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ABSTRACT
Conducting an Internet measurement study in a sound fashioncan
be much more difficult than it might first appear. We present a num-
ber of strategies drawn from experiences for avoiding or overcom-
ing some of the pitfalls. In particular, we discuss dealing with er-
rors and inaccuracies; the importance of associatingmeta-datawith
measurements; the technique of calibrating measurements by ex-
amining outliers and testing for consistencies; difficulties that arise
with large-scale measurements; the utility of developing adisci-
pline for reliably reproducing analysis results; and issues with mak-
ing datasets publicly available. We conclude with thoughtson the
sorts of tools and community practices that can assist researchers
with conducting sound measurement studies.

Categories and Subject Descriptors: C.2.5 [Local and Wide-
Area Networks]: Internet

General Terms: Measurement, Experimentation

Keywords: Internet Measurement, Calibration, Reproducibility,
Meta-data, Datasets

1. INTRODUCTION
Conducting a sound Internet measurement study is a difficultun-

dertaking. Some of the hurdles are readily apparent: designing a
meaningful experiment, securing permission to deploy the neces-
sary apparatus, testing that the tools work correctly, reducing the
raw data, finding illuminating ways to explore the data and present
the results. Other difficulties are not so apparent, and yet can sig-
nificantly undermine the soundness of the final results at different
stages of the process.

To cope with these less obvious difficulties, experienced mea-
surement practitioners have learned to incorporate a number of con-
siderations into their efforts. In this paper we discuss a number of
methodological strategies reflecting these considerations. The ob-
servations we make are not for the most part novel, and indeed
the Internet simulation community wrestles with similar issues [9].
Rather, the discussion aims to help students (and others newto In-
ternet measurement) avoid some of the pitfalls that practitioners
have come to appreciate over time. (While we often draw upon
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our own work to illustrate various issues, this is merely forease of
exposition.)

The goal which these strategies target issoundness: developing
confidence that the results we derive from our measurements are
indeed well-justified claims. By this we mean that we have a solid
understanding of the strengths and limitations of the measurement
process on which we base our results; and, likewise, a solid un-
derstanding of the quality of the chain of analysis supporting the
results.

The discussion strives to emphasize general principles rather
than particular techniques and recommended tools. Doing so, we
follow several themes. First, we consider the basic problemof deal-
ing with imperfect measurement devices (§ 2), which can exhibit
limitations both intrinsic to their design and in how we use them.
We then in§ 3 discuss issues that arise when dealing with a large
volume of data, which is often the case for Internet measurement
studies. In§ 4 we emphasize the importance of imposing a system-
atic structure on the analysis process so that we can later accurately
reproduceour analysis. Our final theme concerns issues that arise
when making data publicly available (§ 5), which can be particu-
larly important for Internet measurement studies for a number of
reasons. We conclude in§ 6 with thoughts on the sorts of tools
and community practices that can assist researchers with conduct-
ing sound measurement studies.

2. DEALING WITH ERRORS AND
IMPERFECTIONS

We begin with issues relating to the basic task of making mea-
surements. Measurement tools exhibit several types of imperfec-
tions. We first discuss the fairly simple notion ofprecision, i.e.,
errors inherent in the basic design of a tool. This leads to the strat-
egy of associatingmeta-datawith measurements, which will be a
recurring theme. We then look at errors incurred during the partic-
ular application of a tool (accuracy) and the critical danger of not
measuring what we believe we are measuring (misconception). Fi-
nally, we discuss the general strategy ofcalibration as a means to
detect, and sometimes correct, such errors.

2.1 Precision
Let’s use the termprecisionto refer to the maximum exactness

that a tool’s design permits. For example, a clock that reports time
in units of 1µsec cannot record any distinction in time finer than a
microsecond. However, the clock’sactualprecision might be much
coarser.1 For example, for some operating systems the clock actu-
ally advances only every 10 msec. Such clocks, even though they

1See [15] for an extensive discussion of measurement issues relat-
ing to clocks.



report time apparently to 1µsec precision, in fact have four or-
ders of magnitude less precision. A key consideration therefore is
whether when reporting measurements made with a tool, the report
includes an indication of the tool’s precision. If it does, then we
can formulateerror barsaround results derived from the measure-
ments in order to keep track of how the effect of limited precision
propagates through our analysis.

For many forms of Internet measurement, precision can seem
readily apparent, especially measurements regarding discrete quan-
tities such as copies of packets, Web server log entries, or BGP
routing feeds. For these, precision concerns what information is
omitted and what information is kept. For example, copies of
packet headers are clearly less precise than copies of entire packets.

However, this can sometimes get tricky, particularly when filter-
ing is involved. An illustrative example comes from our experience
with security monitoring. Often when we discover a compromised
host, we start tracing all packets subsequently sent to the compro-
mised host in order to detect attempts by the attacker to reaccess
the host. Sometimes these traces show failed attempts by remote
IP addresses—previously unassociated with the event—trying to
access unusual ports on the host. Our initial response: thisis the
attacker trying to get to their back door! But we’ve forgotten that
the trace is filtered to only traffic sent to the compromised host. A
broader trace shows that the new remote IP address in fact scanned
our site’s entire address space on that port. Given this morepre-
cise measurement, we immediately can realize that the access we
spotted was incidental, rather than fraught with intent.

