case
bound. Alternatively, we might establish
a probability distribution over the set of
possible inputs of size n and show that

Of central importance in computer sci-
ence is the search for efficient algorithms
to solve problems. When analyzing these
algorithms we are usually concerned with
finding bounds on functions relating
input size to some combinatorial (ma-
chine-independent) measure of perfor-
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the expected number of comparisons is
no more than O(n log n): this is an aver-
age-case bound on the algorithm.

Such analytical bounds provide a clas-
sification system that has been fairly
reliable in predicting algorithm perfor-
mance in practice; no matter what
computer architecture or programming
language is used, an O(log n) algorithm
will be considerably faster than an O(n?)
algorithm if r is large enough, and the
difference will increase as n grows. For
example, Bentley [ 1986, Chapter 7]
describes an O(n) algorithm imple-
mented on a Radio Shack TRS-80 that
runs faster than an O(73) algorithm im-
plemented on a Cray-I supercomputer
(for n > 2500).

However, there are some limitations to
this analytical approach. Worst-case
bounds can be overly pessimistic in pre-
dicting performance in practice. On the
other hand, average-case analyses can be
very difficult to obtain for even the sim-
plest of probabilistic models. As a gen-
eral rule, average-case bounds using
realistic models of input are beyond the
limits of our current analytical methods,

When analytica] methods fail, compu-
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tational experiments may be used to
study the average-case performance of
algorithms using randomly generated
problem instances. The process seems
straightforward enough: implement the
algorithm, generate the instances, and
use appropriate statistical methods to
analyze the results. But there is no guar-
antee of success. Experience shows that
it can be very difficult to obtain reliable
estimations of functional forms from
experimental data. Experimental studies
can produce inconclusive or even mis-
leading results. For example, one series
of experimental studies of bin-packing
algorithms [Bentley et al. 1983; Csirik
and Johnson 1991; McGeoch 1986a] pro-
duced conjectures that contradicted those
of earlier experimental studies [Johnson
1973; Ong et al. 1984]. In another case,
an extensive study of random insertion
and deletion in binary trees gave results
that contradicted those of a previous
smaller study [Eppinger 1983; Knott
1975].

Certainly the right experiment can
provide powerful insights and even stim-
ulate new theorems. But in general how
can we design the right experiment, one
that will give correct, precise, and unam-
biguous results about algorithm perfor-
mance?

This paper discusses two factors in the
development of simulation studies that
can influence the quality of simulation
results. One is the observed variance, or
“spread,” in the data. A common goal of
experimental studies is to estimate the
mean of some quantity by averaging over
several random trials, The reliability
of this estimate depends on the variance
in the results. For example, Figure 1
shows the results of two experiments de-
scribed in Section 2. The left panel pre-
sents results of one experiment from g
straightforward implementation of two
algorithms. Each column of data shows
50 observations of a random variate D
that measures the performance differ-
ence between the two algorithms for ten
parameter settings (m = 100, 200,
-+ - 1000). The large crosses mark column
means; the horizontal reference line is
located at zero. The right panel shows

Figure 1.
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Figure 1. Results of two experiments.

the result of another experiment, after
application of several variance reduction
techniques (VRTs) to the simulation pro-
grams. Note that both graphs represent
the same quantity D and that the expec-
tations of the means in corresponding
columns are provably identical. The right
panel gives a more reliable view of the
means because the variance in each col-

umn is small compared to the change in
means between columns. It is known an-
alytically that the mean is negative for
small values of m and positive for large
m, but the crossover point is not known;
consider which data set would be more
useful for estimating the location of the
crossover point.

Variance in the data is an important
factor in any simulation problem.
Pawlikowski [1990] has remarked that
“despite the fact that various VRTs have
been extensively studied theoretically
since the beginning of digital simulation,
most of them have found only limited
practical application.” However, as is
evidenced by the above example and by
several more in this paper, algorithm
problems are rich in opportunities for
exploiting variance reduction techniques.
This may be because algorithms are gen-
erally simpler and more rigorously de-
fined than more traditional simulation
problems and because experimental
studies of algorithms usually begin with
some partial theoretical understanding.

A second factor is simulation efficiency
—how quickly results are returned by
the simulation program. Program effi-
ciency influences such choices as largest
problem size, the number of trials, and
the number and range of parameters
considered. Also, efficient simulation can
reduce variance by allowing more experi-
ments per unit of time, since variance is
inversely proportional to the number of
independent sample points taken. Con-
versely, a reduction in variance can pro-
vide a simulation speedup when fewer
trials are needed to obtain the desired
accuracy, even though a single trial may
take longer. As is the case with variance
reduction techniques, algorithmic prob-
lems appear to present especially strong
opportunities for exploiting simulation
speedups, which can dramatically reduce
the time required to generate the data.

Section 1 of this paper introduces a
problem concerning two algorithms and
their known theoretical analyses.
Section 2 gives a tutorial discussion of a
series of experiments in which variance
reduction techniques are applied to simu-
lation programs for the two algorithms;
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also the end of the section describes
several simulation speedups. Section 3
presents some variance reduction tech-
niques that were not applied in the
example study but which might be of
general use. Section 4 surveys experi-
mental studies from the algorithm’s liter-
ature and discusses variance reduction
techniques and speedups for general
algorithm problems.

This paper assumes some familiarity
with algorithms and their analysis at
about the level of an undergraduate
course. In particular, an algorithm A is
said to have O(f(n)) running time if there
exists a constant ¢ such that the total
number of operations A performs is
asymptotically never more than cf(n)
when the input is of size n. The algo-
rithm has Q(f(n)) running time if the
number of operations is never less than
af(n) for some constant a. An algorithm
has ©(f(n)) running time if both the up-
per bound O(f(n)) and the lower bound
Q(f(n)) hold.

The only statistical background
required is familiarity with elementary
terms such as mean, variance, covari-
ance, estimator, and distribution func-
tion, which can be found in any introduc-
tory statistics textbook.

