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ABSTRACT

We have developed an environment which al-
lows us to collect data for performance analy-
sis by modifying the microcode of a VAX 8600.
This use of microprogramming permits data to
be collected with minimal system perturbation
(i.e. the data is almost as good as that obtained
with a hardware monitor) but at the cost and
with the ease of use of a software simulator. In
this paper we describe the environment that we
have developed and present two examples of its
use. The first example, procedure call instru-
mentation, illustrates a technique for gathering
data on how certain architectural features are
used. The second example, instruction tracing,
illustrates a technique for collecting data that
can then be used in trace—driven simulation.

1. Introduction

One critical aspect of computer science is the eval-
uation of the performance of a computer system. Fur-
thermore, as architectural mechanisms get more sophis-
ticated, the data required to support this evaluation get
more complex. For example, overall opcode frequency is
sufficient to decide which instructions to optimize, but
traces of addresses are needed to evaluate mechanisms
such as caches and translation buffers. Even more com-
prehensive data is needed to evaluate more complex mi-
croarchitectural techniques, such as those that permit
out-of—order execution. Thus, the need for sophisticated,
high quality performance measurements is becoming in-
creasingly more important.

An important issue for any type of measurement is
the distortion to the data collected due to the act of tak-
ing the measurements. At one extreme is a hardware
monitor, which can take measurements with virtually no
effect on the system. However, hardware monitors are
generally quite expensive. Also, physical access to the
computer being measured is required as well as specific
technical knowledge of the hardware configuration. At
the other extreme are software simulators which can be
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easy to use and can be tailored to many different require-
ments. The problem here is that a software simulator
typically handles only a subset of an entire system (e.g.
a single process) and typically runs on the order of 1000
times slower than the hardware. :

Most of the advantages of both hardware and soft-
ware methods can be achieved with a measurement gath-
ering technique that involves modifying the microcode of
the system being measured. By so doing, measurements
can be taken on a real computer system while it is exe-
cuting jobs in real time. The amount of slowdown will
vary depending on the type of measurement being taken,
but in many circumstances it may not be noticeable. In
cases where a large quantity of data is being gathered,
the system may run 2-5 times slower, but this is still a lot
better than a software method can achieve. In addition,
microcode-based systems can be very flexible and easy
to use. Once the core microcode is installed that gathers
the information, everything else can be under software
control.

The idea of using microcode to gather measurements
has been around for a long time. The earliest mention of
which we are aware was by Halbach in 1971 [8]. In this
two page note, Halbach discusses the gathering of trace in-
formation by using microcode modifications. Also, Arm-
bruster discusses the gathering of instruction traces in [3],
published in 1979. Gritsh and Kistner provide a brief his-
tory of firmware monitoring in [7]. Chroust, Kreuzer and
Stadler discuss a microprogrammed page—fault monitor in
[4] and Agarwal, Sites and Horowitz discuss a microcode-
assisted address tracer in [1].

Our environment is based on microcode modifica-
tions to a VAX 8600. These modifications include ad-
ditional machine level instructions as well as side effects
to standard VAX instructions, but the VAX architecture
is preserved. (Actually, there are a few exceptions where
the VAX architecture is not quite preserved, as we will see
later, but this is only to the extent that unused features
are removed.) This means that all operating system func-
tions and utilities can operate normally. Our environment
runs under UNIX 4.3 BSD, but it is mostly operating sys-
tem independent and many of the initial experiments were
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User’s View of the Environment

run under VMS. The user interacts with the environment
by writing programs in C which are subsequently linked
to special library files and are eventually loaded into ordi-
nary binary files that contain the new instructions. Thus,
no special privilege is required to compile or execute the
program and the operating system doesn’t require modi-
fication.

We use the term “environment” to describe our sys-
tem because it is more than just a tool to gather a specific
type of measurement. Rather, it is a set of microcode
modifications along with software utilities that can be
used to take a variety of measurements under the control
of user-level processes. Thus, unprivileged users remotely
logged in via the ethernet can exercise the environment
to gather measurements for their own purposes, without
disturbing any other system activity, except for the fact
that only one user can be exercising the environment at
a time. This is due to the fact that certain resources are
used by the microcode which are common to the entire

- processor.