Another major area where considerations of precision arisecon-
cerns measurements oftime. Computer clocks have well-defined
notions of precision [14], but it can be considerable work toensure
that these precisions are included in reports of Internet measure-
ments, because it is often difficult to access the clock’s internal
assessment of its precision, and many popular measurement tools
do not attempt to do so. A particular pitfall in this regard isthe re-
porting of simplistic precisions, such as simply characterizing the
format in which time is represented (e.g., the 1µsec precision dis-
cussed above).

However, we must keep in mind a second question:does the
clock precision matter? For many studies, the computer clock’s
precision of at least 10 msec, and likely better, is clearly good
enough—because the study focuses on much larger time scales,
say seconds and above—in which case we can forgo the consid-
erable work of assessing the clock’s precision. It is important—as
with many of the strategies we develop in this paper—to not lose
sight of this critical question ofwhen does the extra effort matter.
Unfortunately, there are no crisp rules for deciding here. However,
clearly sometimes it does indeed matter. More generally, a sound
measurement study should strive to include a discussion of whether
or not it does matter.

2.2 Meta-data
The issue of tracking measurement precision relates to the

broader theme of themeta-dataassociated with measurements
traces.2 Determining a measurement’s precision is only half the
battle; the other half ispreservingthe information during the course
of analysis. It is easy to overlook the need to do this, and many con-
venient data formats lack a way to annotate measurements in this
fashion. For example, for ASCII log formats such as those from

2Here we use “trace” in a broad sense, to mean a series of mea-
surements we have recorded. The strategies we discuss are relevant
for measurements of much broader scope than just fine-grained net-
work traffic traces.

Web servers it is often convenient to impose a simple, line-oriented
structure to facilitate subsequent processing. Another example is
the save file format of the populartcpdump tool: while it includes
a field “sigfigs” in the trace header for recording the “accuracy
of timestamps,” there is no API available for retrieving or setting
the value.

On the other hand, an example between these two that works
much better in this regard is Kohler’sipsumdump tool [11]: it
reads network traffic (ortcpdump save files) and produces con-
figurable ASCII output. While most of the output has a uniform
format, it also includes annotation lines marked with an initial “!”
that capture information such as when the trace was recorded, on
which host, and with what options, as well as when drops occur
during the tracing process (see below). In addition, by adopting
a uniform format for the meta-data it remains easy to write post-
processing tools foripsumdump’s output, and also to introduce
additional annotations beyond those the tool generates itself.

Finally, because good data is hard to gather, it can have a lifetime
beyond what the researcher initially envisions. This meansthat
we can find ourselves revisiting datasets in new contexts forwhich
meta-data information that was not needed for the initial analysis is
now important. Thus it can prove highly beneficial to retain meta-
data information even when doing so is not of immediate benefit.

2.3 Accuracy
A second form of imperfection in measurement tools concerns

their accuracy. A measurement is an abstraction of the phe-
nomenon being measured; how well does the abstraction indeed
match the actual phenomenon? Accuracy is amuchbigger prob-
lem than precision (which we can view as a subset of accuracy)
because measurements are prone to a wealth of different types of
errors beyond those imposed by the basic limitations of the mea-
surement apparatus. In addition, because accuracy errors come in
many forms, it can require a great deal of diligence and care to
assess their presence and magnitude.

To illustrate, consider the accuracy of packet filters. Concep-
tually, packet filters are simple: network traffic appearingon an
attached link is reduced down to a subset by testing each packet
against a filter. The matching subset is then recorded, either in its
entirety, or just portions of it (for example, the TCP/IP headers, but
not the TCP payload). But despite this apparent simplicity,packet
filters can exhibit a wide range of problems:

First, they can fail to record all of the packets matching thefil-
ter that appeared on the link, termed a packet filterdrop. Drops
can occur due to a failure of the packet recorder (e.g.,tcpdump)
to keep up with the rate at which the packet filter accepts packets.
They can also occur due to a failure of the filter to keep up with
the rate at which the network tap sends it the raw packet stream,
or because the tap fails to keep up with the raw packet stream on
the link. These different failure modes have somewhat different
implications in terms of their impact on analysis of the measure-
ments, and they also require different forms of instrumentation in
order for the measurement process to detect their presence,which
complicates characterizing them.

Here again the meta-data problem can arise. Measurement tools
are, unfortunately, often deficient in adequately recording such fail-
ure information. For example,tcpdump only produces an end-
of-run summary of thetotal number of drops (both filtered pack-
ets and the raw stream, though not drops by the tap itself), soit
is not possible to associate drops with the point in time at which
they occurred. Furthermore,tcpdump does not record these val-
ues in the trace file but separately, so preserving the meta-data
requires manually associating it with the trace. (Compare with



ipsumdump, which intermingles loss information with packets in
its single output, addressing both these regards.)

As cataloged in grisly empirical detail in [22], packet filters can
also record packets more than once (with different timestamps for
the different copies), reorder the sequencing of packets (again, the
timestamps do not reveal the reordering), fail to report dropped
packets, falsely report dropped packets when in fact no drops oc-
curred, and misfilter (making incorrect decisions on which packets
match the filter3).

Whether these errors are common varies a great deal across dif-
ferent implementations and environments. However, since the In-
ternet can both replicate packets and reorder them, we must take
care in determining the true cause of duplicates and reorderings
in traces, so it is important to understand the degree to which ar-
tifacts such as these can taint the accuracy of our measurements.
The reader should note that we catalog these problems not to cau-
tion about the dangers of using packet filters in particular,but to
point out the alarming diversity of inaccuracies potentially present
in measurements in general. In addition, see§ 2.5 for suggestions
on general approaches to ferret out such problems.