This is by no means a complete or
rigorous treatment of variance reduction
techniques; the intention is to provide
only a tutorial introduction to the sub-
Ject. For more thorough and more techni-
cal presentations see Bratley et al. [1983],
Cheng [1986], Hammersley and
Handscomb [1964], Kleijnen [1974], Law
and Kelton [1982], Nelson [1987], and
Wilson [1984]. Some of the rich lore of
experimental methodology for simulation
studies can be found in textbooks [Brat-
ley et al. 1983; Law and Kelton 1982;
Payne 1982].

1. THE SELF-ORGANIZING SEARCH
PROBLEM

This section describes two algorithms
that are to be compared experimentally.
Suppose we have a search list containing
some ordering of n items that are named
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1 through n. A sequence of m requests
for items is presented, where a request
for item i causes a search for that item
starting from the front of the list.

A sequential search rule tries to main-
tain the list so that frequently accessed
items are near the front, thereby reduc-
ing the cost of linear searches. The opti-
mal list order is the one in which the
most frequently accessed item is first in
the list, the second-most frequently
accessed item is second, and so forth.
However, the search rule does not know
the request frequencies in advance;
therefore, the rule is allowed to modify
its list after each request in order to
approximate the optimal order. The
Move-to-Front rule moves the requested
item to the front of the list. The Trans-
pose rule moves the requested item ahead
by one position in the list. (No rearrange-
ment occurs if the requested item is al-
ready at the front of the list.) Although
several other rules have been proposed
[Bitner 1976, 1979; Gonnet et al. 1982],
these two have received the most atten-
tion.

The goal is to determine which search
rule gives the lower average cost of
searching for requested items. A common
theoretical model assumes that the
request sequence is formed by drawing
item names randomly and independently
according to some distribution P =
{p1,py,..., p,}. That is, the probability
that “3” is the next item requested is
given by p;. Without loss of generality
let p, = p,,; therefore the optimal list
has the order 1,2,... n.

Suppose the list is in some ordering .
The request cost of item i is w(i), its
position in the list. The expected list cost
for an ordering 7 and distribution P is
found by summing over all items:
L(m,P) = X! | p;- w(i). Let Pr(mr, m) be
the probability that the list is in order =
Jjust before the mth request (the list is
assumed to be in some random order
initially). The expected request cost for
a search rule is found by summing over
all possible list orderings, that is, by
L, Pr(m,m)-L(m, P). Expected request
costs for Move-to-Front and Transpose

7(
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are denoted by u(n, m) and 7(n, m). Note
that the expected request cost for the
optimal list is the same for any m and is
equal to X7 ,ip,. This gives a lower
bound on the expected request cost for
any search rule.

Probabilistic analyses have considered
sequential search as a Markov process,
where the asymptotic expected request
cost is derived from the steady-state
probabilities of the search list orderings
for the rules as m goes to infinity. We
denote asymptotic expected request costs
by u(n) and 7(n).

Gonnet et al. [1982] give closed forms
for u(n) for several specific probability
distributions P. For example, Zipf's Dis-
tribution is defined by

1

pi = lHn

|

where H,= ) —.
j=1

~

H, is the nth Harmonic number and
grows as O(log n). For this distribution
wu(n) = 1.386n/H,, whereas the optimal
list has cost n/H,.

Bitner [1979] analyzed Move-to-Front
for arbitrary P and obtained an exact

formula for expected request cost:
pm(n, m) = p(n)

_ 2
+"Zl * (p;—py)
iz1 joir1 2(P; + Pj)

1-p;,—p)"

where the asymptotic cost is given by

Rivest [1976] obtained a formula for
the asymptotic cost of the Transpose rule:

r(n) =Pr(I,) ' ¥ Hlpf“"“" Y. p;7(J)
j=1

T 1=

where

7 = an ordering of the search list

(i) = the position of item i in 7

Pr(1,) = the probability of the optimal
ordering occurring initially

Rivest also showed that 7(n) < u(n) for
any P and that the inequality is strict for
all but certain trivial probability distri-
butions. On the other hand, Bitner [1979]
showed that while Transpose has better
asymptotic cost, Move-to-Front converges
to its asymptote more quickly.

It is worth noting at this point that the
probabilistic model is only one of several
approaches to algorithm analysis; any
single analytical model will give an
incomplete picture of an algorithms’s
performance. Under alternative models
of analysis that do not assume indepen-
dence in the sequence of requests, Move-
to-Front can have lower asymptotic cost
than Transpose (see Bentley and
McGeoch [1985] and Sleater and Tarjan
[1985).

The probabilistic analyses that do exist
are of limited use in comparing the two
search rules. First, Rivest’s formula for
7(n) involves summing over all n! order-
ings of the list. Therefore, 7(n) cannot be
directly computed when n is moderately
large. Second, no formula is known for
1(n, m); although the analyses suggest
that Move-to-Front is best when m is
small and Transpose is best when m
is large, a transition point in terms of P
cannot be found analytically.

Experiments have been used to inves-
tigate these and related open questions.
Previous experimental studies of the
search rules are surveyed in Section 4.
The next section describes a series of
experiments developed to compare the
expected request cost u(n, m) for Move-
to-Front to the expected cost 7(n, m) for
Transpose for requests drawn according
to Zipf's distribution. The goal is to obtain
a simulation program that is efficient and
that produces results having small vari-
ance.

2. VARIANCE REDUCTION AND THE
SEQUENTIAL SEARCH PROBLEM

We begin by establishing some terminol-
ogy. In general, algorithm A represents
the simulation model for which we wish
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to quantify the expected value 6 of some
performance measure, in terms of some
parameters (x, y) which describe the dis-
tributional properties of the input.