This paper is divided into six sections. Section 2 il-
lustrates the environment as seen by the user. Section
3 provides an introduction to the 8600 microarchitecture
and the modifications necessary to create the environ-
ment. Section 4 describes an experiment that was con-
ducted to instrument VAX procedure calls. Some results
are given for both VMS and UNIX. Section 5 describes
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a tool we are currently implementing that will gather in-
struction traces for a process, a set of processes or for the

_entire system. Finally, section 6 concludes with details
of future work and some ideas about other projects that
could be done.

2. User—-Level Description

We will begin the description of our environment for
performance analysis by looking at it from a user’s point
of view (see figure 1). The 8600 on which the environment
is based is part of the Berkeley ethernet network. This
means that users can remotely log in from other machines
and can copy files back and forth between machines. From
the user’s point of view there are three separate activities
taking place: the collection of data into a section of re-
served memory, the transfer of the collected data from
the reserved memory onto disk, and the post-processing
of the collected data. The first two activities must take
place on the 8600 while the third may take place on the
8600 or on the user’s local host.

The collection of data and its retrieval from the re-
served memory can both be controlled from the UNIX/C
level. In both cases, programs are written in C which
include calls to standard subroutines which exercise the
environment. These programs are then loaded into binary
files which are invoked from a UNIX shell. The set of pro-
cesses for which the data is being gathered and the process
which is collecting the data can be running concurrently.
This would allow data to be taken continuously as long
as the I/O system can keep up with the running process.
If the rate of data accumulation is too high, the set of
processes which are generating the data can be given low
priorities in order to give them less of the processor and
lower the rate of accumulation.

Measurements can be taken for a set of user processes
(which would be the case if a user wanted to collect data
about a specific program), or can include system activ-
ities over which the user has no direct control. In the
latter case, in order for the user to control these system
activities, special arrangements are necessary. If on the
other hand, measurements are only being taken for pro-
cesses that the user directly controls, other activity in the
system is irrelevant. The one restriction that does exist in
this case, however, is that only one set of measurements
can be taken at a time because the microcode modifi-
cations manage resources that are common to the entire
Pprocessor.

3. Modifications to the 8600 Microarchitecture

Figure 2 is a block diagram of the 8600 microar- -
chitecture. It is partitioned into four major units that
work concurrently, each performing a different part of the
overall execution of an instruction. The IBOX prefetches
the instruction stream, processes operand specifiers and
passes operands and instruction—dependent control infor-
mation to the EBOX, which is the main execution unit
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8600 Block Diagram

of the machine. The EBOX is in charge of the overall
execution of the machine and under exceptional condi-
tions explicitly controls the other units. It also contains
the main data path of the machine and most of the mi-
crocode. The MBOX processes memory requests from
both the EBOX and the IBOX. It contains the transla-
tion buffer, the cache and the interface to the I/O sub-
system. Finally, the FBOX contains special hardware to
execute floating point instructions efficiently. The EBOX
executes all VAX floating point instructions if the FBOX
isn’t present.

Figure 2 shows the main interface signals between the
four major units. The MD-bus handles all data transfers
between the MBOX and the rest of the system. There are
three possible destinations for data flowing across the MD
bus: the prefetch buffer, the IBOX port (used for operand
processing), and the EBOX port (used for memory ac-
cesses during the execution phase of an instruction). The
IVA and EVA busses provide the addresses for memory
accesses to the MBOX. The op-bus is the main data path
for operands from the IBOX to the EBOX and FBOX.
The ibgpr-bus passes a GPR number to the EBOX, al-
lowing it to access it’s own copy. Thus, two operands can
be passed to the EBOX in one cycle.

