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ABSTRACT

Conducting an Internet measurement study in a sound fashion
be much more difficult than it might first appear. We presentran
ber of strategies drawn from experiences for avoiding oraym-
ing some of the pitfalls. In particular, we discuss dealirighver-
rors and inaccuracies; the importance of associatiata-datawith
measurements; the technique of calibrating measuremgregs-b
amining outliers and testing for consistencies; diffi@gtthat arise
with large-scale measurements; the utility of developindiszi-
pline for reliably reproducing analysis results; and isswgh mak-
ing datasets publicly available. We conclude with thougirtghe
sorts of tools and community practices that can assist retses
with conducting sound measurement studies.

Categories and Subject Descriptors: C.2.5 [Local and Wide-
Area Networks]: Internet

General Terms: Measurement, Experimentation

Keywords: Internet Measurement, Calibration, Reproducibility,
Meta-data, Datasets

1. INTRODUCTION

Conducting a sound Internet measurement study is a difficult
dertaking. Some of the hurdles are readily apparent: diegjgm
meaningful experiment, securing permission to deploy thees-
sary apparatus, testing that the tools work correctly, ceduthe
raw data, finding illuminating ways to explore the data arespnt
the results. Other difficulties are not so apparent, and yetsig-
nificantly undermine the soundness of the final results & raift
stages of the process.

To cope with these less obvious difficulties, experienced-me
surement practitioners have learned to incorporate a nuaflsen-
siderations into their efforts. In this paper we discuss mlper of
methodological strategies reflecting these considemstidie ob-

our own work to illustrate various issues, this is merelydase of
exposition.)

The goal which these strategies targetasindnessdeveloping
confidence that the results we derive from our measuremeats a
indeed well-justified claims. By this we mean that we havela so
understanding of the strengths and limitations of the measent
process on which we base our results; and, likewise, a sakd u
derstanding of the quality of the chain of analysis suppgrthe
results.

The discussion strives to emphasize general principldserat
than particular techniques and recommended tools. Doinweo
follow several themes. First, we consider the basic prolutdeal-
ing with imperfect measurement devicés?), which can exhibit
limitations both intrinsic to their design and in how we uberh.

We then in§ 3 discuss issues that arise when dealing with a large
volume of data, which is often the case for Internet measeném
studies. Ir§ 4 we emphasize the importance of imposing a system-
atic structure on the analysis process so that we can latarately
reproduceour analysis. Our final theme concerns issues that arise
when making data publicly availablé ), which can be particu-
larly important for Internet measurement studies for a nemnds
reasons. We conclude 6 with thoughts on the sorts of tools
and community practices that can assist researchers witfuct

ing sound measurement studies.

2. DEALING WITH ERRORS AND
IMPERFECTIONS

We begin with issues relating to the basic task of making mea-
surements. Measurement tools exhibit several types ofriiepe
tions. We first discuss the fairly simple notion pifecision i.e.,
errors inherent in the basic design of a tool. This leadsédsthat-
egy of associatingneta-datawith measurements, which will be a
recurring theme. We then look at errors incurred during duiq

servations we make are not for the most part novel, and indeed ular application of a toolgccuracy and the critical danger of not

the Internet simulation community wrestles with similasues [9].
Rather, the discussion aims to help students (and othersankw
ternet measurement) avoid some of the pitfalls that piactts
have come to appreciate over time. (While we often draw upon
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measuring what we believe we are measurimgs¢onception Fi-
nally, we discuss the general strategycafibration as a means to
detect, and sometimes correct, such errors.

2.1 Precision

Let’s use the ternprecisionto refer to the maximum exactness
that a tool's design permits. For example, a clock that rsgome
in units of 1usec cannot record any distinction in time finer than a
microsecond. However, the clocldstualprecision might be much
coarser: For example, for some operating systems the clock actu-
ally advances only every 10 msec. Such clocks, even though th

_1See [15] for an extensive discussion of measurement isslads r
ing to clocks.



report time apparently to lusec precision, in fact have four or-
ders of magnitude less precision. A key consideration fhezas
whether when reporting measurements made with a tool, foetre
includes an indication of the tool's precision. If it doeben we
can formulateerror barsaround results derived from the measure-
ments in order to keep track of how the effect of limited psemi
propagates through our analysis.

Web servers it is often convenient to impose a simple, linerted
structure to facilitate subsequent processing. Anothamgte is
the save file format of the populacpdunp tool: while itincludes
afield “si gf i gs” in the trace header for recording the “accuracy
of timestamps,” there is no API available for retrieving ettig
the value.

On the other hand, an example between these two that works

For many forms of Internet measurement, precision can seemmuch better in this regard is Kohlerispsundunp tool [11]: it

readily apparent, especially measurements regardingetisguan-
tities such as copies of packets, Web server log entries,G? B
routing feeds. For these, precision concerns what infaomas
omitted and what information is kept. For example, copies of
packet headers are clearly less precise than copies o patikets.

However, this can sometimes get tricky, particularly whéterfi
ing is involved. Anillustrative example comes from our esiprce
with security monitoring. Often when we discover a compregi
host, we start tracing all packets subsequently sent todimgpm-
mised host in order to detect attempts by the attacker tacesac
the host. Sometimes these traces show failed attempts tgteem
IP addresses—previously unassociated with the eventretrio
access unusual ports on the host. Our initial responseisttie
attacker trying to get to their back door! But we've forgotthat
the trace is filtered to only traffic sent to the compromisesthé
broader trace shows that the new remote IP address in fauieda
our site’s entire address space on that port. Given this m@e
cise measurement, we immediately can realize that the agoes
spotted was incidental, rather than fraught with intent.