A simulation program is implemented
to study the algorithm. A sample point is
determined by fixing values of the input
parameters. A trial corresponds to a sin-
gle input instance (pseudo-) randomly
generated for a sample point. A set of ¢
independent trials forms a run of the
experiment.

Output measure X; is a random vari-
able produced by the simulation program
at the jth trial such that the mean X of
the X’s is an estimator of 6 at the sam-
ple point. We want the estimator to be
unbiased: that is, E[X] = 0. The vari-
ance in X; is defined as Var(X)) =

E(X; - 6)’]. In a simulation study
where 6 is not known, we measure the
sample variance by

£ (X -X)°
V(Xj) = j§1 t—1

Our goal is to reduce Var(X)), which is
estimated by V(X)).

The remainder of this section describes
a series of experiments to investigate the
expected costs of two rules for sequential
search. Variates M ; and T} give the costs
of the mth request in the jth trial for
search lists ordered under Move-to-Front
and Transpose, respectively. Their differ-
enceis D; = M; - T,. Variates M, T, and
D denote means taken over ¢ trials;
clearly M, T, and D are unbiased esti-
mators of the expected request costs
w(m,n), 7(m,n), and their difference
8(m,n) = w(n, m) — 7(n, m).

All experiments below report the cost
of the 1000th request on a search list of
size 20 (ie., the sample point n = 20,
m = 1000), with requests generated
according to Zipf's distribution. For nota-
tional convenience, the quantities to be
estimated at this particular sample point
are denoted u, 7, and §.

The random requests were generated
by the method of aliasing. By this
method, a random real U is generated

ACM Computing Surveys, Vol. 24, No. 2, June 1992

uniformly over the range [1,7 + 1) and
split into an integer part I (uniform on
1...n) and a decimal part F (uniform on
[0, 1)). If F is below some threshold value
T(I), then I becomes the request gener-
ated; otherwise, an alias value A(7) be-
comes the request. This method requires
O(n) initialization time to set up the
threshold and alias tables and O(1) time
per request. For more discussion of this
and other methods see Bratley et al.
[1983] and Devroye [1986].

The uniform variates U were gener-
ated by an additive method where U, =
U,_54 + U,_5; mod 2*° (see Knuth [1981,
section 3.2.2]). To check the random
number generator, the first and last
experiments were replicated using the
system generator provided by Sun Unix
Version 3.4. All experiments and timing
measurements were performed on a Sun
3/50 workstation with no floating-point
accelerator.

2.1. The First Experiment

The first experiment is a straightforward
implementation of the search rules. The
simulation program for Move-to-Front
produces M; at trial j by the following
steps:

(1) Initialize the search list to some
random order.

(2) Perform steps (3) and 4) m — 1
times.

(3) Generate a random integer r from
the range 1...n according to Zipfs
distribution.

(4) Find r in the search list. Move r to
the front of the list.

(5) Generate the last request r; set M;
equal to r’s position in the search
list; and report M e

The simulation program for Transpose is
identical except for the obvious change in
step (4). A perhaps more appealing strat-
egy would be to report, rather than the
cost of the mth request, the average of
the first m requests. That approach is
discussed in a later section where it
is shown to give a biased estimator of n
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(and 7). The initial program obeys a very
good rule of thumb: simulate exactly the
theoretical model.

The results of four runs of the first
experiment are summarized below. Each
run represents the results of 50 trials at
the sample point (n =20, m = 1000).
From the discussion of the previous sec-
tion, we know that u = w(20,1000) =
7.26 [Bitner 1979] and that the expected
cost of the optimal ordering is X7, ip; =
5.56. The cost of the optimal ordering
gives a lower bound on 7 and u.

M VIM] T VIT] D VID]

7.94 3585 552 2381 242 62.96
7.30 2441 492 2775 238 4132
6.74 2287 580 26.88 094 53.82
7.92 32.67 6.92 3419 100 64.76

Large sample variance can cause
experimental results to vary greatly
across runs, indicating that the results
from any particular run are not reliable.
The estimator M varies from its known
expectation 7.26 by as much as 9%, and
the estimators D vary from one another
by as much as 60%. Typically, sample
variance in 7} is five times as large as
the mean 7. Indeed two values for T are
lower than the known lower bound on 7:
although T must approach 7 as the num-
ber of trials increases (by the law of large
numbers), it appears that 50 trials
are not enough to give an accurate
estimation of 7.

One way to reduce variance is to
increase the quantity of data with more
trials per run. This can consume signifi-
cant computational resources. The fol-
lowing sections describe ways to improve
the quality of the data while maintain-
ing the same number of trials.

2.2. Common Random Numbers

The technique of common random num-
bers reduces variance in the difference of
two output measures by making trials as
similar as possible between the two mea-
sures. In the search problem, for exam-

ple, we have
Var[ D;] = Var[M; — T}]
= Var[ M;] + Var[T;]
- 2Cov[M,,T}].

Variance in D; is decreased if the covari-
ance can be made positive. If separately
generated request sequences are used for
the two rules (as is the case in the first
experiment), then the trials are indepen-
dent and Covl M}, T;] equals 0. There is
reason to beheve however that identical
inputs would produce positive covari-
ance; for example, a request for a rare
item would probably have high cost for
both rules.

The second experiment applies com-
mon random numbers to the search prob-
lem. The search lists for the two rules
are initialized to identical (random)
orders, and identical request sequences
are used in each trial. Note that besides
the possible reduction in variance, this
technique gives a constant-factor im-
provement in simulation efficiency, since
the cost of input generation is cut in half.
Each run of the first experiment typically
required 46.9 seconds while the second
experiment required 26.2 seconds.

The second experiment produced the
following statistics, where D and D"
represent the new estlmator for &
obtained by application of common ran-
dom variates.

DT Var| D’]
0.94 24.08
0.88 21.19
0.36 15.51
1.60 19.24

Expectations and variances of M; and T
are not affected by the use of this tech?
nique since the input distribution is not
changed for either rule. Typieal variance
in D}, however, is nearly a third of that
in the first experiment.