The w-bus can be sourced by the IBOX, the EBOX
or the FBOX and is used mainly for the distribution of
writes to general purpose registers (each of these three
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boxes has it’s own copy of the GPRs). The w-bus is
also used to transfer memory data from the EBOX to
the IBOX. The fa-bus is a control bus that provides mi-
crocode entry points to the EBOX. Finally, the cc-bus
provides the IBOX with condition code information com-
puted in the EBOX which the IBOX needs for making
branch decisions.

Since most of the microcode is in the EBOX and this
is the only microcode currently involved in this project,
we will examine the EBOX in more detail. Figure 3 is
a block diagram of the EBOX data path. There are two
main function units that can operate in parallel, a barrel
shifter and an ALU. There is a 256 by 32 bit dual-ported
register file (RA and RB) which can provide two sources
to the function units and can receive a result in the same
cycle. Of these 256 registers, roughly half are used to
store constants while the other half are used to store the
GPRs, internal processor registers and temporaries. The
VMQ register drives the EVA bus and is loaded from the
ALU.

Now let’s look at the EBOX registers in more de-
tail since they are important for the purposes of taking
measurements. This is because they can be used to im-
plement very fast counters. Information can be collected
about the system without having to go to memory and
with only an extra microcycle or two, thus slowing the
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Modifications to the EBOX Registers

processor down very little. Figure 4 shows the register
map before and after the microcode modifications were
made.

There were 16 unused registers in the initial system
and we have been able to free up 31 more, leaving 47
registers available to the new microcode. One instance
of making more registers available has to do with the
POLYH instruction, which evaluates a polynomial on 128
bit floating point numbers. There are four temporary reg-
isters that are reserved for this specific instruction and
unused by any other. Thus, if we are willing to do with-
out POLYH, these four registers are available to the mi-
crocode.

Another way registers were made available was to
eliminate a bank of 16 zeros. Because of certain register
addressing restrictions, this bank sped up certain instruc-
tions by allowing a zero to be sourced when only the bank
and not the register within the bank could be specified.
By modifying the microcode in about 30 places (most of
which required the addition of an extra cycle), and source
the particular register that contains a zero, this bank was
no longer needed. Finally, additional registers were freed
by eliminating constants. Some constants are used in only
a few places. By modifying the microcode to use other
constants, adding a cycle or two where necessary, these
registers become available.

Another important detail of the microarchitecture is
the decode RAM in the IBOX. This is a2 memory, indexed
by opcode, which specifies the access type and data type
of each operand and the EBOX microcode entry points.
The decode RAM, which is writable, has entries for 512
opcodes (all of the single byte opcodes plus all two byte
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opcodes that consist of hex FD followed by another byte).
Since the VAX architecture only defines 306 of these op-
codes, that leaves over 200 new instructions that can be
defined with their own specific operand information and
EBOX microcode entry points. This allows instructions
that aid in the measurement gathering process to be de-
fined and executed without disturbing the VAX instruc-
tion set. Thus, a particular process can be executing a
secondary instruction set while at the same time other
processes and the operating system are executing VAX
instructions.

Finally, there is the issue of space for the additional
microcode. The EBOX microcode source consists of ap-
proximately 75,000 lines of microcode in about 20 sep-
arate files which assembles to about 7700 microinstruc-
tions. Since the EBOX control store has space for 8192
microinstructions, this leaves about 500 for our use. We
can actually get more space by removing parts of the
microcode. For example, compatibility mode, which is
implemented entirely in the EBOX and uses about 600
microinstructions can be removed. Our machine does not
have to implement the entire VAX architecture, it just
needs to execute the operating system and utilities neces-
sary to support the environment. We have been running
without compatibility mode and without POLYH without
any problems.

The microcode source files are assembled and loaded
into a binary format and placed on the console removable
disk pack. These files are then loaded into the control
stores before the operating system is booted. All control
stores are in RAM, and any control store can be overlaid
at the single microinstruction level. This allows us to
assemble small files that patch the existing microcode in
a fraction of the time it would require to reassemble the
entire microcode. The control stores are not dynamically
alterable. The CPU clock must be halted in order for
them to be changed.