Another major area where considerations of precision aose
cerns measurements tifne Computer clocks have well-defined
notions of precision [14], but it can be considerable worknsure
that these precisions are included in reports of Internetsune-
ments, because it is often difficult to access the clock'srirl
assessment of its precision, and many popular measurepwst t
do not attempt to do so. A particular pitfall in this regardtie re-
porting of simplistic precisions, such as simply charazieg the
formatin which time is represented (e.g., the.&ec precision dis-
cussed above).

However, we must keep in mind a second questidoes the
clock precision matt&t For many studies, the computer clock’s
precision of at least 10 msec, and likely better, is cleadpdy

enough—because the study focuses on much larger time scales
say seconds and above—in which case we can forgo the consid

erable work of assessing the clock’s precision. It is imgurt—as
with many of the strategies we develop in this paper—to ne¢ lo
sight of this critical question ofvhen does the extra effort matter
Unfortunately, there are no crisp rules for deciding hereweber,
clearly sometimes it does indeed matter. More generallpuad
measurement study should strive to include a discussiomefiver
or not it does matter.

2.2 Meta-data

The issue of tracking measurement precision relates to the

broader theme of theneta-dataassociated with measurements
traces’ Determining a measurement'’s precision is only half the
battle; the other half ipreservinghe information during the course
of analysis. Itis easy to overlook the need to do this, andyman-
venient data formats lack a way to annotate measuremenitésin t
fashion. For example, for ASCII log formats such as thosenfro

2Here we use “trace” in a broad sense, to mean a series of mea-

surements we have recorded. The strategies we discussemante
for measurements of much broader scope than just fine-graigte
work traffic traces.

reads network traffic (ot cpdunp save files) and produces con-
figurable ASCII output. While most of the output has a uniform
format, it also includes annotation lines marked with atiahf! ”
that capture information such as when the trace was recooted
which host, and with what options, as well as when drops occur
during the tracing process (see below). In addition, by &dgp
a uniform format for the meta-data it remains easy to writstpo
processing tools for psundunp’s output, and also to introduce
additional annotations beyond those the tool generatelé. its
Finally, because good data is hard to gather, it can havetantié
beyond what the researcher initially envisions. This mehas
we can find ourselves revisiting datasets in new contexte/fich
meta-data information that was not needed for the initialysis is
now important. Thus it can prove highly beneficial to retaietaa
data information even when doing so is not of immediate benefi

2.3 Accuracy

A second form of imperfection in measurement tools concerns
their accuracy A measurement is an abstraction of the phe-
nomenon being measured; how well does the abstractiondndee
match the actual phenomenon? Accuracy mwchbigger prob-
lem than precision (which we can view as a subset of accuracy)
because measurements are prone to a wealth of differerd tfpe
errors beyond those imposed by the basic limitations of tea-m
surement apparatus. In addition, because accuracy eoors in
many forms, it can require a great deal of diligence and aare t
assess their presence and magnitude.

To illustrate, consider the accuracy of packet filters. @pAc
tually, packet filters are simple: network traffic appearorgan
attached link is reduced down to a subset by testing eachepack
against a filter. The matching subset is then recorded,raithts
entirety, or just portions of it (for example, the TCP/IP Hess, but
not the TCP payload). But despite this apparent simplipiagket
filters can exhibit a wide range of problems:

First, they can fail to record all of the packets matchingfthe
ter that appeared on the link, termed a packet fittep. Drops
can occur due to a failure of the packet recorder (¢.gpdunp)
to keep up with the rate at which the packet filter accepts gtack
They can also occur due to a failure of the filter to keep up with
the rate at which the network tap sends it the raw packetratrea
or because the tap fails to keep up with the raw packet stream o
the link. These different failure modes have somewhat diffe
implications in terms of their impact on analysis of the mmas
ments, and they also require different forms of instrumtéman
order for the measurement process to detect their presehdoeh
complicates characterizing them.

Here again the meta-data problem can arise. Measuremésit too
are, unfortunately, often deficient in adequately recarginch fail-
ure information. For exampld,cpdunp only produces an end-
of-run summary of theotal number of drops (both filtered pack-
ets and the raw stream, though not drops by the tap itselfi)t, so
is not possible to associate drops with the point in time datkwh

they occurred. Furthermorecpdunp does not record these val-
ues in the trace file but separately, so preserving the nmata-d
requires manually associating it with the trace. (Compaith w



i psundunp, which intermingles loss information with packets in
its single output, addressing both these regards.)

As cataloged in grisly empirical detail in [22], packet fikecan
also record packets more than once (with different timeptafor
the different copies), reorder the sequencing of packeirfathe
timestamps do not reveal the reordering), fail to reportpdeal
packets, falsely report dropped packets when in fact nosdoop
curred, and misfilter (making incorrect decisions on whiahkets
match the filtef).

Whether these errors are common varies a great deal acfoss di
ferent implementations and environments. However, sihedrt-
ternet can both replicate packets and reorder them, we rakest t
care in determining the true cause of duplicates and reiogter
in traces, so it is important to understand the degree totwaie
tifacts such as these can taint the accuracy of our measnteme
The reader should note that we catalog these problems natto ¢
tion about the dangers of using packet filters in particudat, to
point out the alarming diversity of inaccuracies potehtipresent
in measurements in general. In addition, §&&5 for suggestions
on general approaches to ferret out such problems.