The technique of common random
numbers should be considered whenever
algorithms are being compared, and there
is reason to believe that their perfor-
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mance might be positively correlated with
respect to input instances.

2.3. Control Variates

Common random numbers are used to
capitalize on positive correlation between
algorithms; the technique of control vari-
ates exploits positive correlation within a
single algorithm. Graphical exploration
of the data from the second experiment
revealed that, under Transpose, items
tend to end up very near their optimal
positions. Since, by our naming conven-
tion, item i is in position 7 in the optimal
list, we can conclude that a strong corre-
lation exists between item names and
their positions in the Transpose list. (A
look at Move-to-Front shows much
weaker correlation.)

Let R; represent the name of the last
item requested at the Jth trial; let R
represent the mean over ¢ trials; and let
p Tepresent its expectation, equal to 5.56
for Zipf’s distribution at this sample
point. Construct a new output variate
T = T~ a(R; — p), where a is a con-
stant described below. The new estima-
tor 77 uses the discrepancy between the
observed value of R ; and its (known)
expectation p to “correct” T towards its
(unknown) expectation. Variate R; is
called a control variate for T,

The expectations E[T°] and E[T] are
equivalent, since E[R = pl equals 0.
Therefore, the new estimator is unbiased
for any constant a, although variance in
T is minimized by optimal choice of q.
Finding the optimal a is difficult, how-
ever, since it depends on the variance
and covariance of T; and R ;» which are
not known. Estimation of optimal a from
measurements over many sample points
can give erroneous results [Bratley et al.
1983; Kleijnen 1974; Nelson 1987]. In
this case a reasonable strategy is to find
a good a by linear regression.

The third experiment uses R ; as a
control variate for M. and T}, reporting
new variates My and T at each trial.
Regression on R; and T, at this sample
point gives g = 1.16; for simplicity the
experiment sets a = 1. The results of four
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runs are given below.

M® VM T VITY]
6.29 30.51 5.28 7.88
6.08 32.52 5.72 5.50
8.44 25.11 5.97 2.20
6.98 14.51 6.97 7.92

Sample variance in T}C is smaller than
that for T, by a factor of 5. The weaker
correlation between M; and R ; 8ives only
a small reduction for M 7, if any. Vari-

ance in D, is not altered from that of the
second experiment, since the control
variate R ; 1s canceled out in the subtrac-
tion D =MF — TC. This VRT neither
increases nor decreases computation
time, since the only change in the imple-
mentation is the reporting of the last
request R,

In general, suppose that we wish to
estimate some quantity 6 and that we
have an unbiased estimator X. It may be
possible to find a control variate ¥ with
known expectation . Setting Z = X —
a(Y — ¢) gives a new unbiased estimator
for 6; variance in Z is reduced whenever
Y is positively correlated with X,

In algorithm studies the control vari-
ate might be a measure of some property
of the input, as is R ;- It might be a
measure of the initial state of a data
structure: for example, if the search cost
for item R, in the initial (random) order-
ing is K;, (which has known expectation
X = (n + 1)/2), then we might estimate 7
by TX =1, - (K, - x) under the as-
sumption that a high initial cost is corre-
lated with a high cost at time m, (This
assumption is probably invalid for large
m). Other control variates may be
obtained from lower bounds on the per-
formance measure, simpler algorithms,
or secondary performance measures.
Some further examples are given in Sec-
tion 4.

2.4. Antithetic Variates

Suppose as before that X is an estimator
of 6. The method of antithetjc variates
requires a second estimator X with the
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same Adistribution as X. Their mean,

(X + X)/2, is an unbiased estimator of
6, and we have

Var[ X Var[}f]
4 * 4
Cov[ X, X]
t—

For reduced variance the last two terms
must have a negative sum, implying

that covariance in X and X must be
negative.

The usual scenario for use of antithetic
variates assumes that output variate X
is a monotonic function of a uniformly
distributed input variate U. Taking a
second trial with antithetic variate U =
1 — U gives the desired X. With a little
effort this technique can be generalized
to nonuniform input distributions.
Observe from the second experiment that
T, tends to increase with R;. Therefore,

an antithetic input variate R could be
used to obtain an antithetic T The new

estimator of 7 would be 7}* = (T + T)/2
How shall we generate R so that it is

negatively correlated with R but is dis-
tributed according to Zipf’s ‘law? There
appears to be no known way of modifying
the method of aliasing (which was used
in previous experiments) to accomplish
this task. However, the inversion method
(see Bratley et al. [1983] and Devroye
[1986)) can be applied. This method gen-
erates a uniform variate U, and uses a
table-lookup scheme to détermine the
appropriate request value R;; a second

lookup using U 1-U; will produce the
antithetic value R

For generatmg requests accordlng to
Zipf’s law, the inversion method is com-
putationally more expensive than the
method of aliasing because the table
lookup requires ((log n) time per request
on average. This VRT, then, could
increase the running time of the experi-
ment, which may be acceptable if vari-
ance is substantially reduced. To mini-
mize the extra cost, the following steps

Var[(X + X) /2] =

were implemented in the fourth experi-
ment to produce antithetic variates.

(1) Generate R; by the method of alias-
ing.

(2) Generate U uniformly from the range

3) Generate R using the inversion
method with U.

Thus, only the second of each pair of
variates is generated by inversion,
requiring only one table lookup instead
of two. Antithetic variates are generated
for the final request only (not for the first
m — 1 requests).

The fourth experiment applies anti-
thetic variates to the Transpose rule only.
Instead of producing 50 variates T, the
experiment produces 25 pairs of vanates
(1}, T) and reports their means. The run-
mng ‘time of the fourth experiment (21.3
seconds) was slightly increased over the
third.