4. Procedure call instrumentation

One specific example of microcode—assisted perfor-
mance analysis that we have performed is the instrumen-
tation of VAX procedure call instructions. A lot of atten-
tion has centered on procedure calls and their implemen-
tation recently, in particular with regard to the RISC ver-
sus CISC paradigm. Furthermore, results can be greatly
skewed depending on the benchmarks used. There are
benchmarks that are virtually all procedure calls (e.g.
Ackermann’s function [13]) and benchmarks with prac-
tically no procedure calls. There are benchmarks that
do a lot of register saving, and those that do very lit-
tle. Thus, it is interesting to measure a real computer
system, under different circumstances, to determine how
procedure calls are used in practice. However, these mea-
surements must be kept in perspective. It is dangerous to
draw conclusions about architectural features in general
from the results of a particular architecture, operating
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Call Instrumentation Results
(1 hour of VMS idle time)

system, compiler, etc. They can, however, provide valu-
able information.

The two VAX procedure call instructions, CALLS
and CALLG differ only in how the arguments are passed.
Both instructions read the first two bytes of the target
address to get the entry mask. This mask determines
which registers to push onto the stack (after alignment)
and how to set the DV and IV bits in the processor status
longword. Control is then passed to the location following
the entry mask. There are two bits in the entry mask
which must be zero. If either bit is non—zero, a reserved
operand exception occurs.

An exhaustive instrumentation of the CALLS and
CALLG instructions would record every entry mask and
the stack alignment before each instruction as well as the
address of the call instruction and the address of the desti-
nation. However, since we wanted all data to be contained
within the EBOX, a more restricted approach was neces-
sary. We implemented 34 counters which are incremented
based on the entry mask and the stack alignment.

First, there is a counter that counts the total number
of call instructions encountered. Also, there are 12 coun-
ters which are incremented for each bit set in the register
save mask. These counters count the total number of
times a particular register is saved. In addition, there are
13 counters which are incremented depending on the to-
tal number of bits set in the register save mask, from 0 to
12. These counters provide us with a histogram of how
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many registers are saved. There are three counters that
count DV and IV patterns of 01, 10 and 11 (the pattern
of 00 can be obtained by combining these with the total
counter). There are four counters that reflect the low two
bits of the stack pointer, providing alignment informa-
tion and there is a counter which counts the number of
reserved operand exceptions.

In order to implement these counters, the microcode
was modified in the CALLS and CALLG routines (most of
which is shared). The counters for each bit in the register
mask are incremented following the cycle in which the
register is written to memory. Thus, one extra EBOX
cycle per register pushed is required. The counters for the
number of registers pushed are incremented by keeping a
count of the number of bits set and then branching on
it after all registers are pushed. This requires a total of
three extra cycles. The stack alignment counters added
one cycle as did the total counter, but the DV and IV
counters were updated with no additional cycles. Also,
there was an optimization for a mask of all zeros to allow

the “no pushes” counter to be updated with only onecycle

instead of three.

Thus, the overall effect is three extra cycles in the
case of a zero mask, and five extra cycles plus one cycle
for each bit set in the mask otherwise. The total number
of cycles to execute a call instruction varies between about
10 and 25. Thus, each call instruction requires approxi-
mately 20% to 50% more EBOX cycles. Assuming calls
represent 10% of all execution time, this translates to a
slowdown of 2% to 5%. However, since call instructions
are memory intensive, the actual slowdown is probably
quite a bit less because the extra work is being performed
while the EBOX would otherwise be stalled. (Note that
since our counters are 32 bits wide, they can overflow af-
ter 4 billion call instructions; this takes many hours even
on a heavily loaded 8600 and days or weeks on a lightly
loaded one.)