Another basic area where issues of accuracy arise concerns

clocks. The most basic clock inaccuracy, of course, is faito
be synchronized to true time. Other problems include aumpps
forward or backward, and advancing at erroneous rates [23].

Clock inaccuracies can present significant difficulties nvaea-
lyzing behavior on fine time scales, or when comparing measur
ments made by different clocks. While algorithms exist tmpen-
sate for such errors [23, 18, 30], an increasingly viableratttive is
to use clocks that are synchronized by GPS. Such synchtmriza
can be highly beneficial compared with clocks synchronized u
ing NTP, which can still exhibit forms of skew, drift, and jps
as chronicled in [23]. One pitfall that arises when using GPS
however, is that we can be beguiled into simply assumingttieat
clocks must report correct time, rather than checking thdact
they do. The path from the highly-accurate GPS timing signal
through perhaps daisy-chaining, into the operating sy$temel,
perhaps out to the NIC or perhaps applied to an entire beffestth
of packets at one time—and ultimately to the reported pekga
timestamps can introduce significant errbr&PS is not the only
possible answer here, either. Pasztor and Veitch make thelke
servation that for most network measurement, absolute dioes
not matter nearly as much as fidelity in thete at which a clock
advances, and they demonstrate the feasibility of obtgiainighly
stable clock rate without requiring GPS synchronizatiddi[2

One difference between issues of clock precision vs. acgusa
that the former can be known in advance, and hence is easrer to
corporate into meta-data. The latter can require postgssing,
which points up the utility of designing meta-data managame
mechanisms that accommodate dynamically generateduaésib

As with precision, we must keep in mind the question of whethe
a particular form of accuracy in fact matters for the meamenm
question at hand. Again, the same issues apply regarding oal-
ibration for assessing errors and being aware that data takiay
may be re-analyzed in a different context tomorrow.

Finally, the point of this discussion is not to induce

3For example, thet cpdunp filter “t cp[ 4: 4] 0 and
tcp[4: 4] > 0” should never accept a packet since it matches
a TCP sequence number that is both equal to zero and greater th
zero. But in somé cpdunp versions it in fact can accept packets
due to a bug in cpdunp’s optimizer.

4Barford [4] once found a GPS clock setup that, due to subtée-in
face issues, routinely reported time exactly 1 second ofhftrue
time!

consternation-how can we ever trust our clocksut rather to
serve as one of the motivators for the importance of the iGlidn
techniques discussed §2.5.

2.4 Misconception

Related to the problem of measurement tool accuracy, Hetdif
ent in terms of its basic cause—and also potentially of muehtgr
importance—is the danger ahisconception errors in equating
what we are actually measuring with what wishto measure. The
pitfalls relating to misconception take many forms. Alonighwour
example above about misinterpreting attacker activityabee we
failed to account for a loss of precision due to packet fitigrcon-
sider:

e Measuring TCP packet loss by counting retransmitted pack-
ets, which risks overlooking the problem of packets retrans
mitted unnecessarily, or of packets replicated by the netwo
(see [10] for a study that explicitly acknowledges this diffi
culty, and [3] for a study demonstrating that differences in
the two rates can be quite significant).

e Assessing end-to-end Web transfer times but failing to ac-
count for hidden proxies. For an extreme example of this
problem, Allman reported measuring a TCP session that took
only 10 msec to establish a connection, transfer its dath, an
complete the three-way termination handshake with a
host 100 msec away, that he subsequently discovered had
been powered offl The paradox was due to a local hidden
proxy completely intercepting and terminating the connec-
tion [1].

e Quantifying TCP throughput using transfers with large
socket buffers and modest transfer sizes, such that
application-level timing (e.g., measuring how long it take
toissue all of thew i t e system calls) measures how long it
takes to fill the kernel buffer, rather than how long it takes t
transmit the data and receive an acknowledgment.

e Computing the distribution of TCP connection sizes by cap-
turing SYN and FIN packets and using the difference be-
tween their sequence numbers to compute the size of each
connection—but failing to recognize that the very largest
connections on the monitored link might often already be un-
derway when we start tracing, or have not terminated when
we finish, and thus we will miss their SYNs or FINs and fail
to include them.

e Characterizing global BGP reachability in terms of reacha-
bility as seen by a single, multi-hop BGP peer, without ac-
counting for how outages in the multi-hop BGP peering ses-
sion magnify into apparent global outages [28].

Each of these is an easy-to-make mistake. They arise from a
mismatch between the mental models we use to abstract rketwor
behavior and the actual complexity of the beast. The laghpia
is particularly of note, as itis an instance of the generabfam of
vantage poinf22]: that the location of exactly where a measure-
ment is performed can significantly skew the interpretatibthe
measurement, in quite non-apparent ways. Some vantageipoi
sues cannot be corrected without additional informatiad,ia fact
this leads to a fundamental problem in network intrusioreclinn
of adversaries being able to exploit vantage-point ambegito
evade security monitoring [25, 8].

Another broad class of misconception errors concerns thesde
to which individual collections of Internet measurements @ten



not representativeNumerous studies have established that Internet
properties often vary a great deal both across differemttpdn the
network and across different points in time at the same platiee
network [5]. While for some properties such as congestianav
tion is to be expected, for others (e.g., median FTP item [§Pe
it is quite surprising. A general strategy we can suggest her
wards more sound Internet measurement is, if at all possible
gather more than one type of dataset—either from a diffdomat
tion (this often proves the most fruitful) or from a diffetetime.
Having even just two datasets rather than one can proveiilatm
ing and sobering in realizing that the phenomenon underystud
more diverse than we had pictured.