Another basic area where issues of accuracy arise concerns
clocks. The most basic clock inaccuracy, of course, is failure to
be synchronized to true time. Other problems include abruptjumps
forward or backward, and advancing at erroneous rates [23].

Clock inaccuracies can present significant difficulties when ana-
lyzing behavior on fine time scales, or when comparing measure-
ments made by different clocks. While algorithms exist to compen-
sate for such errors [23, 18, 30], an increasingly viable alternative is
to use clocks that are synchronized by GPS. Such synchronization
can be highly beneficial compared with clocks synchronized us-
ing NTP, which can still exhibit forms of skew, drift, and jumps,
as chronicled in [23]. One pitfall that arises when using GPS,
however, is that we can be beguiled into simply assuming thatthe
clocks must report correct time, rather than checking that in fact
they do. The path from the highly-accurate GPS timing signal—
through perhaps daisy-chaining, into the operating systemkernel,
perhaps out to the NIC or perhaps applied to an entire buffer’s worth
of packets at one time—and ultimately to the reported per-packet
timestamps can introduce significant errors.4 GPS is not the only
possible answer here, either. Pasztor and Veitch make the key ob-
servation that for most network measurement, absolute timedoes
not matter nearly as much as fidelity in therate at which a clock
advances, and they demonstrate the feasibility of obtaining a highly
stable clock rate without requiring GPS synchronization [20].

One difference between issues of clock precision vs. accuracy is
that the former can be known in advance, and hence is easier toin-
corporate into meta-data. The latter can require post-processing,
which points up the utility of designing meta-data management
mechanisms that accommodate dynamically generated attributes.

As with precision, we must keep in mind the question of whether
a particular form of accuracy in fact matters for the measurement
question at hand. Again, the same issues apply regarding using cal-
ibration for assessing errors and being aware that data taken today
may be re-analyzed in a different context tomorrow.

Finally, the point of this discussion is not to induce

3For example, thetcpdump filter “tcp[4:4] == 0 and
tcp[4:4] > 0” should never accept a packet since it matches
a TCP sequence number that is both equal to zero and greater than
zero. But in sometcpdump versions it in fact can accept packets
due to a bug intcpdump’s optimizer.
4Barford [4] once found a GPS clock setup that, due to subtle inter-
face issues, routinely reported time exactly 1 second off from true
time!

consternation—how can we ever trust our clocks?—but rather to
serve as one of the motivators for the importance of the calibration
techniques discussed in§ 2.5.

2.4 Misconception
Related to the problem of measurement tool accuracy, but differ-

ent in terms of its basic cause—and also potentially of much greater
importance—is the danger ofmisconception: errors in equating
what we are actually measuring with what wewishto measure. The
pitfalls relating to misconception take many forms. Along with our
example above about misinterpreting attacker activity because we
failed to account for a loss of precision due to packet filtering, con-
sider:

• Measuring TCP packet loss by counting retransmitted pack-
ets, which risks overlooking the problem of packets retrans-
mitted unnecessarily, or of packets replicated by the network
(see [10] for a study that explicitly acknowledges this diffi-
culty, and [3] for a study demonstrating that differences in
the two rates can be quite significant).

• Assessing end-to-end Web transfer times but failing to ac-
count for hidden proxies. For an extreme example of this
problem, Allman reported measuring a TCP session that took
only 10 msec to establish a connection, transfer its data, and
complete the three-way termination handshake. . . with a
host 100 msec away, that he subsequently discovered had
been powered off! The paradox was due to a local hidden
proxy completely intercepting and terminating the connec-
tion [1].

• Quantifying TCP throughput using transfers with large
socket buffers and modest transfer sizes, such that
application-level timing (e.g., measuring how long it takes
to issue all of thewrite system calls) measures how long it
takes to fill the kernel buffer, rather than how long it takes to
transmit the data and receive an acknowledgment.

• Computing the distribution of TCP connection sizes by cap-
turing SYN and FIN packets and using the difference be-
tween their sequence numbers to compute the size of each
connection—but failing to recognize that the very largest
connections on the monitored link might often already be un-
derway when we start tracing, or have not terminated when
we finish, and thus we will miss their SYNs or FINs and fail
to include them.

• Characterizing global BGP reachability in terms of reacha-
bility as seen by a single, multi-hop BGP peer, without ac-
counting for how outages in the multi-hop BGP peering ses-
sion magnify into apparent global outages [28].

Each of these is an easy-to-make mistake. They arise from a
mismatch between the mental models we use to abstract network
behavior and the actual complexity of the beast. The last example
is particularly of note, as it is an instance of the general problem of
vantage point[22]: that the location of exactly where a measure-
ment is performed can significantly skew the interpretationof the
measurement, in quite non-apparent ways. Some vantage-point is-
sues cannot be corrected without additional information, and in fact
this leads to a fundamental problem in network intrusion detection
of adversaries being able to exploit vantage-point ambiguities to
evade security monitoring [25, 8].