Four runs of the fourth experiment
produced the following statistics.

e Var|Tf]
5.98 6.73
5.68 7.33
5.96 3.56
5.74 5.02

Variance in T} is comparable to that for
control variates used in the third experi-
ment. Antithetic variates give no sub-
stantial improvement in variance and a
small increase in running time; therefore
it is not particularly useful for this prob-
lem. The lack of strong correlation in R;
and M; suggests that the technique
would be of even less use in the simula-
tion of Move-to-Front.

In general, it can be difficult to tell
which VRTs will be beneficial for a par-
ticular problem. Kleijnen [1974] points
out that the joint application of common
random variates and antithetic variates
can produce an overall increase in vari-
ance of differences D;, and he derives
conditions on the covariance structure for
which variance is reduced. Unfortu-
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nately, if the problem is tractable enough
to permit analysis of the covariance
structure, then there is probably no need
for a simulation study. A small pilot study
conducted at the beginning of the experi-
mental study can reveal whether a given
approach has any merit.

2.5. Conditional Expectation

Suppose that X is an estimator of § and
that there is another variate Y for which
the expectation of X given Y is a known
function of Y. Set Z = E[X|Y] = f(Y).
Then, Z is an unbiased estimator of 6
also, and Var[Z] is less than Var{ X]
whenever Y has smaller variance
than X.

Instead of generating X directly, the
technique of conditional expectation,
sometimes called Conditional Monte
Carlo, generates Y and then reports Z =
f(Y). This replaces variate X by its
expectation E[X]|Y]. Informally, condi-
tional expectation exploits an intermedi-
ate random variate Y from which the
expected value of X can be calculated.

For the search problem, let the inter-
mediate variable be ;, the list ordering
produced by the first m — 1 requests in
trial j. It is easy to compute Z; = L(m)),
the expected cost of a particular order-
ing. Certainly, the mean Z over ¢ trials
is an unbiased estimator of expected
request cost.

The fifth experiment applies condi-
tional expectation to the search problem
by generating m; with the first m — 1
requests and then directly computing
L(7;). Therefore, the last request R ; is
not generated at all. Results of the fifth
experiment are given below. Note that
the estimator D? was obtained by the
joint application of conditional expecta-
tion and common random numbers.

M? Va{M;] T* VarT7] D* VarD?]

7.30 045 590 0021 139 045
719 038 587 0016 131 0.36
718 028 5.88 0.017 129 0.29
748 045 591 0.027 156 0.37

ACM Computing Surveys, Vol. 24, No. 2, June 1992

The experiment required 22 seconds, a
slight increase over the 21.3 seconds
required for the second experiment. This
is expected, since computation of list costs
requires time proportional to n, rather
than time proportional to n/H,. In this
case, however, the small increase in run-
ning time is well worth the dramatic de-
crease in variance, especially in the esti-
mation of 7.

2.6. Simulation Shortcuts

Now we consider the problem of speeding
up the simulation program. The key idea
is that we wish to simulate an algorithm,
not necessarily to implement it. It may
be possible to apply algorithmic improve-
ments to permit more trials per unit of
computation time while leaving un-
changed the distributional properties of
the output variates. While not techni-
cally a variance reduction technique (be-
cause variance remains the same in each
run), a simulation shortcut can reduce
variance by allowing more trials per unit
of time.

A simulation speedup might be
obtained by exploiting knowledge that
would not be available in an application.
For example, we can exploit the knowl-
edge that item names are integers and
obtain a shortcut for the Transpose rule.
In this rule, each sequential search is
followed by a swap of the requested item
with its predecessor. The sequential
search for each item can be replaced by a
constant-time table lookup: it is only nec-
essary to maintain an auxiliary array
Location, where Location[i] records
the location of item i in the search list.
After a “transpose” operation in the
search list, only two entries in the loca-
tion table must be modified. The average
cost of the Transpose rule is reduced
therefore from at least n/H, per request
(the expected cost of a search in the opti-
mal list) to constant time per request.
Note that this shortcut cannot be applied
to Move-to-Front because of the large cost
of modifying the location table after a
move.

A second shortcut arises by observing
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that the Move-to-Front rule only records
the order of last appearance of each item.
Instead of performing the first m — 1
searches (again with cost at least n/H,
per search), it is necessary only to record
the last time of request for each item.
This can be done in constant time per
request using an array LastTime, in-
dexed by item names. To restore the
search list at the time of the mth re-
quest, it is necessary only to sort the
search list elements according to the en-
tries in array LastTime.

If both of the above shortcuts are used,
the simulation program performs no
searching at all; nevertheless, the output
measures have exactly the same statis-
tical properties as in a straightforward
implementation. The running time of a
simulation program that uses both
speedups (as well as conditional expecta-
tion) is O(m + nlog(n)), compared to
O(mn/H,) for the fifth experiment.

Other shortcuts may be gained by
increasing the number of observations
from a single trial. Simulations of search
rules by previous authors (surveyed in
the next section) have used this idea by
reporting the average cost of the first m
requests rather than just the cost of the
mth request. Although this approach cer-

ing list costs for requests m —b +1
through m. Choosing a good value of b is
a difficult problem in general, although
some rules of thumb do exist [Bratley
et al. 1983; Pawlikowski 1990].

Whether any of the above shortcuts
produce significant speedups in the
sequential search problem depends on the
choice of saméﬂe fpoints. The sixth experi-
ment, tuned for the sample point
(20, 1000), implements the Location ar-
ray for Transpose and applies batched
means with a conservative batch size of
10. Conditional expectation is applied to
each of the last 10 lists obtained in each
trial. For comparison with earlier re-
sults, the sixth experiment produces 50
observations by taking only 5 trials with
10 data points at each trial.