Finally, we note that a major pitfall with problems of miseon
ception is that they can be difficult for researchers to ity
themselves, since the problems arise out of our own incample
mental models. Thus, it can be extremely helpful to seeleatly
peer review of a proposed measurement effort, particukaoiy
peers with somewhat different perspectives.

2.5 Calibration

We now turn to a discussion of a set of techniques that carnlgrea
help with detecting problems of inaccuracy, misconceptom er-
rors in analysis. We term these, somewhat looselgadibration
strategies. Four general ones are:

e Examining outliers and spikes.
e Employing self-consistency checks.

e Measuring facets of the same phenomenon different ways
and comparing.

e Evaluating synthetic data.

In the discussion that followsjt is good to keep in mind that the
point of these strategies is not to achieve perfection irctireect-
ness of our datasets, but rathembtdld confidencehat we have a
solid understanding of both our data and the processes lmhwie
have measured and analyzed it.

2.5.1 Examining outliers and spikes

The first strategy stems from two important poing: outliers
(unusually low or high values) and spikes (values that repea
great deal) represent “corner cases” at the extremes orerasnt
where problems often manifest, afif) these corner cases aasy
to locate so we can leverage the diagnostic benefits of inspecting
outliers and spikes without spending a great deal of effort.

While often spikes and outliers turn out to be genuine, amd pe
haps not unexpected, phenomena, they can also reflect measur
ment errors, analysis errors, or misconceptions. An exaropb
measurement error in this regard is analyzing a set of raxpd-
times (RTTs) to find that the smallest outliers are physycai-
possible given speed-of-light constraints, and instealiziag that
the timings are due to an infelicitous clock adjustment.

further investigation we found that the size reflected a louguir
sequence number computation yielding a size of exacy- 1.

An example of a misconception error caught by such techsique
arose when we were analyzing Telnet connection arrivalssto a
sess the degree to which they were well described using ad?®ois
model. One dataset had a spike of nearly 2,000 connectioasevh
interarrivals were all80.436 4+ 0.002 seconds apart. These turned
out to be due to a special-purpose host with an attached modem
Whenever a call came in to the modem, the host launched atTelne
connection to an on-line library catalog. But the modem had b
ken and continually sent a false signal indicating a call bahe
in. This led to repeated connections, each timing out aiérskc.
The misconception here is subtle: the error in our mentalehod
was that we presumed we were measuhiograninitiated activity,
for which a Poisson model might indeed make sense. If we hiad no
uncovered this misconception, we might have determineiitiiea
dataset was inconsistent with Poisson modeling—true dnetmit
missed the finding that if we removed the blatant machingabed
activity, then the remainder was in fact well-modeled as 8.

2.5.2 Employing self-consistency checks

The strategy of employing self-consistency checks workexsy
ploiting additional properties of the measured phenomeagsee if
they agree with behavior reflected in the initial measuremEmat
is, test whether properties thatusthold do in fact hold. Some-
times they will fail to hold because in fact our conceptionndfy
they “must” hold is incorrect, in which case unearthing g@tmns
can be enlightening for refining our mental model. But uguall
when they fail to hold, it is due to some sort of measurement or
analysis error.

For example, consider the problem when tracing TCP traffic of
determining whether the trace includes all of the traffioaigted
with a given connection, or whether some of the traffic is migs
due to a measurement problem such as a packet filter dropisin th
case, we can use the additional property of the TCP protbeoitt
is designed to be highly reliable. One facet of this strotiglodity
is that a TCP receiver should never send an acknowledgment fo
data it has not received. Since TCP acknowledgments arelaumu
tive, this means that we can inspect each acknowledgmeseintre
in a trace to see whether at the point in time it was sent, ahef
data up to the sequence number it acknowledges has indeed bee
seen previously in the trace. If not, then we have strongesdd
that the tracing suffered from some packet filter drops, beeave
believe the alternative explanation that the TCP recewally did
acknowledge unreceived data highly improbable (howeeer be-
low).

Thus, by analyzing the deeper semantics of the traced traffic
can develop a higher degree of confidence that the trace égdihd
a sound measurement of the traffic; or, alternatively, weloceate
portions of the trace that suffer from measurement errors.

An example of an analysis error would be the same scenario 2.5.3 Comparing multiple measurements

but the bad RTT is due to a mismatch in associating the outboun
packet with the wrong reply for determining its round trip.n-A
other example comes from our experiences computing coonect

sizes using the sequence numbers in TCP SYN/FIN/RST packets

For one connection, we found a size of 4,294,967,295 bythis T
seemed unlikely, given the duration of the connection, goohu

SAlso, see [6] for discussion of an exemplary system that-auto
mates a number of calibration techniques (“trace sanidizgtin
the context of ongoing, very high volume packet measurement

A third calibration strategy is measuring the same phenamen
different ways and comparing the results. A simple examjple o
employing multiple measurements in this fashion is to ruo $ep-
arate packet monitors, to see if they agree on which packets w
present in a captured stream. When they disagree, we can some
times distinguish between packets genuinely lost by thevorét
vs. packet filter drops by considering the directionalitaohissing
packet with respect to the monitors: if the downstream nooisiees
a packet missed by the upstream monitor, then the upstrearia mo
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Figure 1: One-way transit time step that could be due to eithe
a routing change or a clock adjustment.
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Figure 2: Incorporating additional measurements resolveghe
change as due to a clock adjustment.

tor very likely suffered a packet filter drdpiNote that this measure-
ment needn’t be heavyweight—the second “monitor” couldotym
be the receiver accounting for each packet it receives.