Another broad class of misconception errors concerns the degree
to which individual collections of Internet measurements are often



not representative. Numerous studies have established that Internet
properties often vary a great deal both across different points in the
network and across different points in time at the same placein the
network [5]. While for some properties such as congestion, varia-
tion is to be expected, for others (e.g., median FTP item size[5])
it is quite surprising. A general strategy we can suggest here to-
wards more sound Internet measurement is, if at all possible, to
gather more than one type of dataset—either from a differentloca-
tion (this often proves the most fruitful) or from a different time.
Having even just two datasets rather than one can prove illuminat-
ing and sobering in realizing that the phenomenon under study is
more diverse than we had pictured.

Finally, we note that a major pitfall with problems of miscon-
ception is that they can be difficult for researchers to identify by
themselves, since the problems arise out of our own incomplete
mental models. Thus, it can be extremely helpful to seek outearly
peer review of a proposed measurement effort, particularlyfrom
peers with somewhat different perspectives.

2.5 Calibration
We now turn to a discussion of a set of techniques that can greatly

help with detecting problems of inaccuracy, misconception, and er-
rors in analysis. We term these, somewhat loosely, ascalibration
strategies. Four general ones are:

• Examining outliers and spikes.

• Employing self-consistency checks.

• Measuring facets of the same phenomenon different ways
and comparing.

• Evaluating synthetic data.

In the discussion that follows,5 it is good to keep in mind that the
point of these strategies is not to achieve perfection in thecorrect-
ness of our datasets, but rather tobuild confidencethat we have a
solid understanding of both our data and the processes by which we
have measured and analyzed it.

2.5.1 Examining outliers and spikes
The first strategy stems from two important points:(i) outliers

(unusually low or high values) and spikes (values that repeat a
great deal) represent “corner cases” at the extremes of measurement
where problems often manifest, and(ii) these corner cases areeasy
to locate, so we can leverage the diagnostic benefits of inspecting
outliers and spikes without spending a great deal of effort.

While often spikes and outliers turn out to be genuine, and per-
haps not unexpected, phenomena, they can also reflect measure-
ment errors, analysis errors, or misconceptions. An example of a
measurement error in this regard is analyzing a set of round-trip
times (RTTs) to find that the smallest outliers are physically im-
possible given speed-of-light constraints, and instead realizing that
the timings are due to an infelicitous clock adjustment.

An example of an analysis error would be the same scenario
but the bad RTT is due to a mismatch in associating the outbound
packet with the wrong reply for determining its round trip. An-
other example comes from our experiences computing connection
sizes using the sequence numbers in TCP SYN/FIN/RST packets.
For one connection, we found a size of 4,294,967,295 bytes. This
seemed unlikely, given the duration of the connection, and upon

5Also, see [6] for discussion of an exemplary system that auto-
mates a number of calibration techniques (“trace sanitization”) in
the context of ongoing, very high volume packet measurement.

further investigation we found that the size reflected a bug in our
sequence number computation yielding a size of exactly2

32 − 1.
An example of a misconception error caught by such techniques

arose when we were analyzing Telnet connection arrivals to as-
sess the degree to which they were well described using a Poisson
model. One dataset had a spike of nearly 2,000 connections whose
interarrivals were all180.436± 0.002 seconds apart. These turned
out to be due to a special-purpose host with an attached modem.
Whenever a call came in to the modem, the host launched a Telnet
connection to an on-line library catalog. But the modem had bro-
ken and continually sent a false signal indicating a call hadcome
in. This led to repeated connections, each timing out after 180 sec.
The misconception here is subtle: the error in our mental model
was that we presumed we were measuringhuman-initiated activity,
for which a Poisson model might indeed make sense. If we had not
uncovered this misconception, we might have determined that the
dataset was inconsistent with Poisson modeling—true enough—but
missed the finding that if we removed the blatant machine-initiated
activity, then the remainder was in fact well-modeled as Poisson.

2.5.2 Employing self-consistency checks
The strategy of employing self-consistency checks works byex-

ploiting additional properties of the measured phenomenonto see if
they agree with behavior reflected in the initial measurement. That
is, test whether properties thatmusthold do in fact hold. Some-
times they will fail to hold because in fact our conception ofwhy
they “must” hold is incorrect, in which case unearthing exceptions
can be enlightening for refining our mental model. But usually
when they fail to hold, it is due to some sort of measurement or
analysis error.

For example, consider the problem when tracing TCP traffic of
determining whether the trace includes all of the traffic associated
with a given connection, or whether some of the traffic is missing
due to a measurement problem such as a packet filter drop. In this
case, we can use the additional property of the TCP protocol that it
is designed to be highly reliable. One facet of this strong reliability
is that a TCP receiver should never send an acknowledgment for
data it has not received. Since TCP acknowledgments are cumula-
tive, this means that we can inspect each acknowledgment present
in a trace to see whether at the point in time it was sent, all ofthe
data up to the sequence number it acknowledges has indeed been
seen previously in the trace. If not, then we have strong evidence
that the tracing suffered from some packet filter drops, because we
believe the alternative explanation that the TCP receiver really did
acknowledge unreceived data highly improbable (however, see be-
low).

Thus, by analyzing the deeper semantics of the traced traffic, we
can develop a higher degree of confidence that the trace is indeed
a sound measurement of the traffic; or, alternatively, we canlocate
portions of the trace that suffer from measurement errors.