The table below compares the first
experiment (top row of each pair) to the
sixth experiment (bottom of each pair)
at three sample points. The column
marked “Time” shows an improvement
in running time by more than a factor of
15. Estimators of u, 7, and & along with
observed variance are given in the
remaining columns. Variance in the
estimator of p is reduced by a factor of
about 70, in 7 by a factor of 1000, and in
é by a factor of about 250.

n m Time " Var T Var 8 Var
20 1000 469 | 794 35.85 552 23.81 2.42 6296
3.1 7.02 0.259 | 5.89 0.021 1.14 0.238
20 2000 93.7 | 6.24 26.14 6.53 27.05 -0.32 50.54
5.6 | 7.26 0.209 | 5.85 0.013 1.37 0.223
20 3000 141.2 | 746 282 6.46 35.96 1.00 65.64
8.3 | 7.52 0.322 | 5.83 0.015 1.58 0.355

tainly reduces variance, it also produces
a biased estimator of wu(n, m) and
7(n, m). Since requests costs are higher
in the initial stages of the simulation,
averaging tends to artificially raise the
reported cost.

A good heuristic solution to the prob-
lem of bias is to discard some number of
initial measurements and to begin accu-
mulating costs after the simulation
appears to be nearing asymptotic behav-
ior. This corresponds to taking a batched
mean of the last b requests and averag-

Figure 1, seen previously in the Intro-
duction, gives a graphical view of the
improvement in estimators of 6 for n =
20 and several settings of m. The left
panel shows values of D, obtained from
the first experiment, and the right panel
shows values obtained from the sixth
experiment.

3. OTHER VARIANCE REDUCTION
TECHNIQUES

Some variance reduction techniques of
general use were not applied to the

ACM Computing Surveys, Vol. 24, No. 2, June 1992




206 .

Catherine McGeoch

sequential search problem. This section
contains a brief description of each and
how they might be used.

3.1. Splitting

Considering the search problem as a
two-step process—generate a random list
ordering 7; by the first m — 1 requests,
then generate a final request—suggests
the application of splitting. For a fixed
list ordering m;, variate T; may be viewed
as an estimator of expected list cost for
7. A better estimator is obtained by
generating repeated requests R,
RJ-Z,_...Rjk without changing ;. Vari-
ate T} is set equal to the mean of search
costs T, Ty, . .. T, Instead of producing
one estimator of expected list cost for s
this produces £ estimators, which is
guaranteed to reduce variance.

Splitting may be useful when a simula-
tion produces two variates in sequence,
where the first represents some “state”
and the second is an estimator of expected
cost for that state. When the generation
of the state is expensive, this technique
greatly reduces the amount of computing
time required to obtain estimates of ex.
pected cost. The method of conditional
expectation used in the fifth experiment
extends this idea to direct computation of
the expected cost of the state; splitting
should be considered when direct compu-
tation is not feasible.

3.2. Stratification

Stratification reduces variance by distin-
guishing classes, or “strata,” of input and
generating input instances so that the
number of instances occurring in each
class corresponds exactly to its expecta-
tion. In the context of the search prob-
lem, we might identify three classes of
request sequences A, B, and C, such
that the probability that a particular
sequence falls in each class is respec-
tively p,, pg, and p.. Instead of generat-
ing ¢ request sequences (trials) indepen-
dently, we could generate tp, sequences
from class A, tpp from B, and tpe from
class C.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Another application of stratification to
the search problem could be used to
improve splitting. First, generate m — 1
requests to produce a list ordering 5.
Then, instead of generating a random set
of k requests R, Ry,... R, divide the
set of possible requests R ; into s request
strata S,, for /=1,...s. Let q, denote
the sum of probabilities of requests in
stratum S,. Generate the set of % re-
quests so that exactly kq, are from stra-
tum S, for each /.

While the technique may be of use in
general, stratification was not applied
in the search study because of the diffi-
culty of finding appropriate classes, prob-
abilities, and generation methods,

3.3. Poststratification

A method for “correcting” an estimator
by use of auxiliary information is by
poststratifying the experiment. Suppose
input classes A, B, and C can be identi-
fied as above, but that stratification is
not applied: rather, the instances are
generated independently in a straightfor-
ward manner. Poststratification works by
calculating differences between the
expected number #p, of instances in class
A and the actual number of instances
generated in the run. The differences for
each class are then used to “correct” the
output measure towards its expectation.

This technique could be applied to
individual requests as well. Let E[ Y}IR g
€ S,] denote the expectation of T;, given
that the last request R ; 1s from stratum
S,. As before, g, denotes the sum of
probabilities of requests in S »; this is
equivalent to the probability that a ran-
dom request falls in S .. Poststratifica-
tion uses the fact that

r=E[T] = L E[T)R;€8,]q,
/=1

(see Nelson [1987]). Let N, equal the
total number of last requests (over all ¢
trials) falling in strata S,, and suppose
that the request R ; falls in stratum S, .
Then a new estimator is given by sum-
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ming over all trials as follows:

t
7= Y -

J=1

7D

This estimator is unbiased as long as
each N, is greater than zero. Poststrati-
fication can be applied in this case be-
cause the theoretical distribution of R is
known, R; is positively correlated with

» and the request R; is independent of

T
the list ordering at time m.

4. APPLICATIONS TO OTHER
ALGORITHMS

This section describes some variance
reduction techniques that have been
applied (or could have been applied) to
algorithm simulation studies in the liter-
ature. This is not an exhaustive survey;
the intent is to show that these tech-
niques have been applied profitably in a
wide variety of problem domains. In most
cases below, the VRTs were not men-
tioned by name in the cited works nor
was there a stated intention to reduce
variance in the data. Even without for-
mal justification, VRTs have been recog-
nized informally as components of good
experimental method.

4.1. More Sequential Search

Several authors describe experimental
studies of various sequential search rules
including Move-to-Front and Transpose
[Bitner 1976; Rivest 1976; Tenenbaum
1978]. All of these studies apply batched
means by averaging search costs over
several requests in a single trial. As was
noted in the section on simulation short-
cuts, averaging over time introduces bias
in the estimation of the cost of the mth
request because initial costs are high.
Care should be taken in using such
results to make inferences about conver-
gence in the theoretical model.