The second part of the microcode modifications nec-
essary has to do with retrieving the information in the
counters. To accomplish this, we created new instruc-
tions that move the counters into GPRs. Since there
are 34 counters; more than one instruction was necessary
(four new instructions were defined). One possible prob-
lem is that the process can be interrupted or switched
in the middle of the retrieval, in which case the values
retrieved will be inconsistent. The solution is to move
the total counter into a GPR on every instruction. Then,
consistency can be checked by comparing the four totals
retrieved. If they are not the same, the sequence is re-
peated.

Figures 5, 6 and 7 show the some of the results ob-
tained from this experiment. Approximately one hour of
idle time under VMS and UNIX are shown in figures 5 and
6 respectively. Figure 7 represents approximately 5 min-
utes of operation in which a large C program was being
compiled by 30 separate processes running concurrently
under UNIX.




5. Instruction Tracing and Program-level Analysis

Another performance analysis tool incorporated into
our environment allows us to take very large instruction
traces on a process by process basis. Traces are used ex-
tensively in many different areas. The most common are
address traces, used for cache and translation buffer simu-
lation. We are interested in instruction traces primarily in
connection with our research in microarchitecture. These
traces can be used to determine such things as the degree
of local parallelism in an instruction stream and can be
used to evaluate branch prediction algorithms.

An instruction trace consists of the dynamic instruc-
tion stream executed by the processor. If we assume that
the code is not self-modifying and that the execution im-
age is available, then the sequence of instruction addresses
is sufficient. A post-processor can then retrieve the in-
struction stream. Also, we need to control which pro-
cesses to trace, and when and how to turn tracing on and
off. The VAX architecture has a convenient way to select
processes to trace. Each process has associated with it a
performance monitor enable bit (PME). It is unused by
the operating system, but preserved in the process con-
trol block, so we can manipulate it and it will stay with
the process across context switches and disk swaps. Thus,
the microcode is written so that if the PME bit for the
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Call Instrumentation Results
(1 hour of UNIX idle time)
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Call Instrumentation Results
(30 concurrent C compilations under UNIX)

current process is set, tracing will occur, otherwise it will
not. ~

In order to implement instruction tracing, several
things are required. First of all, we need some reserved
memory that the microcode can write into without caus-
ing problems for the operating system. The easiest way
to do this is to reserve a section of main memory before
the operating system boots [11]. The operating system
will then configure itself without the reserved memory.

~ In addition, we need to modify the microcode associated
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with the beginning of each instruction to write its address
to the reserved memory. We also check for the end of the
memory so that tracing can be disabled when the buffer
is full. Finally, we created a set of new instructions that
allow the reserved memory to be accessed and the tracing
status to be controlled from a user-level process.

6. Conclusions

There are many different ways to collect data for per-
formance analysis, each with its own advantages and dis-
advantages. We believe that the use of microcode assis-
tance results in a system with significant advantages over
other approaches and disadvantages which aren’t as sig-
nificant. Unlike a software simulator, a real computer sys-
tem can be measured in real time running real problems
and unlike a hardware monitor, we have the flexibility,




low cost and ease of use of a software system. However,
it should be pointed out that there are limitations. There
are certain things that are inaccessible to the microcode
that could be measured by a hardware monitor. Also,
the microcode environment is less flexible than a pure
software one. It is implementation and microcode ver-
sion dependent and it requires more time to implement
and debug. Nevertheless, we feel that microcode-assisted
performance analysis is useful in many circumstances and
can provide valuable information to both computer archi-
tects and microarchitects.

There are many possible directions for this research.
The establishment of an environment for a variety of per-
formance measurements is currently our primary objec-
tive. The environment reported here allows measure-
ments to be taken under a VAX/UNIX configuration.
This is useful for many purposes but we are even more in-
terested in other configurations. For example, how would
performance be affected if only a subset of the VAX ar-
chitecture were available? Or, how would performance
be affected if the opcodes specified all of the operand ad-
dressing modes, as in many RISC architectures? This
could be tested by writing a set of new instructions, giv-
ing them their own opcodes and executing programs that
have been compiled to this new architecture. Certainly
this is not the same as making a comparison between two
different implementations that have been specifically de-
signed for each architecture, but we feel that it would
provide valuable insight.
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