2.5.3 Comparing multiple measurements
A third calibration strategy is measuring the same phenomenon

different ways and comparing the results. A simple example of
employing multiple measurements in this fashion is to run two sep-
arate packet monitors, to see if they agree on which packets were
present in a captured stream. When they disagree, we can some-
times distinguish between packets genuinely lost by the network
vs. packet filter drops by considering the directionality ofa missing
packet with respect to the monitors: if the downstream monitor sees
a packet missed by the upstream monitor, then the upstream moni-
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Figure 1: One-way transit time step that could be due to either
a routing change or a clock adjustment.
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Figure 2: Incorporating additional measurements resolvesthe
change as due to a clock adjustment.

tor very likely suffered a packet filter drop.6 Note that this measure-
ment needn’t be heavyweight—the second “monitor” could simply
be the receiver accounting for each packet it receives.

Calibrating via multiple measurements can also involve conduct-
ing additional measurement. For example, consider the problem of
assessing the accuracy of packet filter timestamps when measuring
network transit times. In Figure 1, taken from the data analyzed in
[23], each solid square reflects a one-way transit time computed by
subtracting the timestamp generated by the sender upon transmis-
sion of a given packet from the timestamp generated by the receiver
upon arrival. At about 750 msec into the transfer, we see a sudden
downward shift in the transit time. Such a step could be due toa
routing change which has shortened the end-to-end path latency, or
a clock adjustment at either the sender or the receiver.7 The first
is an interesting network event, the second merely a measurement
glitch.

6It is important to note two other possibilities here: the packet,
unbeknownst to us, took a different route through the network than
we imagine, and thus bypassed the location of the first monitor (a
form of misconception); or we may have confused two identical or
nearly-identical packets.
7Note, both the sender’s and the receiver’s timestamps were mono-
tone increasing, so there was noobviousclock adjustment.

Figure 2 illustrates the power of using additional measurements
to calibrate [23]. Here we include measurements of the reverse
path (hollow squares), computed in the same fashion. Using Oc-
cam’s Razor, the additional measurements allow us to deducethe
highly likely presence of a clock jump, rather than network phe-
nomena such as a routing change, due to the equal-but-opposite
character of the jump in the two directions, which matches what
we would expect from a clock jump, but would require unusual
network dynamics. (This example illustrates how sometimescali-
bration is rooted inplausibility rather than direct comparison, but
that does not undermine its diagnostic power.)

It is also possible to apply this strategy not in terms of multi-
ple measurements but rather in terms of multiple versions ofour
analysis. While we almost never have the resources to completely
reimplement our analysis software solely for purposes of calibra-
tion, we can often find snippets of analysis that are easy to recom-
pute using an entirely different approach. When we recognize such
cases, they can provide a valuable check on the soundness of our
software. For a simple example, suppose we are analyzing HTTP
packet traces and part of what our software does after reassembling
the TCP byte streams in the trace is generate a report of how many
GET, HEAD, and POST requests are present. We could also com-
pute these values by extracting the raw strings present in the packet
trace file (e.g., using the Unixstrings utility) and directly count-
ing occurrences of the strings “GET”, “ HEAD”, and “POST” within
them. We would not expect an exact match between the counts
(there might be additional instances of the strings that happen to be
in HTTP items or other headers, or due to retransmitted packets),
but we should findat leastas many instances from the raw counts
as our program reports from its refined analysis, and likely not too
many more. If we find a discrepancy that seems a bit “funny” (one’s
intuition for what constitutes an anomaly in this regard develops
with experience), then it merits further investigation to determine
whether our software might be flawed.

We can apply a similar strategy (and often more cheaply) within
a single analysis program by computing the same value multiple
ways. For example, if we are reassembling TCP byte streams, then
for each connection we can compute a running total of how many
bytes in the stream we have processed. At the end of the connec-
tion, this total should match the difference between the SYNand
FIN sequence numbers. Or, if comparing retransmitted with non-
retransmitted packets, rather than keeping count of only retrans-
missions and total packets, and computing non-retransmissions as
the difference, we can explicitly maintain counters for allthree, and
ensure that they agree when we finish.

In general, when applying calibration of some form to our mea-
surements, we unfortunately must steel ourselves for considerable
extra effort. First, there is the work to acquire additionalmeasure-
ments and devise and assess the self-consistency checks. For large
datasets, this includes the effort necessary toautomatethe checks
in some fashion, since manually checking (e.g., visually inspecting
plots such as those shown above) rapidly becomes intractable faced
with a large volume of data.8

Second, experience shows that very often when we do this extra
work, we find that the measurementsdo in fact include inconsisten-
cies or errors. We then need to gauge their significance or devise
ways to soundly compensate for their presence. Sometimes wecan
get away with discarding measurements tainted with inconsisten-
cies, providing that we first reason through whether doing sowill
impart a bias on our analysis of the remaining measurements.(For
example, discarding traces that we find have packet filter drops will

8See [21] for an example of a tool that automates a number of such
checks for packet traces.



often bias the remainder towards having lower traffic levels, since
packet filter drops generally occur during periods of high traffic
load.) Other times, we can attempt to remove the error, such as the
timing adjustment algorithms developed in [23, 18, 30].

We need to also be prepared for the fact that sometimes calibra-
tion analysis is less crisp than the examples above. For example,
if we find clear evidence of steady clock skew in one direction, but
not in the other, how should we treat the possible error? (See[23]
for an example of such.) It might still reflect a clock artifact, but
might instead reflect some peculiar network behavior. Or, going
back to our example of detecting packet filter drops by analyzing
transport-protocol behavior, consider the surprising fact that TCP
receivers have indeed been recorded acknowledging data never re-
ceived! (See the section on “Crud Seen on a DMZ” in [24].) For-
tunately, such ambiguities are often sufficiently rare thatwe can
either present and analyze them separately, or simply remove them
(noting this fact) because their total numbers are not sufficient to
affect our overall analysis.