For example, Tenenbaum’s [1978]
experiments start with a search list that
is initially empty. Each item is added to
the list after its first appearance in the
request sequence. Once the search list

contains all n items, the request cost is
calculated by averaging over all subse-
quent requests. That is, this study applies
batched means with the batch size equal
to m — f, where m is the total number of
requests and where f is the number of
requests needed to fill the list.

One trial produced average cost T =
6.924 for the Transpose rule, using Zipf’s
distribution at the sample point n = 25,
m = 12,000. Tenenbaum reports that
none of his results varied by more than
2.5% in four independent trials at each
sample point, implying in this case that
the observations differed by no more than
0.173. Although the results of Section 2
are not directly comparable to
Tenenbaum’s because of the difference in
sample points (n = 20, m = 1000), it is
instructive to note that 7' varied by as
much as 2.0 in four runs of the first
experiment and by 0.04 in the fifth
experiment. Batched means can reduce
variance in a straightforward implemen-
tation, but other techniques can work as
well or better.

4.2. Bin Packing

The one-dimensional bin-packing prob-
lem is as follows: given a list L of n
weights in the range (0,1], pack them
into unit-capacity bins so as to minimize
the total number of bins required. This
problem is NP-Hard [Garey and Johnson
1979], and several heuristic packing
algorithms have been proposed.

Several experimental comparisons of
various packing algorithms have
appeared (for example, Bentley et al.
[1983], Csirik and Johnson [1991], John-
son [1973], McGeoch [1986a], and Ong et
al. [1984]). Typically, the input lists are
formed of weights drawn uniformly and
independently from the range (0, u], for
some upper bound u such that 0 <z < 1.
Motivated by worst-case analyses, one
traditional goal has been to estimate S,
the expected number of bins needed to
pack a list according to a given packing
algorithm. The number of bins required
in trial j, denoted B;, is an unbiased
estimator of B.
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Now, in trial j the sum of weights W,
in the welght list is a lower bound on B
In fact W, is a control variate, since it is
pos1t1vely correlated with B; and its ex-
pectation o is easily computed There-
fore, B could be estimated by Bf = B; —
a(W - o).

All of the experimental papers cited
above report results for the “First Fit
Decreasing” (FFD) algorithm. Two stud-
ies use B; (or functions which depend on

B)) as the primary measure ([Johnson
1é73 Ong et al. 1984]). Later studies
[Bentley et al. 1983; Csirik and Johnson
1991; McGeoch 1986a] adopt empty
space, defined by E = B W., as the
measure of packmg quahty Note that

i+ w is an unbiased estimator of g.

mpty space was not used directly to
estimate B in these studies; neverthe-
less, this alternative measure produces
clearer results because of the reduced
variance. Analytical bounds on B were
subsequently derived based on the exper-
iments measuring empty space.

Although none of the studies explicitly
report variance for each sample point, it
is possible to infer that in one case vari-
ance in B; is near 126 for 20 trials at the
sample pomt n = 1000, u = 1[Ong et al.
1984, Table V]. In the studies which used
empty space as the measure, a typical
run of 25 trials at n = 128,000, u =1
produced variance in B; near 105, while
variance in empty space E; was about 41
(personal notes). Thus, usmg W, as a
control variate for B; could give ‘a 50%
reduction in variance.

In more extensive studies of bin pack-
ing [McGeoch 1986a}, FFD was studied
for weights drawn uniformly from (0, u],
where u < 0.5. A second control variate
is suggested by these experiments; the
empty space in the last “catchall” bin in
the packing is a source of noise positively
correlated with total empty space. In
experiments measuring “empty space in
all but the last bin,” the observed vari-
ance is smaller by a factor of 12,000 over
the original measure B;. Common ran-
dom numbers were also applied in some
of these experiments.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Another VRT that might be profitable
for bin-packing heuristics is described
below. Suppose several algorithms are to
be compared for lists of n weights drawn
uniformly from the range (0, ©]. For each
weight list L = {x,, x,,... x,}, let the
antithetic list be computed by L = {u —
X1, U — Xy,...u — x,}. The antithetic out-
put variates are the bin counts produced
for each pair of lists. Whether this tech-
nique produces a true reduction in vari-
ance depends on whether empty space is
negatively correlated for two such lists. A
small pilot study could determine
whether this is the case.

4.3. Algorithms on Random Graphs

Kershenbaum and Van Slyke [1972]
apply an elegant simulation shortcut in
their study of spanning trees in random
graphs. They use experiments to esti-
mate A(p), the probability that a span-
ning tree occurs in a random graph
in which each edge appears with proba-
bility p.

A naive simulation program would
generate many random graphs and record
the existence or not of a spanning tree in
each; this process must be repeated for
each p of interest, say pi, ps,..., Ds-
Instead, their program constructs a com-
plete graph G with edge weights w(x, y)
drawn from a uniform distribution. Ran-
dom variate @ is the largest weight edge
needed to connect the graph, and A(p,) is
set to 0 if @ > p, and to 1 otherwise, for
each { = 1... k. This shortcut program
allows a single trial to produce simulta-
neous estimates for all p,. The authors
also apply antithetic variates by building
two graphs G and G in each trial by
using antithetic edge weights w and i =
1-w.

This shortcut technique could easily be
generalized: generate a weighted graph
G and assume that an edge (x, y) “exists”
in the random graph if w(x, y) is greater
than p,. Indeed, this relationship has
been exploited to derive theoretical
bounds on expected solution cost for
problems on random weighted graphs,
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including traveling salesman tours, bot-
tleneck TSP, assignment, weights of min-
imum spanning trees, and k-cliques, in
addition to bounds on solutions to some
greedy algorithms [Lueker 1981; Weide
1980]. Note that these results provide a
pool of possible control variates for
heuristic algorithms on randomly
weighted graphs, since their expectations
are known. It is only necessary to estab-
lish (empirically, if necessary) that there
is a positive correlation between the con-
trol variate and the cost being studied.