Calibrating via multiple measurements can also involvedcot:
ing additional measurement. For example, consider thelgmobf
assessing the accuracy of packet filter timestamps whenumiegs
network transit times. In Figure 1, taken from the data aredyin
[23], each solid square reflects a one-way transit time coeaploy
subtracting the timestamp generated by the sender uposnisn
sion of a given packet from the timestamp generated by thesverc
upon arrival. At about 750 msec into the transfer, we see desud
downward shift in the transit time. Such a step could be due to
routing change which has shortened the end-to-end paticiater
a clock adjustment at either the sender or the recéivEne first
is an interesting network event, the second merely a measunte
glitch.

81t is important to note two other possibilities here: the ke
unbeknownst to us, took a different route through the nektvlzan
we imagine, and thus bypassed the location of the first moato
form of misconceptio)) or we may have confused two identical or
nearly-identical packets.

"Note, both the sender’s and the receiver’s timestamps wer®m
tone increasing, so there was oloviousclock adjustment.

Figure 2 illustrates the power of using additional measams
to calibrate [23]. Here we include measurements of the sever
path (hollow squares), computed in the same fashion. Usitig O
cam’s Razor, the additional measurements allow us to deithéce
highly likely presence of a clock jump, rather than netwohep
nomena such as a routing change, due to the equal-but-t@posi
character of the jump in the two directions, which matchestwh
we would expect from a clock jump, but would require unusual
network dynamics. (This example illustrates how sometioadis
bration is rooted irplausibility rather than direct comparison, but
that does not undermine its diagnostic power.)

It is also possible to apply this strategy not in terms of mult
ple measurements but rather in terms of multiple versionsuof
analysis. While we almost never have the resources to coetple
reimplement our analysis software solely for purposes tibica
tion, we can often find snippets of analysis that are easyctonme
pute using an entirely different approach. When we recagsizch
cases, they can provide a valuable check on the soundness of o
software. For a simple example, suppose we are analyzingPHTT
packet traces and part of what our software does after nedise
the TCP byte streams in the trace is generate a report of haw ma
GET, HEAD, and POST requests are present. We could also com-
pute these values by extracting the raw strings preseneipdbket
trace file (e.g., using the Uni¢ r i ngs utility) and directly count-
ing occurrences of the string&€ET”, “ HEAD", and “POST” within
them. We would not expect an exact match between the counts
(there might be additional instances of the strings thapbapo be
in HTTP items or other headers, or due to retransmitted ps)cke
but we should findat leastas many instances from the raw counts
as our program reports from its refined analysis, and liketytoo
many more. If we find a discrepancy that seems a bit “funny&{®n
intuition for what constitutes an anomaly in this regardeleps
with experience), then it merits further investigation ttermine
whether our software might be flawed.

We can apply a similar strategy (and often more cheaply)iwith
a single analysis program by computing the same value niltip
ways. For example, if we are reassembling TCP byte stredms, t
for each connection we can compute a running total of how many
bytes in the stream we have processed. At the end of the connec
tion, this total should match the difference between the ¥
FIN sequence numbers. Or, if comparing retransmitted watt- n
retransmitted packets, rather than keeping count of orthame-
missions and total packets, and computing non-retranemisas
the difference, we can explicitly maintain counters fotlatee, and
ensure that they agree when we finish.

In general, when applying calibration of some form to our mea
surements, we unfortunately must steel ourselves for deredble
extra effort. First, there is the work to acquire additiomedasure-
ments and devise and assess the self-consistency checkardeo
datasets, this includes the effort necessargutmmatethe checks
in some fashion, since manually checking (e.g., visuapétting
plots such as those shown above) rapidly becomes intradadsd
with a large volume of dati.

Second, experience shows that very often when we do thia extr
work, we find that the measuremedisin fact include inconsisten-
cies or errors. We then need to gauge their significance dselev
ways to soundly compensate for their presence. Sometimesanve
get away with discarding measurements tainted with insoeist
cies, providing that we first reason through whether doingvislo
impart a bias on our analysis of the remaining measuremgfus.
example, discarding traces that we find have packet filtgrinall

8See [21] for an example of a tool that automates a number &f suc
checks for packet traces.



often bias the remainder towards having lower traffic levsilsce
packet filter drops generally occur during periods of higiffic

load.) Other times, we can attempt to remove the error, ssithea
timing adjustment algorithms developed in [23, 18, 30].

We need to also be prepared for the fact that sometimes aalibr
tion analysis is less crisp than the examples above. Forgram
if we find clear evidence of steady clock skew in one directimrn
not in the other, how should we treat the possible error? [&e
for an example of such.) It might still reflect a clock artifalout
might instead reflect some peculiar network behavior. Omgyo
back to our example of detecting packet filter drops by ariadyz
transport-protocol behavior, consider the surprising faat TCP
receivers have indeed been recorded acknowledging da¢a reev
ceived! (See the section on “Crud Seen on a DMZ" in [24].) For-
tunately, such ambiguities are often sufficiently rare thiatcan
either present and analyze them separately, or simply reiti@m
(noting this fact) because their total numbers are not seiffido
affect our overall analysis.