2.5.4 Evaluating synthetic data
A final calibration strategy for developing confidence in ouranal-

ysis software is to test it using synthetic data. If the software pro-
cesses text input (e.g., Web server logs), then this can be aseasy
as hand-editing some of our measurements to introduce changes
(especially, manufacturing outliers and spikes) which we then test
whether the software correctly processes. Other forms of input
may require additional work, though we may be able to leverage
additional tools in this regard. For example, thetcpslice util-
ity available with some Unix systems can allow us to edit traces
by extracting or gluing together separate sets of packets, and the
NetDuDe (NETwork DUmp data Displayer and Editor) utility [12]
provides a powerful visual editor for transforming packet traces in
a wide variety of ways.

A related technique for verifying the correctness of analysis al-
gorithms or the theories and modeling that provides their underpin-
nings is to use Monte Carlo simulations: when the analysis isbased
on the data having a particular form (for example, conforming to a
given statistical distribution), simulate multiple random instances
of that form to ensure that—at least if the statistical assumptions
are correct—the analysis works properly. For example, for anal-
ysis that assumes Poisson event arrivals, not only should wetest
that the measurements are indeed well-modeled as Poisson, but we
should also test that for statistically pure, synthetic Poisson data,
the analysis produces precisely the results predicted by the theory.

3. DEALING WITH LARGE VOLUMES OF
DATA

Depending on what is being studied, a collection of Internetmea-
surement data can span many millions of measurements. This large
scale leads to a number of potential difficulties to keep in mind.

The first problem is bumping into system limitations such as disk
space, maximum file sizes, number of files on a volume, or direc-
tory search performance, that lengthen, in painfully mundane ways,
the data analysis process. A related problem concerns the soft-
ware system used for statistical analysis: many systems have upper
bounds on the amount of data they can process before they began to
thrash.9 This problem can even manifest when generating plots to

9From an informal poll of network measurement colleagues, the
statistical systems they most commonly use areR [26], the related
S-PLUS[27], andMatlab [7]. Quite a few reported using Perl or
C programs either for additional analysis or for working around
scaling problems in these systems.

visualize data. For example, we’ve found that using a simplefilter
to strip out redundant points (ones that lie directly on top of one
another) can greatly speed up rendering for some types of analysis.

A final form of “system limitation” concerns the utility of some
types of statistical techniques. For example, it is well known in the
statistics community that large datasets almost never havestatisti-
cally exact descriptions, with a specific example being an experi-
ment in which 26,306 throws of 12 dice failed aχ

2 test for fitting
the predicted binomial distribution [13]. This is not due toflaws in
the tests but rather that they aretoo good: they are able to detect
minor deviations from statistical exactness, and given enough real
data this will indeed manifest.

These difficulties can combine to lead to potentially enormous
“edit–compile–debug” cycles when developing and applyinganal-
ysis tools. This in turn runs the risk of hindering our thorough ex-
ploration of the available data. A general strategy that often helps a
great deal here is to extract small subsets of the data and first ana-
lyze those in depth.10 These can be selected randomly to avoid bias;
more generally, it is highly recommended to select additional sub-
sets fairly early on in order to get a sense of what sort of variations
are present across the subsets. One of the main goals of such early
analysis is to find properties that in fact hold across the subsets.
When these appear well supported, we can then perform the honed
analysis on the entire dataset (perhaps batched as a large number
of additional subsets). Coupled with visualization techniques that
allow us to compare the property across the subsets, this canpro-
vide an effective means for getting a handle on a very large dataset
without becoming sidetracked by dealing with system limitations.

4. ENSURING REPRODUCIBLE
ANALYSIS

A very important facet of conducting a sound measurement
study—and one that is easy to overlook initially, as its import only
becomes apparent later on—concerns structuring the processing of
the measurement data to ensure that the analysis derived from the
data isreproducible.

This need for a disciplined approach to reproducible analysis is
well illustrated by the following experience, all too familiar to not
only the author but also a number of colleagues with whom we’ve
discussed this problem:

A researcher works on a measurement study at a feverish pace in
order to submit the research to a conference. The work is deadline-
driven, and the common mistake of underestimating the dismaying
complexity of the measurement and analysis process compresses
the overall effort into a period of intense immersion in understand-
ing the data.

Later, the researcher receives feedback from the conference re-
viewers. Inevitably, a reviewer points out a facet of the analysis
that would be more insightful if done in a slightly differentfashion,
or pushed a bit farther.

But now months have lapsed, or perhaps even more if the work
was submitted for journal publication. Clearly, the researcher
should address the reviewer’s comment—doing so strengthens the
work. The question, though, is how to go about doing so.

The natural response might be to simply modify the analysis
scripts according to the reviewer’s suggestion, crunch them against
the data, and update the text with the revised results.

The more sound path, however, is for the researcher to first
reassure themselves that they understand the details of howthey

10Note that these subsets are for theinitial analysis, in order to help
us hone the analysis procedures. We do not derive ourfinal results
from just the subsets!



reached the original findings in the paper in the first place. To do
so, they re-run the analysis scripts against the data in order to re-
produce the original numbers.