4.4. The Traveling Salesman Problem

Heuristic algorithms for the traveling
salesman problem have received exten-
sive experimental scrutiny. Rather than
review the vast literature on the subject
(see Lawler et al. [1985] for an introduc-
tion), we will highlight a few studies and
discuss VRTs that have been applied and
others that might be applied.

The use of common random variates
when comparing TSP algorithms is
widespread. Traditionally, there has
existed a set of about 20 benchmark

‘problems on which every newly proposed

TSP algorithm is expected to be tested.
One difficulty with these benchmark
problems is that they become obsolete;
although the largest such problem is
around 500 nodes and 1200 edges, some
recent TSP experiments have used ran-
dom inputs with as many as one million
nodes [Bentley et al. 1990]. Bentley pro-
poses a new set of benchmark inputs that
are arguably difficult for some algo-
rithms and which are scalable in size,
and he uses common random variates to
present a detailed comparison of the
tradeoffs between several TSP algo-
rithms [Bentley 1990). ‘

In studies of TSP algorithms, there
may be several opportunities for finding
control variates, depending on the input
model used. Control variates for graphs
with random edge weights were described
in the previous section. For tour improve-
ment heuristics, the initial tour might be
a possible control variate for the final

tour, if the expected cost of the former
can be computed.

Finally, we describe a simulation
shortcut for the Strip heuristic on
Euclidean point sets [Beardwood et al.
1959]. This algorithm begins by breaking
the input points into some number of
vertical “strips,” finds an optimal path
through each strip, and then connects
the paths in adjacent strips. For this al-
gorithm, the expected total path length is
a simple function of the expected cost in
a single strip; instead of directly imple-
menting the algorithm (generate points,
determine membership in strips, sort
points in strips, connect strips) it is pos-
sible to generate repeatedly (and quickly)
a random path length for a single strip
and apply the formula.

4.5. Quicksort

The basic strategy of Quicksort is well
known. Given a list of items to be sorted,
Quicksort chooses an element from the
list and partitions the list so that items
smaller than the partition element are to
its left and items greater are to its right;
therefore the partition element is in its
correct sorted position. Quicksort then
recurs to sort the sublists on either side
of the partition.

Much of the efficiency of Quicksort
depends on the choice of the partition
element. A good partition element splits
the array nearly in half. A standard
strategy is to choose the partition ele-
ment by selecting the median of a ran-
dom sample of the current subarray. For
example, median-of-three Quicksort
takes a sample size of 3 at each stage.
There is a tradeoff in determining the
right sample size: a large sample gives
better partitions but incurs a higher me-
dian selection cost. One experimental
study examines strategies in which sam-
ple size is allowed to vary with subarray
size at each recursive stage [McGeoch
1986a, 1986b].

One measure of interest is B, the total
number of exchanges (swaps) of list items
performed on a random list of size N. It

ACM Computing Surveys, Vol. 24, No. 2, June 1992




210 .

Catherine McGeoch

is easy to compute the expected number
of exchanges b(n,r) at any recursive
stage, given the subarray size n and the
rank r of the partition element in that
subarray. Conditional expectation was

applied by calculating &(n, s) directly
rather than by counting the actual num-
ber of swaps in a given trial.

The random variate B(NV) used to esti-
mate B was found by summing the
b(n, s) values over all stages. This tech-
nique is applied similarly to three other
output measures. In fact, all that is re-
quired in the simulation program is gen-
eration of a random variate for the rank
r of the partition element at each recur-
sive stage (which determines subarray
size at subsequent levels). The desired
statistics are obtained even though the
simulation program neither generates
nor sorts any list.

Note that this VRT gives also a simu-
lation shortcut; the simulation program
has overall running time ®(N) whereas
a direct implementation of Quicksort
requires (N log N) time. The use of
conditional expectation for this problem
was suggested by a similar application in
Bentley’s study of Hoare’s selection algo-
rithm [Bentley 1988, Chapter 15].

SUMMARY

Variance reduction techniques can pro-
vide a valuable tool for studying algo-
rithms by simulation. This paper docu-
ments the power of variance reduction
techniques for algorithm problems and
provides tutorial discussion. Since even
complex heuristic algorithms tend to have
precise mathematical specifications and
a great deal of structure, there is much
potential for exploiting partial
understanding of the underlying model.
Furthermore, precision and clarity of
results may be critical for development of
the insight necessary for asymptotic
analysis of functional growth.

The techniques applied in the search
problem and some guides for their gen-
eral application are summarized in the
list below. Assume throughout that ran-
dom variate X is an estimator of .
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Common random numbers, When
performance among two or more algo-
rithms is likely to be positively correlated
with respect to input instances, compare
the algorithms using identical inputs.

Control variates. When a variate Y
exists which is positively correlated with
X and which has known expectation, ad-
Just X towards its expectation 6 accord-
ing to deviations of Y from its expecta-
tion. Control variates may be thought of
as well-understood sources of “noise” in
the simulation.

. Antithetic variates. When variate
X can be generated which is negatively
correlated with X but has identical dis-
tribution, generate pairs of antithetic
variates and compute their means.

Conditional expectation. When-
ever justified, replace the sampling of a
random variate by the calculation of its
expectation.

Simulation shortcuts. Exploit
problem-specific knowledge to produce
equivalent results more efficiently or to
obtain many results from a single trial.

Splitting. When the simulation may
be seen as a two-step process which first
produces a “state” and then estimates
the cost of that state, it may be cost-effec-
tive to allocate extra effort to the estima-
tion problem for each state.

Stratification. Arrange input gener-
ation so that the frequencies of appear-
ance of certain input measures agree with
their expectations.

Poststratification. “Correct” an
output measure towards its expectation
according to variation in the distribution
of the input.
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