2.5.4 Evaluating synthetic data

Afinal calibration strategy for developing confidence in anal-
ysis software is to test it using synthetic data. If the safevpro-
cesses text input (e.g., Web server logs), then this can kass
as hand-editing some of our measurements to introduce ebang
(especially, manufacturing outliers and spikes) which hanttest
whether the software correctly processes. Other forms mitin
may require additional work, though we may be able to leverag
additional tools in this regard. For example, thepsl i ce util-
ity available with some Unix systems can allow us to editeésac
by extracting or gluing together separate sets of packets ttze
Net DuDe (NETwork DUmp data Displayer and Editor) utility [12]
provides a powerful visual editor for transforming packetes in
a wide variety of ways.

A related technique for verifying the correctness of aralps-
gorithms or the theories and modeling that provides thedeupin-
nings is to use Monte Carlo simulations: when the analysiased
on the data having a particular form (for example, confogrtma
given statistical distribution), simulate multiple ramddnstances
of that form to ensure that—at least if the statistical aggions
are correct—the analysis works properly. For example, fai-a
ysis that assumes Poisson event arrivals, not only shoulteste
that the measurements are indeed well-modeled as Poiggomeb
should also test that for statistically pure, syntheticsBon data,
the analysis produces precisely the results predictedeothéory.

3. DEALING WITH LARGE VOLUMES OF
DATA

Depending on what is being studied, a collection of Intenme#-
surement data can span many millions of measurements. arpes |
scale leads to a number of potential difficulties to keep indni

The first problem is bumping into system limitations suchiak d
space, maximum file sizes, number of files on a volume, or direc
tory search performance, that lengthen, in painfully mmedsays,
the data analysis process. A related problem concerns fhe so
ware system used for statistical analysis: many systenss tygver
bounds on the amount of data they can process before they tiega
thrash® This problem can even manifest when generating plots to

®From an informal poll of network measurement colleagues, th
statistical systems they most commonly useR\{26], the related
S-PLUS[27], andMatlab [7]. Quite a few reported using Perl or
C programs either for additional analysis or for working .ard
scaling problems in these systems.

visualize data. For example, we've found that using a sirfifhéer
to strip out redundant points (ones that lie directly on tbpre
another) can greatly speed up rendering for some types bfsisia

A final form of “system limitation” concerns the utility of see
types of statistical techniques. For example, it is wellknan the
statistics community that large datasets almost never iafisti-
cally exact descriptions, with a specific example being gregx
ment in which 26,306 throws of 12 dice failed\@ test for fitting
the predicted binomial distribution [13]. This is not duefleows in
the tests but rather that they dm good they are able to detect
minor deviations from statistical exactness, and giverughaeal
data this will indeed manifest.

These difficulties can combine to lead to potentially enarso
“edit—-compile—debug” cycles when developing and apphangl-
ysis tools. This in turn runs the risk of hindering our thaybwex-
ploration of the available data. A general strategy tharoftelps a
great deal here is to extract small subsets of the data ahdrfias
lyze those in deptf These can be selected randomly to avoid bias;
more generally, it is highly recommended to select additicub-
sets fairly early on in order to get a sense of what sort ofatiams
are present across the subsets. One of the main goals ofatgh e
analysis is to find properties that in fact hold across thessish
When these appear well supported, we can then perform thedhon
analysis on the entire dataset (perhaps batched as a lamggenu
of additional subsets). Coupled with visualization tecfueis that
allow us to compare the property across the subsets, thiprcan
vide an effective means for getting a handle on a very lartgséa
without becoming sidetracked by dealing with system litiotas.

4. ENSURING REPRODUCIBLE
ANALYSIS

A very important facet of conducting a sound measurement
study—and one that is easy to overlook initially, as its impnly
becomes apparent later on—concerns structuring the miogesf
the measurement data to ensure that the analysis derivect!fie
data isreproducible

This need for a disciplined approach to reproducible amalgs
well illustrated by the following experience, all too farail to not
only the author but also a number of colleagues with whom ave'v
discussed this problem:

A researcher works on a measurement study at a feverish pace i
order to submit the research to a conference. The work isldead
driven, and the common mistake of underestimating the gismma
complexity of the measurement and analysis process cosgsres
the overall effort into a period of intense immersion in urstiend-
ing the data.

Later, the researcher receives feedback from the conferezc
viewers. Inevitably, a reviewer points out a facet of thelgsia
that would be more insightful if done in a slightly differéashion,
or pushed a bit farther.

But now months have lapsed, or perhaps even more if the work
was submitted for journal publication. Clearly, the resezer
should address the reviewer's comment—doing so strengtien
work. The question, though, is how to go about doing so.

The natural response might be to simply modify the analysis
scripts according to the reviewer’s suggestion, crunchmtlagainst
the data, and update the text with the revised results.