It is at this point—we know personally from repeated, painful
experience—that trouble can begin, because the reality is that for
a complex measurement study, the researcher will often discover
that theycannotreproduce the original findings precisely! The
main reason this happens is that the researcher has now lost the
rich mental context they developed during the earlier intense data-
analysis period. Their ad hoc notes on how they treated the data—a
catalog of the various measurement glitches, data removed as out-
liers, fudge factors applied to correct problems caught shortly be-
fore the deadline—contain holes and inconsistencies. Theymight
find that they must have used somewhat different versions of the
analysis scripts for different parts of the paper. They may also
find that they made mistakes in producing the original text (such as
re-rounding a number in a table that had already been rounded),
which can now only be inferred.

This can be a dismaying position in which to find oneself. Rec-
tifying the discrepancies in order to soundly reproduce theoriginal
findings can require spending an exorbitant amount of time track-
ing down a host of minor details.

How serious are the hidden flaws? Are they really worth this sort
of effort? Unfortunately, we often can’t know without delving into
them individually. From personal experience, they very often are
minor in terms of their impact on the original results. Everynow
and then, however, they are quite serious (the most significant for us
concerned the conference version of [24], for which we foundwhen
generating the final copy an off-by-a-factor-of-two error that meant
the “high performance” claims in the paper had to be halved).

A vital observation here, however, is that this unhappy situa-
tion is not fundamentally unavoidable. While the degree to which
large datasets are rife with weird eccentricities, and the sheer nec-
essary scale of the analysis, present ample opportunities for confu-
sion along the lines of what we sketched above, a key means for
minimizing these problems concerns adopting a systematic analy-
sis process that emphasizes reproducibility. Such a process aims to
maintain an “audit trail” for the chain of analysis, starting from the
raw data and eventually leading to the derived findings and plots.
The process needs to include a notion of version control so that it
is possible to understand how specific results were obtainedat spe-
cific times, and what has changed in the analysis process since that
time.

An example of such a process is to enforce the discipline of using
a single master script that builds all analysis results fromthe raw
data. (A similar practice is already common in the network simula-
tion community, though there the analysis chain is often more tidy.)
The script maintains all intermediary, reduced forms of thedata as
explicitly ephemeral. Accompanying the use of such a scriptis
also the discipline of maintaining a notebook cataloging the differ-
ent forms of data reduction and analyses performed, and to what
effect, using a version control system to track changes to both the
notebook and the scripts.

By structuring analysis around the use of such a master script
we gain two major benefits. The first is to always be able to repro-
duce our results, minimizing the headaches described abovewhen
we need to reanalyze the data at a later point in time. The second
is that we then have a way to explore the analysis of the data ina
consistent fashion, so that we can both systematically incorporate
new elements into our analysis and ensure we apply them coher-
ently to the entire data set. We also can then use the version control
system to fullyundoanalysis explorations that turn out to lead to
dead ends.

While the benefits of using such a structured approach to analy-
sis are large, the difficulties it brings with it concern theefficiency
of the resulting analysis. We would really like to be able to express
the dependencies between different scripts and different sets of in-
termediary results, so that when either the scripts or the reduced
data change, the effects can be efficiently re-analyzed, recomput-
ing only the necessary intermediary results rather than allof them.
A significant hurdle to such an approach is developing mechanisms
to express the dependencies at the right granularity. For example,
experience with the popular Unix “make” utility is that its file-level
granularity is too coarse. Another particularly challenging task is
devising ways to apprehend whatchangedbetween the earlier anal-
ysis and the re-analysis. But if we can construct “change visualiza-
tion” tools, then we can conduct much more effective analyses of
large datasets.

5. MAKING DATASETS PUBLICLY
AVAILABLE

One difficulty the Internet measurement research community
faces is a dearth of publicly available datasets. These are needed
to serve as a common framework used for different analyses;
to confirm analyses conducted by other researchers; and to ad-
dress the major problem of attaining representative measurements
(from multiple sites, and from multiple periods of time, as dis-
cussed in [5]). However, building a public dataset repository faces
formidable logistics [2].

In this section we look at some considerations for making
datasets publicly available. As developed earlier in this paper, a
basic requirement is that the measurements need to include rich as-
sociated meta-data. This needs to encompass the data’s precision
and issues affecting its accuracy; more generally, any information
regarding the data that cannot be constructed from the data itself.
For example, we would like traces of traffic seen on busy linksto
include comments along the lines of:

No packet loss information was recorded. The data
was analyzed for sequencing holes—these exist, but
it is not known if they reflect measurement drops or
packet loss. A denial-of-service flood elevates packet
levels and losses during the noon hour. This site’s In-
ternet access is bandwidth-limited by an OC-3 access
link.

so that the dataset carries with it the information necessary for un-
derstanding its particular structure.

Another form of meta-data that is highly helpful to include re-
gards the analysis tools and scripts that have been previously ap-
plied to the data, to facilitate both reproducing these results and
building on the earlier work. Yet another type of meta-data is aux-
iliary information associated with the measurement. For example,
it often is highly useful to have a mapping of IP addresses↔ host-
names, or the routes between the measured hosts. These change
over time; if the data fails to include them, they can be recreated
only imperfectly at a later time.

These problems become particularly acute forlongitudinaldata,
i.e., data gathered over long time frames like years. There is great
value in such data as a way to understand not only how the Internet
and its use has evolved in practice, but, more importantly, for iden-
tifying those things that donot change as the Internet evolves. ([5]
refers to these unchanging elements asinvariants, and discusses
both their importance in terms of providing a foundation forunder-
standing, and the difficulty of identifying them.)

The existing corpus of multi-year longitudinal data is verysmall,
because it is difficult to sustain such measurement efforts over time.



From our experiences with amassing and working with a few such
datasets, the most important advice we can give in this regard is to
periodically analyzethe ongoing measurements. The analysis here
needn’t be in depth, and can in fact be highly automated. The goal
is not to derive new findings from the measurements but instead to
exercise consistency-checking as a form of calibration. This pro-
cess serves two roles:

• Discovering whether some facet of the measurement is bro-
ken (failing to deliver sound values).

• Driving early in the process of gathering the measurements
the requirement of accumulating the meta-data necessary for
checking the data’s soundness.

Again, see [6] for an example in this regard of a thorough system
for gathering very large volumes of measurements in an ongoing
fashion.

A second, quite different problem we face with building up a
larger set of publicly available traces concerns the reluctance or
sometimes legal impediments to making data available, for rea-
sons of privacy, security, and business sensitivities. This has led to
the development of anonymization technologies, primarilyin the
context of removing packet contents and rewriting IP and trans-
port headers [16, 29], but also recently with packet contents pre-
served but rewritten to remove sensitive information [19].Secure
anonymization11 is a difficult problem because there are a large
number of attacks that can be used to recover identities (seefor
example [19] for discussion), some of which are quite difficult
to defend against unless we can accept degraded notions of iden-
tity (for example, mapping a block of IP addresses all to a single
anonymized address).

An alternative paradigm to publishing traces is for data gatherers
to instead accept “data reduction requests” [17]. The contributor
keeps the raw data privately, but researchers send their data anal-
ysis software to the contributor, who then runs it against the raw
data on behalf of the researcher and sends back the reduced results.
This approach gives the contributor tighter control over the released
data, as they do not have to devise a single, irrevocable anonymiza-
tion policy, and they can hand-inspect the privacy implications of
each set of derived results (though in practice data gatherers often
lack the time required for this last).

There is another benefit to the data-reduction-request approach:
the practice of having to send our data analysis software forothers
to run forces the development of portable analysis softwareand
well-specified analysis steps. This software in turn can be made
available for use in other contexts, including reproducinganalyses
if more raw data becomes available, and potentially encouraging
the sharing of analysis technology.

A significant potential disadvantage of this approach, however,
is that the data gatherers must find the required effort sufficiently
tenable to participate. Furthermore, maintaining access to the data
over time requires a significant commitment by the gatherer,even
if the data collection itself was a one-time effort. Such data sources
will therefore often lack longevity. This limited lifetimecan then
be at odds with the frequent need to revisit raw data as we debug
our initial analysis or discover unexpected properties in the data
that we then want to delve into more deeply.

11Note that anonymization requirements can vary a great deal from
one environment to another. For example, in some environments,
individual addresses are highly sensitive, while others might have
a need to not disclosetypesof activity that reflect poorly on their
institutions.

6. SUMMARY
We have presented several general strategies for conducting

sound Internet measurement studies:

• Maintain comprehensive meta-data.

• Calibrate measurements by investigating spikes and outliers,
testing for self-consistency, and comparing different mea-
surements when the opportunity presents itself.

• Structure the analysis process to make it amenable to repro-
ducibility.

• For large datasets, work initially on small subsets and assess
variability across different subsets.

• When making long-running measurements, institute peri-
odic, automated analysis of new measurements as a means
of detecting when the process breaks, and also to ensure that
the process includes the recording of adequate meta-data.

• The need to gain access to traces by sending data reduction
programs to data gatherers can be used as an opportunity
to develop data analysis tools that lend themselves to repro-
ducibility and sharing.

These goals in turn suggest a number of tools and community
practices worth pursuing:

• Data management in terms of using databases and version
control.

• Scriptable analysis environments that support ease of explo-
ration and also reproducibility. For large projects, thesemay
require mechanisms for managing ephemeral intermediary
results for speeding up the edit-compile-debug cycle.

• Tools (visualizations, test suites) to investigate differences,
both between datasets, and between different versions of the
same analysis on the same dataset.

• The electronic equivalent of a scientist’s laboratory notebook
for capturing the full details of the measurement and analysis
process.

• Encouraging the publication of portable measurement man-
agement tools and environments.

• Encouraging the publication of measurement data.

Indeed, it is our belief that there is an important, currently ne-
glected, opportunity here for Internet measurement funders to
broadly enhance the efficacy and quality of the research thatgets
performed by directly supporting the development of more com-
munity tools along these lines.

Many of our suggestions add more work—at least initially—to
the already labor-intensive process of conducting a measurement
study. It is fair to question whether it really is worth the extra effort.
If we value the soundness of our measurement results, then inour
own experience the answer is clearly Yes, as often these techniques
have in fact, in concert, uncovered significant flaws in our work; or
their lack has led to significant subsequent headaches when trying
to untangle the lengthy path from original measurement to final
conclusion.

More generally, we would add that:(i) care in the measurement
and analysis processes often makes us more thoughtful aboutthe
meaningunderlying the analysis, too, leading to deeper insights
from the overall effort;(ii) with time, the extra effort in carefully



scrutinizing these processes builds deeper overall confidence in the
practitioner (especially for students) and offers opportunities for
serendipity; and(iii) errors of various forms oftenadd up, so a dis-
cipline that keeps them in check to the extent possible will indeed
help keep us closer to the truth.
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