The more sound path, however, is for the researcher to first
reassure themselves that they understand the details oftieyv

ONote that these subsets are for ihitial analysis, in order to help
us hone the analysis procedures. We do not derivdinairresults
from just the subsets!



reached the original findings in the paper in the first place.db While the benefits of using such a structured approach ty-anal

so, they re-run the analysis scripts against the data in otdee- sis are large, the difficulties it brings with it concern #féiciency
produce the original numbers. of the resulting analysis. We would really like to be ablexpress

It is at this point—we know personally from repeated, pdinfu the dependencies between different scripts and diffetataf in-
experience—that trouble can begin, because the realitigais for termediary results, so that when either the scripts or tdeaed

a complex measurement study, the researcher will ofterowksc data change, the effects can be efficiently re-analyzednpat-
that theycannotreproduce the original findings precisely! The ing only the necessary intermediary results rather thaofahem.
main reason this happens is that the researcher has nowfest t A significant hurdle to such an approach is developing meshan

rich mental context they developed during the earlier intedata- to express the dependencies at the right granularity. Fample,
analysis period. Their ad hoc notes on how they treated ttee-da experience with the popular Unix “make” utility is that it&filevel
catalog of the various measurement glitches, data remosexlit granularity is too coarse. Another particularly challemgtask is
liers, fudge factors applied to correct problems caughtrifide- devising ways to apprehend wietangedbetween the earlier anal-
fore the deadline—contain holes and inconsistencies. Tiigit ysis and the re-analysis. But if we can construct “changealiza-

find that they must have used somewhat different versioniseof t tion” tools, then we can conduct much more effective analyafe
analysis scripts for different parts of the paper. They mispa large datasets.
find that they made mistakes in producing the original taxtlisas

re-rounding a number in a table that had already been roupded 5. MAKING DATASETS PUBLICLY

which can now only be inferred. AVAILABLE

This can be a dismaying position in which to find oneself. Rec- o .
tifying the discrepancies in order to soundly reproduceotiiginal Ong difficulty the Inte.rnet measurement research community
findings can require spending an exorbitant amount of timektr faces is a dearth of publicly available datasets. _Theseeaedaml
ing down a host of minor details. to serve as a common framework used for different analyses;

How serious are the hidden flaws? Are they really worth this so {0 confirm analyses conducted by other researchers; and-to ad
of effort? Unfortunately, we often can’t know without detg into dress the major problem of attaining representative measemts
them individually. From personal experience, they vergofare  (from multiple sites, and from multiple periods of time, as-d
minor in terms of their impact on the original results. Eveow cussed in [5]). However, building a public dataset repogitaces
and then, however, they are quite serious (the most signifioaus formidable logistics [2]. , ) ,
concerned the conference version of [24], for which we fowhen In this section we look at some considerations for making
generating the final copy an off-by-a-factor-of-two erfmattmeant ~ datasets publicly available. As developed earlier in tfipep, a
the “high performance” claims in the paper had to be halved). bas!c requirement is tha@ the measurements need to |n0h.ld.esr-

A vital observation here, however, is that this unhappyasitu ~ Sociated meta-data. This needs to encompass the dataisimec
tion is not fundamentally unavoidable. While the degree kictv and issues affecting its accuracy; more generally, anyrimition
large datasets are rife with weird eccentricities, and teesnec- ~ régarding the data that cannot be constructed from the thtt. i
essary scale of the analysis, present ample opportunitiehfu- _For example, we would like tr_aces of traffic seen on busy lilaks
sion along the lines of what we sketched above, a key means forinclude comments along the lines of:
minimizing these problems concerns adopting a systemaétya No packet loss information was recorded. The data
sis process that emphasizes reproducibility. Such a ps@ies to was analyzed for sequencing holes—these exist, but
maintain an “audit trail” for the chain of analysis, stagifiom the it is not known if they reflect measurement drops or
raw data and eventually leading to the derived findings antspl packet loss. A denial-of-service flood elevates packet
The process needs to include a notion of version control &oith levels and losses during the noon hour. This site’s In-
is possible to understand how specific results were obtaihsge- ternet access is bandwidth-limited by an OC-3 access
cific times, and what has changed in the analysis process 8iat link.
time.

so that the dataset carries with it the information necg<seauun-
derstanding its particular structure.

Another form of meta-data that is highly helpful to include r
gards the analysis tools and scripts that have been préyiaps
plied to the data, to facilitate both reproducing these ltesand
building on the earlier work. Yet another type of meta-datatix-
iliary information associated with the measurement. Fengxe,
it often is highly useful to have a mapping of IP addressekost-
names, or the routes between the measured hosts. Theseschang
over time; if the data fails to include them, they can be raw@eé
only imperfectly at a later time.

These problems become particularly acutelémgitudinal data,
i.e., data gathered over long time frames like years. Thegedat
value in such data as a way to understand not only how thenktter
and its use has evolved in practice, but, more importarahyjiden-
tifying those things that doot change as the Internet evolves. ([5]
refers to these unchanging elementsiragriants and discusses
both their importance in terms of providing a foundationdader-
standing, and the difficulty of identifying them.)

The existing corpus of multi-year longitudinal data is veryall,
because it is difficult to sustain such measurement effodstime.

An example of such a process is to enforce the disciplineiofus
a single master script that builds all analysis results ftbenraw
data. (A similar practice is already common in the netwonkuda-
tion community, though there the analysis chain is oftenentiofy.)

The script maintains all intermediary, reduced forms ofdbta as
explicitly ephemeral. Accompanying the use of such a sdsipt
also the discipline of maintaining a notebook catalogireydtifer-
ent forms of data reduction and analyses performed, and & wh
effect, using a version control system to track changes to the
notebook and the scripts.

By structuring analysis around the use of such a mastertscrip
we gain two major benefits. The first is to always be able toaepr
duce our results, minimizing the headaches described abbga
we need to reanalyze the data at a later point in time. Thenseco
is that we then have a way to explore the analysis of the dada in
consistent fashion, so that we can both systematicallyrporate
new elements into our analysis and ensure we apply them-coher
ently to the entire data set. We also can then use the versiurot
system to fullyundoanalysis explorations that turn out to lead to
dead ends.



From our experiences with amassing and working with a feviasuc
datasets, the most important advice we can give in this dagdo
periodically analyzeghe ongoing measurements. The analysis here
needn’t be in depth, and can in fact be highly automated. Baé g

is not to derive new findings from the measurements but iddtea
exercise consistency-checking as a form of calibrationis Pho-
cess serves two roles:

e Discovering whether some facet of the measurement is bro-
ken (failing to deliver sound values).

e Driving early in the process of gathering the measurements
the requirement of accumulating the meta-data necessary fo
checking the data’s soundness.

Again, see [6] for an example in this regard of a thoroughesyst
for gathering very large volumes of measurements in an oiggoi
fashion.

A second, quite different problem we face with building up a
larger set of publicly available traces concerns the rahas or
sometimes legal impediments to making data available, dar r
sons of privacy, security, and business sensitivitiess Fias led to
the development of anonymization technologies, primadrilyhe
context of removing packet contents and rewriting IP andsira
port headers [16, 29], but also recently with packet costene-
served but rewritten to remove sensitive information [19gcure
anonymizatioft is a difficult problem because there are a large
number of attacks that can be used to recover identitiesf(see
example [19] for discussion), some of which are quite difficu
to defend against unless we can accept degraded notionsrof id
tity (for example, mapping a block of IP addresses all to glsin
anonymized address).

An alternative paradigm to publishing traces is for dathers
to instead accept “data reduction requests” [17]. The dmuttor
keeps the raw data privately, but researchers send theirahet-
ysis software to the contributor, who then runs it againet rdw
data on behalf of the researcher and sends back the redwssis re
This approach gives the contributor tighter control overrleased
data, as they do not have to devise a single, irrevocableyarnina-
tion policy, and they can hand-inspect the privacy implarag of
each set of derived results (though in practice data gatheften
lack the time required for this last).

There is another benefit to the data-reduction-requesbappr
the practice of having to send our data analysis softwaretfars
to run forces the development of portable analysis softvesue
well-specified analysis steps. This software in turn can belen
available for use in other contexts, including reprodu@nglyses
if more raw data becomes available, and potentially enginga
the sharing of analysis technology.

A significant potential disadvantage of this approach, hane
is that the data gatherers must find the required effort serffily
tenable to participate. Furthermore, maintaining acaes$ise data
over time requires a significant commitment by the gathenesn
if the data collection itself was a one-time effort. Suchedsdurces
will therefore often lack longevity. This limited lifetimean then
be at odds with the frequent need to revisit raw data as wegdebu
our initial analysis or discover unexpected propertieshia data
that we then want to delve into more deeply.

Note that anonymization requirements can vary a great dewl f
one environment to another. For example, in some envirotsnen
individual addresses are highly sensitive, while otherghtnhave

a need to not disclosigpesof activity that reflect poorly on their
institutions.

6. SUMMARY

We have presented several general strategies for conguctin
sound Internet measurement studies:

e Maintain comprehensive meta-data.

e Calibrate measurements by investigating spikes and caitlie
testing for self-consistency, and comparing different mea

surements when the opportunity presents itself.

Structure the analysis process to make it amenable to repro-
ducibility.

For large datasets, work initially on small subsets andsasse
variability across different subsets.

When making long-running measurements, institute peri-
odic, automated analysis of new measurements as a means
of detecting when the process breaks, and also to ensure that
the process includes the recording of adequate meta-data.

The need to gain access to traces by sending data reduction
programs to data gatherers can be used as an opportunity
to develop data analysis tools that lend themselves to +epro
ducibility and sharing.

These goals in turn suggest a number of tools and community
practices worth pursuing:

e Data management in terms of using databases and version

control.

Scriptable analysis environments that support ease obexpl
ration and also reproducibility. For large projects, thess/
require mechanisms for managing ephemeral intermediary
results for speeding up the edit-compile-debug cycle.

Tools (visualizations, test suites) to investigate déferes,
both between datasets, and between different versiong of th
same analysis on the same dataset.

The electronic equivalent of a scientist’s laboratory botek
for capturing the full details of the measurement and aiglys
process.

Encouraging the publication of portable measurement man-
agement tools and environments.

e Encouraging the publication of measurement data.

Indeed, it is our belief that there is an important, curnemte-
glected, opportunity here for Internet measurement fusder
broadly enhance the efficacy and quality of the researchgiat
performed by directly supporting the development of mors-co
munity tools along these lines.

Many of our suggestions add more work—at least initially—to
the already labor-intensive process of conducting a measemt
study. Itis fair to question whether it really is worth therexeffort.

If we value the soundness of our measurement results, theurin
own experience the answer is clearly Yes, as often thesaitpeks
have in fact, in concert, uncovered significant flaws in ourlkyor
their lack has led to significant subsequent headaches wyiag t
to untangle the lengthy path from original measurement tal fin
conclusion.

More generally, we would add thati) care in the measurement
and analysis processes often makes us more thoughtful gmut
meaningunderlying the analysis, too, leading to deeper insights
from the overall effortii) with time, the extra effort in carefully



scrutinizing these processes builds deeper overall cortfedim the
practitioner (especially for students) and offers opputtes for
serendipity; andiii) errors of various forms ofteadd up so a dis-
cipline that keeps them in check to the extent possible wileed
help keep us closer to the truth.
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